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Abstract. In the paper we present a new framework for improving clas-
sifiers learned from imbalanced data. This framework integrates the SPI-
DER method for selective data pre-processing with the Ivotes ensemble.
The goal of such integration is to obtain improved balance between the
sensitivity and specificity for the minority class in comparison to a sin-
gle classifier combined with SPIDER, and to keep overall accuracy on a
similar level. The Ilvotes framework was evaluated in a series of experi-
ments, in which we tested its performance with two types of component
classifiers (tree- and rule-based). The results show that IIvotes improves
evaluation measures. They demonstrated advantages of the abstaining
mechanism (i.e., refraining from predictions by component classifiers) in
IIvotes rule ensembles.

1 Introduction

Learning classifiers from imbalanced data has received a growing research inter-
est in the last decade. In such data, one of the classes (further called a minority
class) contains significantly smaller number of objects than the remaining major-
ity classes. The imbalanced class distribution causes difficulties for the majority
of learning algorithms because they are biased toward the majority classes and
objects from the minority class are frequently misclassified, what is not accept-
able in many practical applications.

Several methods have been proposed to deal with learning from imbalanced
data (see [5,6] for reviews). These methods can be categorized in two groups.
The first group includes classifier-independent methods that rely on transforming
the original data to change the distribution of classes, e.g., by re-sampling. The
other group involves modifications of either learning or classification strategies.

In this paper, we focus on re-sampling techniques. The two well known meth-
ods are SMOTE for selective over-sampling of the minority class [3], and NCR
for removing objects from the majority classes [9]. Stefanowski and Wilk also
proposed a new method to selective pre-processing combining filtering and over-
sampling of imbalanced data (called SPIDER) [12]. Experiments showed that it
was competitive to SMOTE and NCR [13]. Unfortunately, for some data sets
the improvement of the sensitivity for the minority class was associated with
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too large decrease of specificity for this class (it translated into worse recogni-
tion of objects from the majority classes). It affects SPIDER and other methods
included in the experiment.

In our opinion it is an undesirable property as in many problems it is equally
important to improve sensitivity of a classifier induced from imbalanced data
and to keep its specificity and overall accuracy at an acceptable level (i.e., both
measures should not deteriorate too much comparing to a classifier induced from
data without pre-processing). We claim that in general there is a kind of trade
off between these measures and too large drop of specificity or accuracy may not
be accepted. Thus, our goal is to modify SPIDER in a way that would improve
this trade-off.

To achieve it we direct out attention to adaptive ensemble classifiers which
iteratively construct a set of component classifiers. Such classifiers optimize the
overall accuracy, by iteratively learning objects which were difficult to classify
in previous iterations. However, as these objects are sampled from the original
learning set which is predominated by the majority classes, even misclassified
objects may be still biased toward these classes. Our proposition to overcome this
problem is using the SPIDER method to transform each sample in succeeding
iterations. It should increase the importance of the minority class objects in
learning each component classifier. As an ensemble we decided to consider the
Ivotes approach introduced by Breiman in [2], as it is already based on a kind
of focused sampling of learning objects. Moreover, we have already successfully
applied this ensemble with the MODLEM rule induction algorithm [10, 11] and
we think its classification strategy could be biased toward the minority class
with so-called abstaining [1].

A similar idea of using adaptive ensembles was followed in the SMOTEBoost
algorithm [4], where the basic SMOTE method was successfully integrated with
changing weights of objects inside the AdaBoost procedure. Results reported
in the related literature show that Ivotes gives similar classification results as
boosting, therefore we hope that our solution will also work efficiently.

The main aim of this paper is to present the new framework for dealing with
imbalanced data based on incorporating SPIDER into the Ivotes ensemble. We
evaluate its performance experimentally on several imbalanced data sets and
we compare it to the performance of single classifiers combined with SPIDER.
We consider tree-based and rule-based classifiers induced by the C4.5 and the
MODLEM algorithms respectively, as according to previous studies they are
sensitive to the class imbalance [12, 13].

