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Abstract

In this paper we study the use of Query by Committee strategies in active learn-
ing from unlabeled examples. In this framework we compare four algorithms for
creating ensembles of classifiers: bagging, boosting, decorate and random forests.
We consider the use of different measures of disagreement among components
classifiers to select the most informative example to query an oracle for its label.
Moreover, we introduce a new technique, based on analysing the neighborhood
of examples, which is applied to create a starting training set for generating the
first ensemble. The usefulness of all these approaches is experimentally evaluated.
Results of our experiments confirm that accurate final classifiers could be created
using a relatively small number of queries to label examples, in particular for ac-
tive decorate. Simpler disagreement measures, as margins of examples or median
difference are usually more effective than more advanced ones, however mainly for
multi-class data. Finally, the new technique for selecting starting examples has
proved to be definitely more effective than simple sampling.
Keywords: active learning, query by committee, ensembles, disagreement mea-
sures

1 Introduction

Machine learning techniques for supervised learning require a sufficiently large
number of training examples. It is even claimed that the more training data a
learning algorithm gets, the more accurate classifier should be induced (Davy,
2005). However, in many real-life problems only a quite limited number of labeled
examples is available. Typically these examples are manually labeled by human
experts - which is time consuming, costly and unrealistic in case of processing
thousands of instances. It may be problematic even for more automatic framework.
On the other hand, in many domains unlabeled examples are much easier to be
acquired. In particular, it refers to Web mining or text classification. For instance,
Blum and Mitchell (1998) considered the classification of Web pages, where hand
processing of pages by humans was very difficult, while much larger amount of
unlabeled pages were easy and inexpensively gathered by web crawlers. Similar
examples were described for spam filtering (cf. Kiritchenko and Matwin, 2001) and
categorization of text documents (cf. Liere and Tadepalli, 1997).



458 Jerzy Stefanowski, Mateusz Pachocki

Therefore, several researchers postulated that for such problems learning algo-
rithms should be able to take as much advantages of unlabeled data as possible to
produce an efficient classifier without the need for large amount of labeled training
data. These are motivations for using a kind of semi-supervised approaches to con-
struct classifiers. In a recent decade we could observe a growing research interest
in such approaches. The most well known proposals are co-training (Blum and
Mitchell, 1998) or active learning (Cohn at al., 1994). Both of them empirically
proved to work with relatively reduced number of labeled examples.

In this paper we have chosen active learning. Generally speaking, the active
algorithm starts with a very small number of labeled examples and analyzes un-
labeled ones. As a result it presents queries (asks for labeling an example) to
the expert (or oracle). These examples are further used to improve a classifier.
The key issue is to select the most valuable examples and reduce the number of
queries. Since the paper (Cohn at al., 1994) various techniques have been intro-
duced – a brief review is given in section 2. In our study, we focus attention
on Query by Committee approaches, which have been shown to be effective in
different classification tasks (cf. Melvile and Monney, 2004; Liere and Tadepalli,
1997). They are based on using a multiple classifier to select the most informative
examples, which are the ones leading to a high disagreement among component
classifiers. In (Abe and Mamitsuka, 1998) boosting and bagging were used in an
active way to construct such classifiers. More recently Melvile and Monney (2004)
introduced ActiveDecorate and also showed that it significantly reduced labeling
costs comparing to sampling strategies.

The main aim of this paper is to experimentally compare various approaches
to committee based active learning. In some sense our study is inspired by earlier
promising results from (Melvile and Monney, 2004). However, our new contribu-
tion is twofold. Firstly, in our experiments we extend the number of compared
approaches, in particular by taking into account random forests. Then, we also
consider the use of other disagreement measures. Moreover, we decided to study
the influence of choosing a starting set of labeled examples on the learning process.
Thus, our other methodological contribution is an introduction of a new technique
for a focused selection of this starting set.

