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Abstract. In the paper we discuss inducing rule-based classifiers from
imbalanced data, where one class (a minority class) is under-represented
in comparison to the remaining classes (majority classes). To improve
the ability of a classifier to recognize this class, we propose a new se-
lective pre-processing approach that is applied to data before inducing a
rule-based classifier. The approach combines selective filtering of the ma-
jority classes with focused over-sampling of the minority class. Results
of a comparative experimental study show that our approach improves
sensitivity for the minority class while preserving the ability of a classifier
to recognize examples from the majority classes.

1 Introduction

Many real-life knowledge discovery problems involve learning from imbalanced
data, which means that one of the classes (further called a minority class) in-
cludes much smaller number of examples than the others (further referred to
as majority classes). Moreover, examples from the minority class are usually of
primary interest. Such situation is typical for medical problems, where the num-
ber of patients requiring special attention (e.g., therapy or treatment) is much
smaller than the number of patients who do not need it. Similar situations oc-
cur in other domains — in [4, 14] the following problems are reported: detecting
fraud/intrusion, managing risk, detecting of oil spills in satellite images, predict-
ing technical equipment failures and information filtering.

Learning methods usually do not work properly on imbalanced data as they
are “somehow biased” to focus on the majority classes while “missing” examples
from the minority class. As a result created classifiers are also biased toward
better recognition of the majority classes and they usually have difficulties (or
even are unable) to classify correctly new objects from the minority class. This
problem also affects rough set rule-based classifiers as elementary sets for the
minority class are “weaker” than the ones for the majority classes and conse-
quently rules generated on their basis have a lesser chance to contribute to the
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final classification. Overall classification accuracy is not the only and the best cri-
terion characterizing performance of a classifier induced from imbalanced data.
Satisfactory recognition of the minority class may be often more preferred, thus,
a classifier should be characterized rather by its sensitivity and specificity for
the minority class (sensitivity is defined as the ratio of correctly recognized ex-
amples from the minority class and specificity is the ratio of correctly excluded
examples from the majority classes).

Too small number of examples in the minority class is not the only one prob-
lem with creating classifiers from imbalanced data. Other problems are: over-
lapping of examples from the minority class with examples from the majority
classes, noise, data fragmentation, inappropriate use of greedy search strate-
gies or evaluation measures. A number of solutions have been proposed to solve
them, for review see [5,14]. The most common are pre-processing techniques
that change the distribution of examples among classes by appropriate sam-
pling. Other approaches modify either induction or classification strategy, assign
weights to examples, and use boosting or other combined classifiers. Some re-
searchers transform the problem of learning from imbalanced data to the prob-
lem of cost learning (although it is not the same and misclassification costs are
unequal and unknown) and use techniques from the ROC curve analysis.

We also studied this problem in two different ways. In [7] we introduced an
approach that modified the structure of a rule-based classifier to increase its
sensitivity. Then in [13] we studied a rough set pre-processing approach, where
examples from majority classes belonging to a boundary between rough approx-
imations of the minority class were filtered. Although it improved sensitivity of
rule-based classifiers, we also noticed that focusing only on inconsistent exam-
ples was not sufficient as other “difficult” examples from lower approximations
may still have degraded classification performance. Therefore, now we focus our
attention on recent selective methods that change the original class distribution.
In particular we are interested in Synthetic Minority Over-sampling Technique
(SMOTE) [4] and Neighborhood Cleaning Rule (NCR) [10]. SMOTE is based on
a specialized random introducing artificial examples from the minority class in
some regions of data [4]. NCR, on the other hand, removes these examples from
the majority classes that are located on the border with the minority class or
that may be treated as noise [10]. Although these methods perform well [2], some
of their properties could be seen as shortcomings. NCR is focused mainly on im-
proving sensitivity for the minority class what deteriorates recognition of the
majority classes. In general, there is a kind of trade-off between sensitivity and
specificity but too large drop of specificity may not be accepted. Random intro-
duction of artificial examples by SMOTE may be questionable or quite difficult
to interpret and to justify in some domains (e.g., in medicine).