2 Related Works

In this section we concentrate on these re-sampling methods that are most re-
lated to our study — for reviews of other approaches see [5, 6]. Kubat and Matwin
in their paper on one-side sampling claimed that characteristics of mutual posi-
tions of objects is a source of difficulty [8]. They focus attention on noisy objects
located inside the minority class and borderline objects. Such objects from the
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majority classes are removed while keeping the minority class unchanged. An-
other approach to focused removal of objects from the majority classes is the
NCR method introduced in [9], which uses the Edited Nearest Neighbor Rule
(ENNR) and removes these objects from the majority classes that are misclassi-
fied by its k nearest neighbors. The best representative of focused over-sampling
is SMOTE that over-samples the minority class by creating new synthetic objects
in the k-nearest neighborhood [3].

However, some properties of these methods are questionable. NCR or one-
side-sampling may remove too many objects from the majority classes. As a
result improved sensitivity is associated with deteriorated specificity. Random
introduction of synthetic objects by SMOTE may be questionable or difficult to
justify in some domains, where it is important to preserve a link between the
original data and a constructed classifier. Moreover, SMOTE may blindly ”over-
generalize” the minority class area without checking positions of the nearest
objects from the majority classes, thus increasing overlapping between classes.

Following this criticism Stefanowski and Wilk introduced SPIDER — a new
method for selective pre-procesing [12]. It combines removing these objects from
the majority classes that may result in misclassification of objects from the mi-
nority class, with local over-sampling of these objects from the minority class
that are ”"overwhelmed” by surrounding objects from the majority classes. On
the one hand, such filtering is less greedy than the one employed by NCR, and on
the other hand, over-sampling is more focused that this used by SMOTE. SPI-
DER offers three filtering options that impact modification of the minority class
and result in changes of increasing degree and scope: weak amplification, weak
amplification and relabeling, and strong amplification. More detailed description
is given in Section 3.

Finally, let us note that various re-sampling techniques were integrated with
ensembles. The reader is referred to a review in [6] that besides SMOTEBoost de-
scribes such approaches as DataBoost-IM or special cost-sensitive modifications
of AdaBoost.

3 Proposed Framework

Our framework combines selective pre-processing (SPIDER) with an adaptive
ensemble of classifiers. Such ensembles are able to adapt to objects that are
difficult to learn in succeeding iterations. Such difficult objects from the majority
class could be especially important when learning from imbalanced data. We
decided to use Ivotes [2] as the ensembles due to reasons given in Section 1. We
propose to incorporate SPIDER inside this ensemble to obtain a classifier more
focused on minority class. However, due to the construction of the ensemble
and its general controlling criterion (accuracy) we still expect that it should
sufficiently balance the sensitivity and specificity for the minority class.

The resulting Imbalanced Ivotes (shortly called Ilvotes) algorithm is pre-
sented in Figure 1. In each iteration, IIvotes creates a new training set from LS
by importance sampling. The rationale for the importance sampling is that the
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new training set will contain about equal numbers of incorrectly and correctly
classified objects. In this sampling an object is randomly selected with all objects
having the same probability of being selected. Then it is classified by an out-of-
bag classifier (i.e., ensemble composed of all classifiers which were not learned on
the object). If the object is misclassified then it is selected into the new training
set S;. Otherwise, it is sampled into S; with probability li(ei()z')’ where e(i) is
a generalization error. Sampling is repeated until n objects are selected. Each
S; is processed by SPIDER. In each iteration, e() is estimated by out-of-bag
classifier. IIvotes iterates until e(i) stops decreasing.

The SPIDER method is presented in Figure 2. In the pseudo-code we use the
following auxiliary functions (in all these functions we employ the heterogeneous
value distance metric (HVDM) [9] to identify the nearest neighbors of a given
object):

— correct(S, x, k) — classifies object = using its k-nearest neighbors in set S
and returns true or false for correct and incorrect classification respectively.