2 Previous Research

2.1 Active Learning

According to (Cohn at al., 1994) active learning refers to the type of learning where
the algorithm has some control or influence over the training data received as input.
In this sense it differs from the typical passive learning, where the algorithm usually
needs a sufficiently large amount of data provided in a static way, however it does
not control the choice of examples. The main difference is that active learning
algorithm can select some ”the most informative” examples to put into the training
set and does not use the complete set that may contain non-informative examples.
In the literature, there exits different meanings of ”informative” - usually the
knowledge of the label of this examples should be the most useful to reduce the
search through the hypothesis space, see more discussion in (Davy, 2005).
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An active learning algorithm starts with an initial, very limited set of labeled
examples (quite often containing very few ones) producing a first classifier. In
each iteration it somehow analyses the pool of remaining unlabeled examples and
presents a query to the oracle to ask for labeling single (or a few) example. Then
this new labeled example is added to the current training set and the classifier
is again induced using the increased data. This phase is repeated until the given
stopping criterion is met.

The key issue is that the query about the selected examples should be very
informative and should allow the learning algorithm to improve learning process
with a small training set. As it is discussed in the literature, see e.g. (Davy, 2005),
this should significantly reduce the number of labeled examples needed in order
to get a sufficiently accurate classifier. The oracle is typically a human being a
domain expert. Usually it is assumed that it returns the correct classification label
for the particular example. Commonly experts may be reluctant to answer too
many questions, so the number of possible labelings he is willing to do (i.e. number
of iterations in a loop) is a candidate for the stopping criterion. Another option is
to observe changes of the accuracy of the final classifier obtained in each iteration
– which may be more suitable for a more automatic framework or experiments.

This general procedure was realized in different ways depending mainly of the
techniques used to select the most informative examples (i.e. queries). In the first
paper Cohn at al. (1994) developed a selective sampling method, which draw exam-
ples from the so called uncertainty region of target concept. Conceptually similar
is a method called uncertainty sampling which selects those examples whose class
membership is the most uncertain (Lewis and Catlett, 1994). The experimental
evaluations shown that they may reduce the number of labeled examples.

2.2 Query by Committee

Another group of active learning methods is Query by Committee (QBC). Accord-
ing to (Sueng et al., 2004) it is a strategy that uses many copies of ”hypotheses”
(coming from randomized learning algorithm) to select an unlabeled example at
which their classification predictions are maximally spread. Then, it also uses a
final ensemble of hypotheses to classify new objects. In the first proposal the com-
ponent learning algorithm was Gibbs algorithm. Although it was well-theoretically
analysed, practically it was computationally intractable (Abe and Mamitsuka,
1998; Davy, 2005). Therefore, other approaches include using popular methods
for learning multiple classifiers (ensembles). In particular, quite effective in reduc-
ing labeling costs were two proposals of Abe and Mamitsuka (1998) called Query
by Bagging and Query by Boosting. They were constructed around the general
scheme presented below:
Input: Learning algorithm – A; Set of labeled training examples – L; Set of
unlabeled training examples – U ; Number of active learning iterations – k; Number
of selected examples – m (default 1)
Repeat k times

1. Generate a committee of classifiers, C∗ = EnsembleMethod(A, L)
2. ∀xj ∈ U compute Information Value(C∗, xj), based on the current committee
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3. Select a subset S of m examples that are the most informative
4. Obtain label for examples in S from oracle
5. Remove examples in S from U and add to L

Return EnsembleMethod(A,L)
A method used to construct a committee of classifiers makes a difference be-

tween these approaches. The first approach is based on bagging (Breiman, 1996),
which works on bootstrap sampling several times the training set. On the hand,
Query by Boosting uses the more adaptive approach which sequentially constructs
an ensemble by changing distribution of weights assigned to the training examples.
In both versions the unlabeled example was selected to a query by a measures of
disagreement in the committee about its predicted label. Abe and Mamitsuka
(1998) proposed to use the margin of the example – it is defined as the differ-
ence between the number of votes in the committee for the most predicted class
and that for the second predicted class. Examples with the smallest margins are
considered as the most informative (uncertain). Empirical studies showed that
these QBC active learning approaches were able to reduce several times number
of labeled comparing to random selections.

