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Abstract. Ensemble approaches are learning algorithms that construct
a set of classifiers and then classify new instances by combining their
predictions. These approaches can outperform single classifiers on wide
range of classification problems. In this paper we proposed an extension
of the bagging classifier integrating it with feature subset selection. More-
over, we examined the usage of other methods for integrating answers
of these sub-classifiers, in particular a dynamic voting instead of simple
voting combination rule. The extended bagging classifier (with induced
decision trees as base sub-classifiers) was evaluated in an experimental
comparative study with standard approaches.
Keywords: machine learning, supervised classification, bagging, feature
selection, dynamic integration of classifiers.

1 Introduction

Machine learning is a domain intensively developed in last decades, see
e.g. [19, 20]. One of its main sub-domain is supervised learning, where
given a set of learning examples of an unknown target function, described
by a set of features, the learning algorithm has to discover this function.
If values of the target function are drawn from a discrete set of classes,
it is a case of classification and the learning algorithm outputs a classi-
fier. It can be further applied to predict classes of new objects. It should
noticed that the similar problem is also considered in statistical learning
or data mining [6], although machine learning generally aims on devel-
oping algorithms which automatically improve their performance with
analysing experience and offers rather more symbolic knowledge repre-
sentation [19].
Nowadays the most active research in supervised learning includes an in-
tegration of several base classifiers into the combined classification system
[4, 13, 32]. Such systems are known under the names multiple classifiers,
ensembles methods, committees or classifier fusion. This topic attracts
an interest of machine learning or statistics researchers as multiple clas-
sifiers are often much more accurate than the component classifiers that
make them up.
Many approaches for constructing multiple classifiers have been devel-
oped - for good reviews the reader can look, e.g., [4, 9, 13, 26, 32]. The
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most successful approaches include manipulating the learning set (as it
is done in boosting and bagging), manipulating the input features, using
different learning algorithms to the same data, manipulating the out-
put targets. The component classifiers are typically combined by voting.
The diversification of these classifiers is a necessary condition for their
efficient combination [4, 32]. In this paper we will consider only these
diversification methods that manipulate input data: either by sampling
of learning examples or by feature selection. In this way several different
learning sets are obtained from the input data set and then the same
learning algorithm is run over them. The popular method for sampling
examples is bagging [2], which uses bootstrap sampling, while selected
feature subsets for ensembles could be obtained in many ways (although
random search is the most popular - see the review in section 3). There
are many experimental or theoretical papers demonstrating that these
methods lead to achieving a higher classification accuracy than single
classifiers.

However, the literature study shows that these two diversification di-
mensions are considered independently. The open research question is
- whether integrating both techniques of manipulating input learning
data, i.e. bootstrap sampling and selection of multiple feature subsets,
will also allow us to achieve better classification accuracy than the sole
solution. Thus, the main aim of this paper is an experimental study
of the effectiveness of the enhanced approach. According to our best
knowledge the most related work to this task is the study by Lattine
et al. [16], where they introduced such a mixed approach called BagFs,
although the features were just randomly selected several times. Their
experimental results showed that BagFs never performed worse or even
performed better on some data sets than the standard bagging. In our
paper, we would like to consider enhancing this proposal by integrat-
ing with more advanced methods of feature selection than plain random
drawing of features only. We will take into account different methods
evaluating the relationship between each feature, or feature subsets, and
the target class.

Moreover, we want to put the other question - whether the simple equal
weight voting is a sufficient combination rule for our enhanced bagging.
As noticed by some researchers, see e.g. [29, 30], it is important to have
a good integration method that utilize the diversity of component sub-
classifiers. If some sub-classifiers are more accurate in some sub-spaces
of the input domain but may be inaccurate on the rest of it, it could
be beneficial to promote their decisions for these objects which they are
better specialized for. In particular, previous research with feature selec-
tion only showed the usefulness of some strategies, which dynamically
change votes, while aggregating predictions of base classifiers depending
on the description of the classified object, or select the most accurate
classifiers [29]. Thus, the other aim of this paper is to experimentally
verify the usefulness of different methods for integrating the answers of
sub-classifiers in the proposed enhancement of the bagging. In this sense
the current paper extends our previous paper on the similar topic, which
was focused more on the feature selection [28].
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The evaluation is based on many comparative experiments performed on
a diverse collection of machine learning benchmark data sets [1]. In all
experiments the sub-classifiers are decision trees induced by the Ross J.
Quinlan C4.8 algorithm. For its and other methods implementations we
used libraries available inside Weka software [33] extended by program-
ming our own necessary libraries.