— flagged(S, ¢, f) — identifies and returns a subset of objects from set S that
belong to class ¢ that are flagged as f.

— knn(S, x, k, ¢, f) — identifies and returns these objects among the k-nearest
neighbors of x in set S that belong to class ¢ and are flagged as f.

— amplify(S, x, k, ¢, f) — amplifies object = by creating its |knn(S, z, k, c,
f)| copies and adding it to set S (where |.| denotes the cardinality of a set).

SPIDER consists of two main phases — identification and pre-processing. In
the first phase it identifies the ”local” characteristics of objects following the
the idea of ENNR [9], flags them appropriately, and marks questionable objects
from cpq; for possible removal. In the second phase , depending on the pre-
processing option SPIDER. amplifies selected objects from ¢, relabels selected
questionable objects from ¢4, (i-e., their class is changed to ¢ip), and finally
removes remaining questionable objects from c¢,,q; from a resulting data set.
Much more thorough description of the method is provided in [12,13].

Let us remark that Ivotes ensembles proved to improve their performance
in terms of predictive accuracy with component classifiers that are able to ab-
stain (i. e., they do not classify objects when they are not sufficiently certain)
[1]. We are interested in checking whether abstaining could also help in classi-
fying objects from the minority class. According to our previous experience [1],
abstaining can be implemented by changing classification strategies inside rule
ensembles (by refraining from prediction, when the new object is not precisely
covered by rules in the component classifiers).

4 Experiments

The main aim of our experiments was to evaluate the ability of the new IIvotes
framework to balance the recognition of minority and majority classes. Thus,
we compared the performance of IIvotes with three pre-processing options for
SPIDER (weak, relabel and strong — see Figure 2) to the performance of single
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Algorithm 1: ITvotes

Input : LS —learning set; T'S — testing set; n — size of learning data set; LA —
learning algorithm; ¢,,in — the minority class; & — the number of
nearest neighbors; opt — pre-processing option of SPIDER

Output: C* final classifier

Learning phase

while e(i) < e(i — 1) do

S; := importance sample of size n from LS

S;i := SPIDER (Si, Cmin, k, opt) {selective pre-processing of S;}
C; := LA (S;) {construct a base classifier}

e(i) := estimate generalization error by out-of-bag classifier
1 =141

Classification phase

foreach x € T'S do

C”"(x) = argmaxx Zle(Ci(x) = X)) {the class with maximum number of
votes is chosen as a final label for x}

Algorithm 2: SPIDER

Input : DS - data set; ¢min — the minority class; k — the number of nearest
neighbors; opt — pre-processing option (weak = weak amplification,
relabel = weak amplification and relabeling, strong = strong
amplification)

Output: pre-processed DS

Cmaj ‘= an artificial class combining all the majority classes in DS

Identification phase

foreach z € DS do
if correct(DS, x, k) then flag x as safe
else flag = as noisy

RS := flagged(DS, cmaj, noisy)

Pre-processing phase
if opt = weak V opt = relabel then
foreach z € flagged(DS, cmin, noisy) do amplify (DS, z, k, cmaj, safe)
if opt = relabel then
foreach z € flagged (DS, cmin, noisy) do
foreach y € knn(DS, z, k, cmaj, noisy) do

change classification of y to ¢min
RS := RS \{y}
Ise // opt = strong

foreach z € flagged (DS, cmin, safe) do amplify (DS, x, k, cmaj, safe)

foreach z € flagged (DS, ¢min, noisy) do
if correct(DS, z, k + 2) then amplify(DS, z, k, ¢ma;, safe)
else amplify (DS, z, k + 2, ¢maj, safe)
DS := DS\ RS

o
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classifiers combined with the same SPIDER pre-processing. Moreover, for com-
prehensive comparison we introduced the following baseline classifiers (further
denoted as base) — Ivotes ensembles for IIvotes ensembles and single classifiers
without any pre-processing for single classifiers with SPIDER.