Recently Melvile and Monney (2004) introduced another QBC approach, called
Active Decorate. Following motivations for increasing diversity of component clas-
sifiers they put into the active learning loop the specific meta-learning algorithm
Decorate. Due to the size of this paper we skip its formal description and can only
say that it uses additional artificially generated training examples to construct
more diversified component classifiers in the ensemble. A set of these classifiers
is constructed iteratively as in adaptive approaches. In each iteration the new
classifier is added to the ensemble and is generated on the original training data
augmented by a number of artificial examples generated by a specific model which
assigns class labels to differ them from the current predictions of the ensemble.

Matwin et al. (2008) introduced ALASoft approach, where results of active
learning are further processed to generate a more comprehensive model in a form
of decision tree.

3 Our Approach to Query by Committee Based Active Learn-
ing

3.1 Algorithms for Learning Committees

In our framework for using QBC we use the generic schema presented as the
pseudocode in the previous section. Following related works (Abe and Mamit-
suka, 1998; Melvile and Monney, 2004) we decided to choose the most effective
approaches for generating committees of classifiers: query by bagging, query by
boosting and active decorate. C4.5 algorithm for inducing decision trees was al-
ways applied to generate component classifiers in all of these approaches (also due
to previous promising experimental results)

Besides these approaches we decided to check the usefulness of random forests
as an approach to generate a committee in active learning. Generally speaking
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random forests, introduced by Breiman (2001), is a modification of bagging ap-
plied with decision trees, where for each node of the induced tree, a subset of
attributes is randomly selected. Then, the best test in the node is calculated with
a particular evaluation measure over the subset of attributes. This combination of
bootstrap sampling of examples with random selection of attributes should increase
diversity of component tree classifiers. So, it is somehow similar to motivations of
introducing the decorate but it should be less time consuming.

3.2 Disagreement Measures

Another key issue in the active learning framework concerns selection of the most
informative unlabeled examples to be queries to the oracle. In first papers, like
(Cohn at al., 1994), committees consisted of two classifiers only, so examples which
were classified differently by them were assumed to be uncertain. This idea was
also used in the first attempts of using larger committees; e.g. in (Liere and
Tadepalli, 1997) just two component classifiers were randomly selected and treated
in a similar way. Then, in query by bagging or boosting Abe and Mamitsuka (1998)
proposed to use a disagreement measure of predictions of all component classifiers.
They chose a margin of classified examples, which was defined as a difference
between the number of votes in the committee for the most often predicted class
label and the number of votes for the second predicted label. Examples with the
smallest value of the margin are treated as the most uncertain for the committee
and therefore the most informative for active learning. Let us remark that similar
definition of the margin was also considered by Breiman (2001) in the context of
diversification of trees in random forests.

In our framework we decided to choose the generalized version of margins,
which takes probability distributions of class predictions instead of votes (follow-
ing inspiration from (Melvile and Monney, 2004)). Let us notice that, in many
implementations of ensembles, the base classifier can produce class memberships
for a given example (not only the single class label like in the standard way of
aggregating predictions) 1.

Let PCi,y(x) denotes the probability of assigning example x to class y by a
base classifier Ci. Then, the probability of assigning x to class y by the complete
committee C∗ is defined as:

Py(x) =

∑
Ci∈C∗ PCi,y(x)

size(C∗)
(1)

The generalized margin for x is defined as the difference between the highest
and the second highest predicted probabilities.