The main goal of this paper is to introduce a new selective pre-processing
approach that aims at improving sensitivity for the minority class while pre-
serving the ability of a classifier to recognize the majority classes and keeping
overall accuracy at an acceptable level. Our approach combines selective filtering
of examples from the majority classes with over-sampling of the minority class,



Improving rule based classifiers ... 3

however, it should remove less examples than NCR. Moreover, unlike SMOTE, it
does not introduce any artificial examples, but replicates existing examples from
the minority class that are located in ”difficult regions” (i.e., they are surrounded
by examples from the majority classes).

The second goal is to conduct an experimental evaluation of our pre-processing
approach in combination with rule-based classifiers induced by the MODLEM
algorithm. We compare it to other pre-processing methods such as SMOTE and
NCR also combined with MODLEM classifiers. MODLEM has been chosen for
consistency with our previous research on imbalanced data [7,13] and its useful-
ness in many classification problems [12].

2 Related Works

We briefly describe only these pre-processing methods, which are related to our
proposal; for more extensive reviews see [5,14]. As the uneven distribution of
examples among classes makes induction of classifiers more difficult, sampling
methods are used to transform it. The simplest are random over-sampling which
replicates examples from the minority class and random under-sampling which
randomly eliminates examples from the majority classes until a required degree
of balance between classes is reached. However, random under-sampling may po-
tentially remove some important examples and simple over-sampling may also
lead to overfitting. Thus, recent research on sampling suggests focusing on par-
ticular examples from the minority class or the majority classes.

In [9] Kubat and Matwin analyzed mutual positions of examples from the
majority classes. They distinguish four categories of examples: noisy examples
located inside the minority class region, borderline examples (i.e., these laying
either on or very close to the border between the minority class and the major-
ity classes), redundant examples (i.e., examples distant from the border between
classes) and safe examples. They detect these categories by applying Hart’s
Condensed Nearest Neighbor rule and Tomek links (two closest examples from
different classes). Following the ideas of example selection from pattern recog-
nition they introduced one-side-sampling approach, where the majority classes
are selectively reduced by removing noise, borderline and redundant examples
while keeping the minority class unchanged.

Another approach to focused removal of noisy and borderline examples from
the majority class is NCR introduced by Laurikkala in [10]. NCR uses the Wil-
son’s Edited Nearest Neighbor rule [15] and it can be shortly summarized in the
following way: for each example x , its 3 nearest neighbors are found; if = be-
longs to one of the majority classes and its nearest neighbors misclassify it, then
x is removed; if x belongs to the minority class and its neighbors misclassify it,
then the neighbors that belong to the majority classes are removed. Experimen-
tal studies [2,9,10] demonstrated that both above approaches provided better
sensitivity than simple random over-sampling. According to [10] NCR performs
better than one-side sampling and considers noisy examples more carefully.
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Chawla et al. introduced SMOTE, which selectively over-samples the minor-
ity class by creating new synthetic (artificial) examples [4]. Its main idea is to
consider each example from the minority class and randomly introduce new ar-
tificial examples along the lines joining it with some of its k nearest neighbors
from the minority class. SMOTE can generate artificial examples with quantita-
tive and qualitative attributes [4] and the number of nearest neighbors depends
on how extensive over-sampling is required. SMOTE is claimed to reduce the
danger of overfitting as it does not simple replicate quite specific border exam-
ples but increases the ”density” between examples from the minority class. A
combination of SMOTE with some elements of under-sampling may additionally
improve the ability of induced classifiers to recognize the minority class [2, 4].

In our previous research on pre-processing [13] an approach based on rough
sets was applied to imbalanced and inconsistent data. We studied two tech-
niques to detect and process inconsistent examples from the majority classes in
the boundary between the minority and majority classes. The first one removes
these examples from the learning set while the other relabels them as the mi-
nority class. The idea of relabeling was partly inspired by other research on the
Generalized Edited Nearest Neighbor algorithm by Koplowitz and Brown (its
description is given in [3]). In experiments these techniques were combined with
two rule induction algorithms — LEM2 and MODLEM. Both techniques cleaned
the boundary region of the minority class, what allowed inducing less specific
rules. Moreover, the relabeling technique by increasing the number of exam-
ples in the minority class resulted in stronger rules that in turn led to higher
sensitivity [13].