We constructed all classifiers with two learning algorithms — C4.5 (J48 from
WEKA) for decision trees and MODLEM for decision rules (MODLEM is de-
scribed in [10, 11] and applied together with Grzymala’s LERS strategy for clas-
sifying new objects [7]). Both algorithms were run without prunning to get more
precise description of the minority class. SPIDER was used with & = 3 neighbors
and the size of sample n in IIvotes was set to 50% based on our experience from
previous experiments. In case of rule ensembles, besides the basic construction,
we additionally tested a version with abstaining of component classifiers [1]. All
algorithms were implemented in Java using WEKA.

Table 1. Characteristics of data sets

Data set ‘ Objects Attributes  Minority class  Imbalance ratio
abdominal-pain 723 13 positive 27.94%
balance-scale 625 4 B 7.84%
breast-cancer 286 9 recurrence_events 29.72%
bupa 345 6 sick 42.03%
car 1728 6 good 3.99%
cleveland 303 13 positive 11.55%
cme 1473 9 long-term 22.61%
ecoli 336 7 imU 10.42%
german 666 20 bad 31.38%
haberman 306 3 died 26.47%
hepatitis 155 19 die 20.65%
pima 768 8 positive 34.90%
transfusion 748 4 yes 23.80%

The experiments were carried out on 13 data sets listed in Table 1. They
either came from the UCI repository! or from our medical case studies (abdom-
inal pain). We selected data sets that were characterized by varying degrees of
imbalance and that were used in other related works.

All experiments were run with a stratified 10-fold cross-validation repeated
five times. Besides recording average values of sensitivity, specificity and overall
accuracy we also used G-mean — geometric mean of sensitivity and specificity —
to evaluate the balance between these two measures. G-mean (GM in short) was
proposed in [8] as a replacement for overall accuracy to maximize the recognition
of the minority and majority classes, and since then it has been used in multiple
studies on learning from imbalanced data. GM for tree- and rule-based classifiers

! http://www.ics.uci.edu/ mlearn/MLRepository.html
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are presented in Table 2 and 3. Moreover, in Table 4 we show GM for Ilvotes
rule ensembles with abstaining.

Table 2. GM for tree-based classifiers

Data set

Base

Single C4.5
Weak Relabel Strong

Ivotes / Ilvotes + C4.5
Base Weak Relabel Strong

abdominal-pain
balance-scale
breast-cancer
bupa

car

cleveland
cme

ecoli

german
haberman
hepatits
pima
transfusion

0.7812
0.0249
0.5308
0.6065
0.8803
0.3431
0.5533
0.6924
0.5828
0.5375
0.5386
0.6949
0.5992

0.7859 0.7807 0.7919
0.2648 0.3646 0.2562
0.5487 0.5824 0.5602
0.6032 0.5628 0.6037
0.9261 0.8603 0.9111
0.4531 0.5052 0.4079
0.6378 0.6175 0.6310
0.7728 0.7788 0.7852
0.6114 0.6113 0.6086
0.6089 0.6083 0.6118
0.5971 0.6518 0.5534
0.6978 0.7046 0.6986
0.6276 0.6317 0.6252

0.8052 0.8216 0.8239 0.8157
0.0881 0.4584 0.3827 0.5232
0.5467 0.6068 0.5868 0.5683
0.6635 0.6804 0.7019 0.6612
0.8093 0.9149 0.8945 0.9171
0.2759 0.4411 0.3914 0.4896
0.5813 0.6620 0.6439 0.6547
0.7443 0.8383 0.8122 0.8462
0.5947 0.6738 0.6615 0.6662
0.4750 0.6256 0.6085 0.6167
0.7115 0.7642 0.7466 0.7422
0.7255 0.7401 0.7340 0.7343
0.5181 0.6492 0.6523 0.6309

Table 3. G-means for rule-based classifiers (rule ensembles without abstaining)