Having distributions of class probabilities for base classifiers and the final en-
sembles it is also possible to built other measures of disagreement for decisions of
classifiers inside the committee. For instance, we can define a distance between
ensemble distributions and the base classifiers. In our experiments we decided to

1Such a distribution of membership probabilities can be extracted from the source code of
WEKA, where we implement our framework for QBC active learning
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use a simple Euclidean distance

Euclidean =
Csize∑
i=1

√
(Pi(x)− C(x)∗)2 (2)

where Pi(x) denotes the class probability distribution given by the i-th classifier
for the example x and C(x)∗ corresponds to the ensemble distribution.

In the similar way defined another median measure, where we compare a me-
dian value from the class probability distribution of component base classifiers with
a median for the ensemble. The last measure comparing probability distribution
is Jensen-Shannon divergence, defined as

JS(P1, P2, . . . , Pn) = H(
n∑

i=1

wiPi)−
n∑

i=1

wiH(Pi) (3)

where Pi abbreviates Pi(x), w is a vote weight of classifier Ci in the ensemble
of size n, and H(P ) is the Shannon entropy of distribution for K classes, i.e.
H(P ) = −

∑K
i=1 pj log pj .

3.3 Constructing the Starting Set

Another new methodological contribution concerns the choice of the starting train-
ing set used to generate the first ensemble before starting the active learning loop.
In general its source may be different. It could be naturally present in the domain
problem or be somehow selected by the expert. On the other hand, in typical
experiments described in literature, the expert is not available and researches are
using benchmark sets of examples and simulate a decision of oracle by knowledge
about class label of these examples. Usually the starting training set is constructed
by a random selection of examples from the pool of labeled training data – in many
studies its size is very limited; even it may contain a single example / or single
examples per class.

However, algorithms like bagging or boosting may require a good sample of ex-
amples to create an ensemble, which could make reasonable decisions. This is way
we decided to study in our experiments another techniques of creating this starting
training set. As in the experiment the set of labeled examples is available, we pro-
pose to select the first set by a kind of a focused approach, which prefers choosing
among more certain examples. We adopt an edited k-nearest neighbor method,
which was introduced by (Stefanowski and Wilk, 2007) to improve classification
of imbalanced minority classes. The current modification chooses, so called safe
certain examples. A learning example is safe if it is correctly re-classied by its all
k nearest neighbors (i.e. all its k neighbors have the same class label as it). We
first scan all available examples using this principle, and then randomly select the
required number of safe examples to the starting training set.

Of course this method is reasonable in the experiments where expert’s deci-
sions are simulated on the set of labeled examples. For active learning with real
unlabeled examples it is not directly applicable. However, first we want to use it
in controlled experimental framework to study the influence of the construction
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of the starting set as it was not studied in the literature. As the second point,
we think that the counterpart of the k-nn method for unlabeled examples may be
the use of an appropriate cluster analysis algorithm and to select among examples
representing rather the inside parts of the cluster than borders or being outliers.
A possible solution could be an adaptation of the density based algorithm DB-
SCANN that uses also an idea of local neighborhood to detect dense region and
identify core points, borderline or outliers (Ester at al., 1996). Due to the time
limit we were unable to make an appropriate adaptation of such an algorithm for
the current paper.

4 Experimental Evaluation

The first aim of our experiments was to compare the performance of four follow-
ing different approaches to Query by Committee Based Active Learning: query
by bagging, query by boosting, active decorate, query by random forests. In all ap-
proaches, component classifiers were decision trees learned by J4.8 algorithm (with
standard parameters). All implementations were based on the Weka toolkit2. The
maximal size of committees for all approaches was set to 15, and for active deco-
rate the number of internal iterations was equal to 50 (this choice was based on
studying previous research by Melvile and Monney (2004)). The random selection
of attributes in random forests was done as proposed in Breiman (2001). During
experiments we also increased the number of trees in random forests to 50.

Table 1: Characteristic of data sets.