2 Combining Classifiers

According to Dietterich’s presentation [4], in the standard supervised
learning problem, a learning algorithm is given a set of learning examples
of the form {(x1, y1), . . . , (xm, ym)} for some unknown function y = f(x).
The xi values are feature being vectors of the form < xi,1, . . . , xi,n >,
where m is the size of the training set and n is the number of features.
Given a set of training examples T, a learning algorithm outputs a clas-
sifier. Then, for a new object x, it predicts the unknown value y.
In general, an ensemble consists of s component, base classifiers, denoted
as C1, . . . , Cs. During a construction phase, each base classifier is trained
using learning examples of the sets T1, . . . ,Ts. For each example or a
new object, the predicted outputs of each of these base classifiers are
combined in some way C∗ = F (C1, . . . , Cs) to produce the final classifi-
cation decision of the ensemble.
Previous theoretical research (see, e.g., their summary in [4, 9, 32]) in-
dicated that combining several classifiers is effective only if there is a
substantial level disagreement among them, i.e. they make error inde-
pendently with respect to one another, and the error rate of each base
classifier should not exceed certain limit. Combining identical classifiers
(i.e. making identical / correlated errors) is useless.
As a result, methods for creating ensembles focus on producing diversified
base classifiers. Numerous techniques try to manipulate the training set.
In this paper we have chosen Bagging, which was introduced by Breiman
[2]. It is the most straightforward way of manipulating the learning set
and is based on bootstraping sampling with replacement. Each sample
has the same size as the original set, however, some examples do not
appear in it, while others may appear more than once. For a training set
with m examples, the probability of an example being selected at least
once is 1 − (1− 1/m)m. For a large m, this is about 1 - 1/e. According
to Breiman [2] each bootstrap sample contains 63.2% unique examples
from the training set.
A family of bootstrap samples (T1, . . . ,Ts) from the original learning set
T is obtained. From each sample Ti a classifier Ci is induced by the same
learning algorithm and the final classifier C∗ is formed by aggregating
T classifiers. A final classification of object x is built by an equal voting
scheme on C1, C2, . . . , CT , i.e. the object is assigned to the class predicted
most often by these sub-classifiers. The bagging is shortly presented in
the below procedure. For more details see [2].
Experimental results presented in [2, 4, 16, 18, 24, 26, 27] show a signifi-
cant improvement of the classification accuracy. However, the choice of
the learning method is not indifferent. This method works especially well
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for unstable learning algorithms - i.e. algorithms whose output classifier
undergoes major changes in response to small changes in the learning
data. For instance, the decision tree, artificial neural networks and rule
learning algorithms are unstable, while K-Nearest Neighbor classifiers or
linear threshold algorithms are not as they are very stable. For more
theoretical discussion on the bagging the reader is referred to [2, 6].

(input T learning set; S number of bootstrap samples; LA learning algorithm
output C∗ classifier; its prediction C∗(x))
begin

for i = 1 to S do
begin

Ti := bootstrap sample from T ; {sample with replacement}
Ci := LA(Ti); {generate a base sub-classifier}

end; {end for}
C∗(x) = arg maxy∈Kj

∑S

i=1
(Ci(x) = y)

{the most often predicted class Kj}
end

3 Ensemble Feature Selection - Related Works

The feature subset selection is an important problem in machine learning,
knowledge discovery or statistical literature [3, 11, 17, 19]. Typically, this
problem is referred to the single learning algorithm and the aim is to find
the subset of features leading to at least similar classification accuracy
than the set of all features. It is usually a difficult problem as it involves
searching a potentially huge space. The selection of the attribute subset
is often based on a given evaluation measure. Such measures usually
evaluate a degree of relationship between values of a single feature and a
decision class. The typical search strategy evaluates each feature on its
own and then selects a subset with the highest ranked features. Other
measures are appropriate for evaluating subsets of features. Here, the
search strategy is often stepwise, where in each iteration it is tried to add
(in so called forward search) the most promising feature or (in backward
search) to remove the less important one, if such operation results in
a receiving a better subset. For reviewing different methods of feature
selection, see e.g. [17]. In general could be useful for:
1. creating better classifiers by removing redundant and irrelevant fea-