Data set

Base

Single MODLEM
Weak Relabel Strong

Ivotes / Ilvotes + MODLEM
Base Weak Relabel Strong

abdominal-pain
balance-scale
breast-cancer
bupa

car

cleveland
cme

ecoli

german
haberman
hepatits
pima
transfusion

0.7731
0.0000
0.5008
0.6502
0.8978
0.3292
0.5171
0.6502
0.5499
0.4588
0.6140
0.6576
0.5128

0.7968 0.7914 0.7946
0.1913 0.1613 0.1722
0.5612 0.5104 0.5687
0.5969 0.6725 0.5989
0.9547 0.9404 0.9489
0.4360 0.3738 0.4673
0.6320 0.5770 0.6218
0.7736  0.6655 0.7763
0.6147 0.5719 0.6337
0.5382 0.4790 0.5702
0.6861 0.6082 0.6482
0.7190 0.6832 0.7148
0.6153 0.5422 0.6103

0.7933 0.8321 0.8183 0.8278
0.0634 0.1125 0.0729 0.1454
0.4748 0.5571 0.5462 0.5837
0.6703 0.6800 0.7002 0.6920
0.9021 0.9722 0.9638 0.9779
0.1063 0.3307 0.2364 0.3628
0.5304 0.6660 0.6029 0.6575
0.6140 0.7879 0.7233 0.7969
0.5133 0.6272 0.5838 0.6382
0.4345 0.5403 0.4807 0.5570
0.6142 0.6637 0.6702 0.6817
0.6510 0.7356 0.6944 0.7271
0.4848 0.6100 0.5693 0.6239
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Table 4. GM for rule ensembles with abstaining

Data sot Ivotes / Ilvotes + MODLEM
Base Weak Relabel Strong
abdominal-pain | 0.7995 0.8345 0.8284 0.8400
balance-scale 0.0625 0.1637 0.0878 0.2470
breast-cancer 0.5203 0.5776 0.5716 0.5886
bupa 0.7045 0.7058 0.7124 0.6933
car 0.9426 0.9743 0.9780 0.9834
cleveland 0.2361 0.4028 0.3232 0.4420
cme 0.5630 0.6684 0.6353 0.6709
ecoli 0.7098 0.8077 0.7706 0.8245
german 0.6055 0.6852 0.6512 0.6885
haberman 0.4944 0.5704 0.5044 0.5625
hepatits 0.6759 0.7047 0.7005 0.7240
pima 0.7049 0.7507 0.7306 0.7430
transfusion 0.5331 0.6212 0.5851 0.6324

Table 5. Overall accuracy [%] for tree-based classifiers

Data. set Single C4.5 Ivotes / Ilvotes + C4.5
Base Weak Relabel Strong || Base Weak Relabel Strong
abdominal-pain | 82.84 77.45 76.87 77.92 | 85.20 81.77 83.21 81.30
balance-scale 78.65 73.34 7299  73.81 || 84.67 80.83 80.64  79.07
breast-cancer 65.40 59.12 59.89 5891 || 66.71 63.36 62.87  56.78
bupa 65.56 60.18 56.84  60.20 || 69.39 67.42 69.86 65.28
car 93.99 95.04 94.20 94.78 |/ 92.89 9291  93.02 92.88
cleveland 82.25 81.52 80.98 81.86 || 85.08 83.83 83.70  83.70
cme 49.25 49.27 46.58  48.46 | 51.57 50.69 50.98  49.45
ecoli 91.91 90.55 89.23 91.50 |/ 92.80 91.90 92.68 91.19
german 66.00 65.44 63.33  65.50 || 71.05 71.86 73.06 70.54
haberman 70.08 61.26 59.87  60.88 |[92.06 90.00 90.65  90.56
hepatits 78.47 75.93 76.16 73.74 || 72.55 66.67 67.39 62.88
pima 73.96 69.42 69.63 69.66 || 84.39 83.10 83.10 82.84
transfusion 77.75 66.15  65.61 60.85 || 75.65 T4.14 T74.24 73.23