Data set # objects # attributes # classes
Breast Cancer Wiscon. 683 9 2

Credit German 1000 20 2
Diabetes 768 8 2

Ionosphere 351 34 2
Soybean 683 35 15

Wine 178 13 13

We evaluated their performance on 6 data sets listed in Table 1. They come
from the UCI repository 3. Some of them are known to be hard to learn by standard
algorithms. We chose them as they were previously often used in previous papers
on using query by committees.

The classification accuracy was the main evaluation criterion and it was esti-
mated by 10 fold stratified cross validation repeated 5 times. For each data set we
generated a learning curve expressing the accuracy as a function of the number
of available training examples. More precisely, in each experiment (fold of cross-
validation) the training part was treated as a pool of unlabeled examples and in

2see www.cs.waikato.ac.nz/ml/weka
3UCI Machine Learning Repository. University of California at Irvine; see

www.ics.uci.edu/ mlearn/MLRepositoru.html
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Figure 1: Comparing different active learners on Soybean – Random forests with 15
component trees.
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Figure 2: Comparing different active learners on Soybean – Random forests with 50
component trees.

each iteration of active learning the given approach processed them and selected
the most informative example to add to the current training set. We did not stop
active learning until all examples were added, so curves illustrate performance of
all algorithms finishing with the same number of examples. Let us remark that
we present graphically results averaged over several runs of cross validation and
curves are not additionally smoothed, so one can observe slight fluctuations of
plots. In all figures, plots for compared approaches are described using the fol-
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lowing abbreviations: qbag – query by bagging, qboost –query by boosting, ad –
active decorate, rf –query by random forests.

All compared approaches begin with a starting training set of one labeled ex-
ample (randomly chosen), then a single unlabeled example was selected in each
iteration of active learning. In these experiments the margin of the example was
used as the disagreement measure. Firstly we noticed that random forests nearly
always needed more labeled examples than other approaches and its figure was
quite often the lowest , i.e. dominated by others, see the position rf at Figure
1. We hypothesized that keeping the same number of component classifiers as
bagging or boosting may be too restrictive for this kind of ensemble which due to
randomization of trees may need more components, (cf. Breiman, 2001). Following
it, we stepwise increased this number, observing that for 50 trees the classifica-
tion results of random forests became comparable to other approaches – compare
Figures 1 and 2. Thus, the rest of experiments was run with this parameter.
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Figure 3: Comparing different active learners on Breast data.

Due to the page limits we could present only the most representative learning
curves – see e.g. Fig. 2 or 3. One can notice that the highest classification accuracy
is achieved by using quite a small number of additional training examples. For
other data sets we obtained shapes of plots being similar to one of them although
they ”stabilized” at different levels of accuracy, e.g. plot for Wine is quite similar
to Soybean. Nearly for all data set, active decorate approach led to the fastest
increase of the accuracy, i.e. its plot was the most bent to the left upper corner
of the figure. Other approaches generally worked comparably - depending on the
data set one of them was slightly more effective. For data sets like Soybean, Wine,
Ionosphere the differences between all compared approaches was the most visible
– see Fig. 2, while for other data sets their plots were closer each other.
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Figure 4: The effect of creating the starting training set in active learners with edited
k-nn on Soybean.