tures;
2. handling high dimensionality in some data mining problems;
3. knowledge discovery - i.e. determine what features are and are not

influential in weak theory domains.
However, it should be stressed that within the context of ensembles the
motivation for feature subset selection is different. Feature subset selec-
tion is used as a mechanism for introducing the diversity of base clas-
sifiers. According to it, the learning sets for creating the ensemble, i.e.
(T1, . . . ,Ts), are obtained by using different subsets of feature for each
of them. Finding a set of feature subsets for constructing an ensemble
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havaing accurate and diverse base classifiers is also known under the
name ensemble feature selection [21]. One can have a look to [32, 13] for
a review of these approaches.
Ho [7] has shown in his Random Subspace Method (RS) that random
selection of feature subsets may be an effective technique because the
lack of accuracy is the ensemble members is compensated by their diver-
sity. In RS, one randomly selects a given proportion k of features from
the original set of features. The aggregation is usually performed using
weighted voting on the basis of the base classifier accuracy. There are also
other variants of RS, where different numbers of features are randomly
selected instead of the fixed proportion.
In other approaches, the correlation between each feature and the output
of the class is computed and the base classifier is trained only on the most
correlated feature subsets. Yet other methods partition the set of features
in such a way that each subset is used by one classifier - this occurs
for some applications, especially in text or speech recognition. Recently
some researches used genetic algorithm to get feature subsets optimizing
both accuracy and diversity of base classifiers [31, 25]. The discussion
and experimental study of partitioning the feature space using different
combination schemes presented in [14] led to conclusions that there is no
one best feature combination for all situations.

4 Methods for Integrating Answers of
Classifiers

Another important issue in creating an ensemble is the choice of the
function for combining the predictions of the base classifiers. As it is
discussed in literature, if the integration method does not properly utilize
the ensemble diversity, then no benefit arises from integrating multiple
models [13, 30].
In general, there are two kinds of methods: group combination or spe-
cialized selection [9, 13, 30]. In the first method all base classifiers are
consulted to classify a new object while the other method chooses only
these classifiers whose are ”expertised” for this object.
Voting is the most common method used to combine predictions of sin-
gle classifiers. In its simplest version, called a equal weighted voting, the
classification prediction of each base classifier is considered as an equally
weighted vote for the particular class. The class that receives the high-
est number of votes is selected as the final classification. Often, the vote
of each classifier may be weighted, e.g., by the estimating its accuracy
of the corresponding classifier. Other group approaches use a Bayesian
decision rule, where assuming mutual independence between classifiers
one selects the class with the highest posterior probability. In situations
where the classifiers outputs as fuzzy supports for the class, fuzzy aggre-
gation methods are also applied starting from using the simpler aggre-
gation operators as Minimum, Maximum, Product and Ordered Weight
Averaging [12] up to possibilistic Dempster-Schafer combination rule.
Another idea consists in explicitly training a combination rule - usually
a second level meta-learning algorithm is put on the outputs of base



6 Jerzy Stefanowski

classifiers and has to learn a correct final answer of the system from
their predictions. The meta-combiner is usually based on the concepts of
meta-classifiers or stacked generalization - for more details see [9, 29].
A number of selection methods have also been proposed, for review see
e.g. [29, 31]. In a case of bagging or feature ensembles the dynamic in-
tegration methods are often used. In [30] three techniques called Dy-
namic Selection, Dynamic Voting and Dynamic Voting with Selection
were considered. All these are based on local accuracy estimates. During
the learning phase, the learning set is partitioned by the cross validation
and accuracy of each sub-classifier is estimated for each learning exam-
ple. When a new example is provided for classification, first its nearest
neighbours (examples) are found in the learning set using a distance
metric based on its feature values. Then, the classification accuracies of
all the sub-classifiers on the neighbours set are calculated. In Dynamic
Voting all of the sub-classifiers are used in a weighted voting, each with
a weight proportional to its accuracy. Dynamic Selection chooses the
subset of classifiers with the highest classification accuracy to produce
the final decision. According to [29] the above methods led to a slightly
better accuracy than the simple Equal Weight Voting for both bagging
and boosting classifiers. In other experiments with ensemble feature se-
lection both dynamic voting and selection work significantly better than
weighted voting or simple aggregation rules [30, 31].