For pairwise comparison of classifiers over all data sets we used the Wilcoxon
Signed Ranks Test (confidence o = 0.05). Considering the results of GM for
tree-based classifiers (see Table 2) all single classifiers with any SPIDER, pre-
processing and all ITvotes ensembles were always significantly better than their
baseline versions. Also all ITvotes ensembles were significantly better than single
classifiers with a corresponding SPIDER option. Moreover, the IIvotes ensembles
with the weak and strong options were always superior to any single classifier
with any SPIDER option. After comparing pairs of livotes ensembles we were
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not able to reject the null hypothesis on equal performance for the weak and
strong options, however, both of them were better than relabel.

We obtained similar results of the Wilcoxon test for rule ensembles with ab-
staining (see Table 4 and the left part of Table 3), although the superiority of
the Ilvotes ensemble with relabel over the single classifier with the same SPI-
DER option is slightly smaller (p = 0.03 while previously it was close to 0.01).
Furthermore, the IIvotes ensembles with the strong option was nearly significant
better than the Ilvotes ensemble with the weak option (p = 0.054). Consider-
ing the results for the non-abstaining ensembles (Table 3), the Wilcoxon test
revealed that the Ilvotes ensembles weak and strong option were significantly
better than the single classifiers with the same pre-processing option, however,
the advantage was smaller than for the variant with abstaining.

While analysing the sensitivity alone we cannot say that Ilvotes is signifi-
cantly better than single classifiers with SPIDER (due to page limits we cannot
show more tables with detailed results). Finally, considering the overall accuracy
results of Wilcoxon test show that IIvotes integrated with SPIDER is always bet-
ter than its single classifier version (see Table 5 for trees, results for rules are
analogous).

5 Final Remarks

In this paper we proposed a new framework that integrates the SPIDER method
for selective data pre-processing into the Ivotes ensemble. This integration aims
at obtaining a better trade-off between sensitivity and specificity for the minority
class than SPIDER combined with a single classifier.

Experimental results showed that the proposed IIvotes framework led to sig-
nificantly better values of GM than single tree- and rule-based classifier combined
with SPIDER. Despite improving the sensitivity of the minority, a satisfactory
value of sensitivity is preserved, what was not achieved by SPIDER alone and
other related re-sampling techniques (previous experiments [13] showed that also
NCR and to some extent SMOTE suffered from decreasing specificity).

After comparing possible pre-processing options of the IIvotes framework we
can say that weak and strong amplification (particularly the latter) are more
efficient than relabel. Moreover, IIvotes was successful in keeping the overall
accuracy at an acceptable level, comparable to baseline classifiers. Let us notice
that using the standard version of Ivotes ensemble was not successful - GM did
not differ significantly from values reported for single classifiers. We expect that
even using a re-sampling filter to transform the whole data before constructing
the ensemble is also a worse solution than integrating it inside the ensemble —
see the discussion in [4].

Abstaining turned out to be a useful extension of rule ensembles as it im-
proved their performance with respect to all considered measures. Let us remind
that component classifiers in the IIvotes ensemble use unordered rule sets and
the LERS classification strategy [7]. In these classifiers the conflict caused by
matching a classified object to multiple rules is solved by voting with rule sup-
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port. This strategy is biased toward rules from the majority classes as they are
stronger and more general than rules from the minority class. This is the reason
why objects from the minority class are more likely to be misclassified. Thus,
refraining from making wrong predictions in some classifiers gives a chance to
other component classifiers (that are more expertized for the new object) to have
greater influence on the final outcome of the rule ensemble.

Our future research in processing imbalance data with rule-based ensemble
classifier covers two topics. The first one is studying the impact of changing
the control criterion in the ensemble from general error (or accuracy) toward
measures typical for imbalanced data. The second one is exploitation of other
classification strategies which could improve the role of rules for the minority
class and combining them with SPIDER. This topic is a subject of our on-going
research.
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