In the next experiments we studied the use of new technique for selecting the
starting training set. Referring to literature on active learning and co-training
we decided to select 2% of the data to the starting set for all approaches. In
Fig. 4 we show results for Soybean data. One can notice that using this k-nn
techniques all compared approaches needed less additional examples to be labeled
to achieve the level of the high accuracy comparing to starting from the random
selected examples. Such an observation also held for other data sets. To study
more precisely the change of the number of examples selected by active learning
to be labeled we performed an additional analysis. As a ”target accuracy” we
assumed the classification accuracy which was obtained by a learning approach
in the stable part of the plot (as we checked, it was comparable to the accuracy
obtained by the passive version of the multiple classifier for the high number of
training examples). Then, analysing consecutive iterations of active learning we
determined the minimum number of learning examples required by the approach to
achieve this target accuracy. To extend comparison we also evaluated the passive
version of approaches (e.g. bagging used without active learning phase) – which
were evaluated in simple on line processing of randomly ordered examples until
they achieved an accuracy similar to the target one (i.e. with the threshold 1%).
The numbers of necessary examples are summarized in Table 2. In parentheses,
we put information on the ratio of using the total data sets. All approaches are
described as: first line denotes a passive version of the committee, the second line
corresponds to its active version with a random choice of the starting set and the
third is its modification with k-nn choice. Bold fonts indicate the best results, i.e.
the highest reduction of queries - number of examples to be labeled. For random
forests we presented results for 50 trees (denoted as RF with 50) and additionally
some results for using 15 trees (the last two lines in the table).
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Table 2: Reduction of the number of training examples to achieve the target accuracy
- for Random forests results are presented for 50 trees and for 15.

Approach wine ionosphere breast soybean diabetes credit-g

Decorate 37 (0.23) 56 (0.18) 35 (0.06) 347 (0.57) 172 (0.25) 174 (0.19)

AD 27 (0.17) 36 (0.11) 37 (0.06) 125 (0.20) 410 (0.59) 267 (0.30)

AD k-nn 22 (0.14) 32 (0.10) 30 (0.05) 105 (0.17) 48 (0.07) 161 (0.18)

Bagging 122 (0.76) 206 (0.65) 388 (0.63) 373 (0.61) 126 (0.18) 297 (0.33)

QBag 52 (0.33) 46 (0.15) 53 (0.09) 144 (0.23) 98 (0.14) 215 (0.24)

QBag k-nn 40 (0.25) 48 (0.15) 53 (0.09) 126 (0.21) 118 (0.17) 293 (0.33)

Boosting 111 (0.69) 162 (0.51) 60 (0.10) 269 (0.44) 201 (0.29) 251 (0.28)

QBoost 75 (0.47) 102 (0.32) 62 (0.10) 149 (0.24) 199 (0.29) 203 (0.23)

Qboost k-nn 103 (0.64) 130 (0.41) 54 (0.09) 145 (0.24) 38 (0.05) 170 (0.19)

RF (50) 158 (0.99) 167 (0.53) 105 (0.17) 176 (0.25) 418 (0.68) 479 (0.53)

ARF (50) 56 (0.35) 71 (0.23) 56 (0.09) 76 (0.11) 151 (0.25) 272 (0.30)

ARF k-nn 128 (0.80) 67 (0.21) 48 (0.08) 76 (0.11) 152 (0.25) 205 (0.22)

RF (15) 115 (0.72) 251 (0.80) 105 (0.17) 411 (0.67) 176 (0.25) 377 (0.42)

ARF (15) 58 (0.36) 118 (0.37) 65 (0.11) 212 (0.35) 139 (0.20) 170 (0.19)

ARF k-nn 63 (0.39) 86 (0.27) 48 (0.08) 190 (0.31) 111 (0.16) 250 (0.28)

Moreover, we studied the influence of changing the number of examples selected
in each iteration of active learning. Let us remind that up to now we always
pose a query about single, the most valuable example in each iteration. Generally
speaking extending this number for more than a few examples did not influence the
highest accuracy obtained by all active learning approaches, however for data sets
with larger number of classes, e.g. Soybean, it caused slowing down the increase of
the learning curve – which means that more learning examples were necessary to
obtain ”stabilization point” at the curve (around twice more). On the other hand
it also resulted in decreasing time cost of learning.

In the final part of the experiments we compared the use of four different
measures of disagreement margin, JS-divergence, median and euclidean to be used
for selecting examples to be labeled. We evaluated them for all active learning
approaches with k-nn selection of the starting set. Results for many data sets
did not show significant differences between using these measures (see. e.g. Fig
6). More visible differences were noticed for all data sets with non-binary decision
class. To illustrate it we show in Fig. 5 again results for Soybean data. One can
notice that simpler measures as margin or median were superior to JS-divergence
and euclidean distance of probability distributions.