5 Integrating Feature Selection, Bagging and
Dynamic Selection of Classifiers

The previously discussed approaches attempt to obtain uncorrelated sub-
classifiers constructing them either by example sampling or by feature
subset selection. However, both these diversification techniques are con-
sidered independently. The research question pointed in section 1 has
concerned the advantage of taking into account both techniques together.
The simplest integration schema includes the typical bagging with Ran-
dom Subspace Method. First s bootstrap samples Ti of the learning set
are generated from the original set T (with the same sampling as in
[2]). Then, in each set one additionally independently samples R sub-
sets of f ′ features - they are selected from the f initial ones without
replacement (k = f ′/f is the same proportion for all subsets using a
uniform probability distribution). Such an approach has already been
considered in [15]; more details on a heuristic procedure for determining
k are also given there. Finally, one obtains S · R new learning sets to
which the learning algorithm is applied. Latine at al considered such an
approach, called BagFs, for Quinlan decision-tree induction and the final
prediction of this system followed the original bagging - computing the
majority class from all S ·R base predictions. They performed an exper-
imental evaluation of their approach comparing it against the standard
bagging and the multiple feature selection only [16] and the results of
these experiments showed that this approach never performed worse or
even performed better on some data sets than the other models com-
bining the same number of base classifiers. The statistical analysis also



An Experimental Study of Methods Combining Multiple Classifiers 7

showed that if the proportion of selected features is not too large, and
it was able to exhibit the high level if diversity between its components
and offered the highest degree of accuracy.

In our enhanced approach we would like to select features according
to more complex methods than plain random choice only. We want to
include other methods evaluating in the different way the relationship
between each feature or feature subsets and the decision class. We pro-
pose to replace in BagFs the R random feature selection iterations by R
feature selection iterations, each conducted according to another evalua-
tion measure. Thus, the base sub-classifiers could be trained on the more
classification relevant subsets of features. However, by choosing different
methods we also want to have diversified, multiple subsets. In [28] we
have already studied the problem of choosing such methods. We per-
formed an experiment on data sets, where each selection method was
applied to bootstrap samples obtained by the standard bagging. Every
constructed bagging classifier consisted of 10 bootstrap. Due to the size
of the paper we skip the detailed results and summarize that finally the
we chosen the search method using the following evaluation measures:

– Contextual-merit measure: Proposed in [8] evaluates single features
not their subset. It assigns the highest merit to features, where exam-
ples from different values classes have different values. Its definition
is also presented in [22].

– Info-Gain : The known measure based on the information entropy
often used in symbolic induction [20].

– Chi-Squared statistic: It is based on widely used statistics to evaluate
pairs of features. Any numeric feature have to be discretized [33].

– Correlation-based measure: The idea behind it is that a good subset
should contain features highly correlated with the class but uncor-
related with each other, see [5].

As the last method we considered the wrapper approach [11], where the
search algorithm conducts a forward stepwise search for a subset of fea-
tures using the classifier itself as the evaluation function (by calculating
a classification accuracy obtained by this classifier).

The first three methods evaluate the single featuresand the choice of
features is done according to their ranking - which requires the parameter
k for the best features (i.e. the percentage number of features to retain).
To establish this value (only one value for each data set) we used an
approach from [16], where k was experimentally tuned by performing
a nested cross validation evaluation for the bagging with only random
feature selection. The following thresholds were used for the data sets
(see section 6): glass 40%, bupa 70%, vote 60%, breast 20%, election
30%, wine 30%, ecoli 60% and german 80%. The same values were used
for all studied selection methods. The last two methods evaluate the
feature subsets.