The last issue concerns the computation costs of each QBC approach. In Table
3 we summarize time of achieving by each approach the ”stabilization” point of
classification accuracy at the learning curve.
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Figure 5: Comparing measures of disagreement in active decorate on Soybean.
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Figure 6: Comparing measures of disagreement in active decorate on Breast.

5 Conclusions

Results of our experiments with different approaches to construct active learning
systems based on query by committee clearly confirmed that by using a relatively
small number of examples – well selected for labeling – it is possible to generate a
final classifier characterized by an accuracy comparable to passive approaches using
much larger set of examples. This conclusion is consistent with earlier empirical
studies on related QBC active learning (cf. Abe and Mamitsuka, 1998; Melvile and
Monney, 2004). One can notice in Table 2 that the reduction of the number of
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Table 3: Committee training time (in seconds) of different active learners.

Approach wine ionosphere breast soybean diabetes credit-g

Active Decorate 0.42 1.8 0.7 4.0 3.1 3.08

Query by Bagging 0.04 0.2 0.01 0.28 0.4 0.38

Query by Boosting 0.07 0.36 0.11 0.63 0.14 0.44

Random Forests 0.02 0.1 0.01 0.33 0.19 0.33

examples necessary for efficient active learning varies between 5% and 18% of the
total size of training data depending on the data set and particular approach.

However, we observed that the choice of component techniques used in our
framework influenced the results to a different extend. Among four compared
methods applied to generate a committee the best reduction of the number of
examples was mainly obtained by active decorate. Looking at the second line
of the results for each approach presented in Table 2 one can notice that active
decorate was the winner for the following data sets wine, ionosphere, breast cancer
and soybean. However, it was the worst in case of credit german and diabetes,
where other query approaches were better. We also noticed that the performance
of the new considered approach random forests clearly depends on the number of
component trees. Setting it to the similar number as in bagging or boosting made
it the worst accurate approach. Increasing the number of trees to 50 resulted in
quite comparable performance as other studied QBC approaches.

On the other hand, our experiments also showed that the good accuracy per-
formance of active decorate was obtained at the cost of the highest computation
time. Although one could expect it knowing the nature of additional internal steps
of generating artificial examples inside this approach, the range of the difference
to query by bagging or boosting was quite large. Query by random forests was
definitely the fastest approach – which is a new observation considering previous
research on QBC. To sum up, depending on the problem at hand and preferences
(query reduction vs time costs), one should carefully choose the most appropriate
approach to generate the ensemble.

The other new observation from our experiments is that the way how the
starting set of examples is provided to the active framework has a significant
influence on the performance of all compared approach (see figures 1 - 4 or Table
2). The introduced edited k-nn method nearly always reduced the number of
necessary examples to labeling. In particular, it helped the most to active decorate
which achieved the best results for all data sets. We can hypothesize that such
a choice of more certainly classified examples may influence the quality of the
first constructed ensembles in their decisions and for active decorate it may give
additional chance to generate better artificial examples.

Finally, the choice of the disagreement measure for predictions of committee
was not significant for the majority of our data sets. Only for two multi-class data
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sets soybean and wine simpler measures like margins or median distance were more
useful than more complicated ones, as JS-divergence (see Figure 5). Looking into
some literature discussions (Melvile and Monney, 2004) we found remarks that
measures based on idea of margins are more directly oriented to identify decision
boundaries - which may be more suitable for active learning than the reduction of
uncertainty with predicted class probability distribution, which is somehow offered
by the more complicated form of divergence.

In future research we want to follow the observation about the influence of
constructing the starting training sets for QBC active learning and we are going
to study the use of an unsupervised approach to select unlabeled examples to the
starting set, e.g. by means of adaptation of density-based clustering algorithms.
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