Additionally, we want to use a different integration methods to aggre-
gate the answers of sub-classifiers in the proposed enhancement of the
bagging. As we want to compare the usefulness of different methods, the
following one will be experimentally verified:

– Simple Equal Weight Voting,
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– Stacked Meta-Combiner - which was implemented as a decision tree
induced by C4.5 algorithm

– Dynamic Voting (see the description in section 4)
In dynamic voting we compute nearest learning examples of the classi-
fied object with an Euclidean distance measure for numeric features and
simplified Value Difference Metric for symbolic ones.

6 Experiments

The aim is to experimentally verify the usefulness of the proposed en-
hanced approach integrating different feature subset selection methods
with the bagging classifier and to evaluate the impact of applying the
different methods of integrating answers of sub-classifiers.
In all experiments the base sub-classifiers are decision trees induced by
the C4.8 algorithm available in WEKA [33]. We used standard options
of this algorithm. Unless otherwise stated the decision tress are built as
prunned. The classification accuracy was estimated by the 10-fold strat-
ified cross validation technique. All the results in tables are presented
as an average classification accuracy with a standard deviation. When
performance of two classifiers on the same data will be compared we will
use a paired t-Student test with the significant level equal 0.05.
We used 8 following data sets: glass, bupa, vote, breast cancer Wisconsin,
bush-election, wine, ecoli, german. The data sets were chosen in such
a way, that they have different number of features of particular types,
different number of examples and there are some data sets with two-
class distribution and some with more than two classes. All the data
except bush-election are coming from UCI repository [1]. Bush-election
comes from Hadjmichael and Wasilewska study. Bupa (also known as
liver-disorder) and vote used in this thesis are shortened versions of the
original data sets.
First, we had to decide about the configuration, i.e. the number of
bootstrap samples. In [15] Bagging and BagFs was constructed with
different numbers of bootstraps - either 49 or 343. The results for a
higher number of samples were not significantly better. As learning time
tended to be long for too many samples and from previous studies
with the simple bagging we knew that the smaller number of boot-
straps is often sufficient (see [24, 27]), we checked different configura-
tions with a smaller number of components. To be more precise we
took into consideration few variants: (1) the standard bagging (with 49
bootstraps, called Bag49 from now) and 7-bootstrap-7-random-chosen-
feature-subsets BagFs (called Bag7Fs7); (2) the standard bagging with
25 bootstraps Bag25 and Bag5Fs5. The results for both variants were
similar with small advantages for the variant (1) - for 2 data sets bupa
and ecoli the differences were statistically significant (details are given
in [10]. The number of base classifiers (49) was also chosen in order to
make results of our experiment easily comparable with results of [16].
Moreover, we wanted to check also different number of feature selection
iterations - to see what could be more important: increasing the num-
ber of bootstrap samples or increasing the number of feature selection
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iterations. In [10] we tested different combinations of samples and fea-
ture subsets iterations, e.g. Bag5Fs5, Bag7Fs7, Bag5Fs10, Bag4Fs12,
Bag10Fs5, Bag12Fs4, Bag16Fs3. Some of these results are summarized
in table 1. The results were compared in pairs by T - student paired
test with a general conclusion that increasing the number of bootstraps
slightly improves classification accuracy while increasing the number of
feature iterations with maintaining the number of bootstraps seems to
be meaningless.

Table 1. Different configurations of Bagging with feature selection – a comparison of
classification accuracies (an average value with a standard deviation represented in %).

Data C4.8 Bag49 Bag5Fs10 Bag7Fs7 Bag10Fs5 Bag12Fs4

glass 67.76±1.44 74.77±1.62 76.45±1.78 77.01±1.80 76.03±1.62 77.29±2.2

bupa 65.42±1.21 73.62±0.85 70.26±1.3 71.91±1.81 72.96±1.59 72.46±1.9

vote 94.23±0.65 94.80±0.28 94.77±0.4 94.83±0.39 94.97±0.4 94.97±0.4

breast 94.48±0.62 96.25±0.39 94.36±0.5 94.56±0.75 94.55±0.76 95.01±0.82

election 90.56±0.66 91.22±0.76 91.8±0.5 92.23±0.66 92.45±0.63 92.73±0.48

wine 93.82±1.18 96.07±0.88 94.72±1.4 95.00±1.44 94.83±1.32 95.72±1.22

ecoli 83.10±1.04 84.38±0.80 83.81±1.4 84.61±0.74 84.55±0.9 84.64±1.2

german 69.22±1.30 74.14±0.88 72.82±1.5 73.65±1.12 74.13±0.9 73.62±0.98

Further on, we compared the performance of the proposed feature selec-
tion approaches. In all cases we used the simplest equal weight voting
as an integration method. As we wanted to construct a multiple classi-
fier as similar in a structure as Bag7Fs7 and Bag with 49 repetitions,
we always used around 50 components. We started with 10 bootstrap
samples and, then, for each of these samples 5 iterations of chosen fea-
ture subsets selection methods were applied - this version is denoted as
Bag10DFS5. We verified other versions of this approach using only 4
feature selection iterations for each bootstrap (in this case the classifier
used 12 bootstraps - more details in [28]). They were obtained by re-
moving one feature selection method, e.g., Bag12DFS4 − Corr – was a
classifier consisting of 12 bootstraps and 4 feature selection iterations
for each bootstraps, each of the 4 iterations used a different measure:
Contextual Merit, Info-Gain, Chi-Squared statistic and Plain Random
drawing. In table 2 we present a comparison of classification accuracies
for some variants of these BagDFS classifiers. The observations from
table 2 were following: Bag49 and Bag7Fs7 (except breast-cancer) were
significantly better than the single C4.8 classifier. The differences be-
tween Bag49 and Bag7Fs7 depend on the data. Comparing Bag10DFS5

against BagFS we observed generally a similar accuracy. The difference
depends on the data set. The most accurate variant is BagDFS vari-
ant without considering Info-Gain and Chi-Squared statistics. We also
verified whether this configuration performs better, when the base classi-
fier decision trees are unprunned – the classification results are generally
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comparable with slightly superiority in favour of unprunned version, in
particular for election data the difference is significant.

Table 2. BagDFS: several variants comparison.

Data Bag10 Bag12DFS4 Bag16DFS3

set DFS5 −Corr −IG −IG− Chi

glass 76.87 77.48 77.06 76.54
±2.22 ±1.46 ±1.52 ±1.9

bupa 70.32 70.99 71.13 71.39
±1.64 ±1.28 ±2.11 ±1.13

vote 94.97 94.80 95.00 95.00
±0.11 ±0.28 ±0.05 ±0.1

breast 95.99 96.09 96.11 96.07
±0.38 ±0.39 ±0.25 ±0.36

election 90.95 91.35 91.42 91.98
±0.85 ±0.85 ±0.80 ±0.75

wine 96.69 95.96 97.02 97.08
±1.04 ±1.42 ±1.06 ±0.96

ecoli 83.99 83.81 83.78 83.80
±1.44 ±0.94 ±0.90 ±0.89

german 74.25 73.95 74.43 74.58
±1.03 ±0.96 ±0.47 ±0.59

Table 3. Equal weight voting, stacked combination vs. dynamic voting comparison.

Data Bag16DFS3 Bag16DFS3 Bag16DFS3 BagFS
set +EV +DV +SC +DV

glass 76.54±1.9 76.87±1.87 68.71±2.33 76.26±1.18

bupa 71.39±1.13 71.16±1.0 66.81±1.41 71.74±2.04

vote 95.0±0.1 95.0±0.1 94.40±0.16 94.77±0.64

breast 96.07±0.36 96.18±0.22 95.26±0.44 96.44±0.34

election 91.98±0.75 92.50±0.53 90.95±0.7 92.39±0.52

wine 97.08±0.96 97.08±1.02 93.31±1.28 96.74±0.37

ecoli 83.80±0.89 83.86±0.91 80.77±1.46 83.51±0.43

german 74.58±0.59 74.79±0.61 71.97±1.2 73.29±1.08

In the last experiments we checked the impact of introducing other meth-
ods of integrating answers of base classifiers. We created the best variant
of our approach, i.e. Bag16DFS3 extended by using either Dynamic Vot-
ing method or Stacked Combiner (learned also by C4.8 algorithm) for
integration of base classifier answers instead of Equal Weight Voting. We
also used it for the bagging with only random feature selection iterations
denoted as BagFs + DV . The results are given in table 3.
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As the variant Bag16DFS3 + DV led to the best improvement of classi-
fication accuracy, we checked the possibility of introducing the wrapper
approach inside it. It was used as a new feature selection method instead
of using the Contextual Merit. Classification results for it, denoted as
BagDFS + wrap are presented in table 4. It should be remarked that
it significantly improved the classification accuracy (mainly for ecoli and
glass data sets). On the other hand, it also increased computational costs.

Table 4. BagFs vs. BagDFS comparison.

Data BagFs BagDFS BagDFS
set +wrap

glass 77.01 76.87 77.43
±1.80 ±1.87 ±1.82

bupa 71.91 71.16 71.97
±1.81 ±1.0 ±1.91

vote 94.83 95.00 94.97
±0.39 ±0.11 ±0.1

breast 94.56 96.18 96.39
±0.75 ±0.22 ±0.26

election 92.23 92.50 92.66
±0.66 ±0.53 ±0.44

wine 95.00 97.08 97.36
±1.42 ±1.02 ±0.71

ecoli 84.61 83.86 85.39
±0.74 ±0.91 ±1.02

german 73.65 74.79 74.80
±1.12 ±0.61 ±0.96

7 Conclusions

In this paper we discussed the ensemble approaches to classification that
have attracted a great deal of interest in recent years. These approaches
can outperform single classifiers on wide range of classification problems
(in particular complex ones). We started from the brief discussion of basic
approaches that manipulate input data to obtain diversity of component
sub-classifiers inside an ensemble. Our original contribution is proposing
an extension of the bagging classifier, by introducing into its structure
several different feature selection methods. Moreover, we proposed the
usage of new methods for integrating answers of these sub-classifiers, in
particular a dynamic voting instead of simple voting combination rule.
According to our best knowledge it is an original proposal, which have
not been studied yet.

All the extensions were evaluated in the comprehensive experiments. Let
us summarize the main results.
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– The first observation is that all versions of the extended bagging
approach are competitive comparing to the standard version of the
bagging classifier. However, one should notice that not for all data
these approaches are superior – Bag49 is still the best for bupa data
set, which is a quite difficult imbalanced medical data set.

– The best version of the bagging classifier proposed in this paper,
called Bag16DFS3 + DV , is significantly better (in the sense of t-
Student paired statistical test) than the previously known bagging
variant with random multiple feature selection (Bag7Fs7) on 3 out
of 8 data sets (precisely breast, wine and german) The proposed solu-
tion consisted of 16 bootstrap samples duplicated 3 times, each time
with use of a different feature selection method (i.e. Correlation-
based measure, Contextual Merit measure and Plain Random draw-
ing). Introducing the wrapper method instead of the Contextual
Merit measure slightly increased the classification accuracy for the
extended bagging. One should also notice that some of these data
sets with insignificant difference were the smallest sets in terms of a
number of examples, while the new Bag16DFS3 +DV was generally
better with increasing a number of examples.

– All extended bagging classifiers BagDFS and BagFs are significantly
better than a single C4.8 classifier.

– Implementing dynamic voting to combine answers of base classifiers
led to slightly better results for the Bag16DFS3+DV classifier, while
having rather less influence on the BagFs classifier. However, no
progress was noticed for incorporating Stacked Combiner - perhaps
other meta-learning algorithm should be chosen.

– Using unprunned trees instead of prunned ones for bagging led to ac-
curacy improvement, which fact is consistent with observation made
by other researchers [2].

Although the proposed extended classifier is more accurate, one should
also take into account the growth of computational costs in comparison
to the traditional approach. In our experiments single C4.8 classifier was
built on the glass data set in 1.5 second, Bag49 in 27 seconds, Bag7Fs7

in 26 seconds and Bag16DFS3 in 234 seconds. Thus, if the time restric-
tions are important, the simple random feature selection could be an
acceptable alternative. However, we think that integrating feature se-
lection with the bagging may be an effective solution for some complex
learning problems. Different methods of feature selection can be more
accurate depending on the characteristics of the analysed data.

Acknowledgment. The author would like thank Michal Kaczmarek,
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and took part is some experiments while working on his M.Sc. Thesis.
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