3 New Approach to Selective Pre-processing

Our proposal to selective pre-processing of imbalanced data combines elements
of focused removal of examples from the majority classes with over-sampling of
the minority class. Although it is inspired by some ideas presented in section 2,
we apply them differently. First, we think that one-side-sampling and NCR may
remove too many examples from the majority classes. Such greedy “cleaning”
should definitely lead to increased sensitivity for the minority class, however,
too extensive changes in the majority classes may deteriorate the ability of an
induced classifier to recognize examples from these classes. As stated in the
introduction, we believe in many problems it is necessary not only to improve
sensitivity for the minority class, but also to maintain an acceptable level of
overall accuracy.

The other premise for our approach is criticism of over-sampling performed
by SMOTE that comes from our experience in analyzing real-life, especially
medical data. Namely, we claim that random introduction of artificial examples
may be questionable in practice, e.g., artificial “non-existing” patients could be
questionable for physicians. SMOTE may introduce quite a high number of such
artificial examples as according to [4] it may use the majority of 5 neighbors to
generate them. Moreover, the position of new examples is selected in the direction
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of the nearest examples from the minority class without checking their relation to
the nearest examples from the majority classes. To overcome these shortcomings
we check alternative over-sampling for the minority class. It identifies only those
examples that are likely to be misclassified and amplifies them and does not
modify these examples that are possibly correctly classified.

Our approach to selective pre-preprocessing consists of two phases. In the
first phase we analyze the “internal characteristics” of examples by distinguish-
ing between their two types — safe and noisy. Safe examples should be correctly
classified by an induced classifier, while noisy are very likely to be misclassified
and thus require special attention in the second phase. We discover the type of an
example by applying the Nearest Neighbor rule with the heterogeneous value dis-
tance metric (HVMD) [15] that handles quantitative and qualitative attributes.
An example is safe if it is correctly classified by its k& nearest neighbors, otherwise
it is noisy. We further divide safe examples into safe-certain and safe-possible
depending on the characteristic of their nearest neighbors. Analogously, noisy
examples are divided into noisy-certain and noisy-possible.

In the second phase we process examples according to their type. As we
want to preserve all examples from the minority class, we assume that only
examples from the majority classes may be removed or relabeled (i.e., assigned
to the minority class). Unlike previous methods, we want to modify the majority
classes more carefully, therefore, we preserve all safe examples from the majority
classes (let us note that NCR removes some of them if they are too close to noisy
examples from the minority class). We propose three different techniques of
processing examples: relabeling and amplification, weak amplification and strong
amplification. They all involve modification of the minority class, however, the
degree and scope of changes varies between techniques.

The relabeling and amplification technique is inspired by our previous good
experience from [13]. It relabels noisy examples from the majority classes that are
located in the nearest neighborhood of noisy examples from the minority class.
Then it amplifies those noisy-certain examples from the minority class that have
only safe examples from the majority classes in their nearest neighborhood. The
weak amplification technique amplifies all noisy examples from the minority
class. Finally, strong amplification also amplifies all noisy examples from the
majority class, however it does it more extensively. It also amplifies these safe
examples from the minority class that have safe examples from the majority
classes in their nearest neighborhood.

Our approach is presented below in details as pseudo-code. We use C' to de-
note the minority class and O to denote a helper class that combines all the
majority classes. We also use “flags” to indicate the types of examples , e.g., ex-
amples from C are flagged as C-safe-certain, C-safe-possible, C-noisy-certain and
C-noisy-possible, similar flags are used for examples from O. Moreover, for better
readability we introduce “wildcard” flags, e.g., C-noisy-* denotes both C-noisy-
certain and C-noisy-possible. Finally, we assume classify_knn(z, k) classifies
using its k nearest neighbors, knn(z, k, f) finds these of k nearest neighbors of
example x that are flagged as f, count_knn(zx, k, ¢) counts how many of k nearest
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neighbors of x belong to class ¢, and count_knn(x, k, f) counts how many of k
nearest neighbors of = are are flagged as f. Following [10] we set k to 3.

1: for each z € O do

2:  if classify-knn(z,3) is correct then
3: if count_knn(z,3,0) = 3 then

4: flag = as O-safe-certain

5: else

6: flag x as O-safe-possible

7. else {classify_knn(x,3) is incorrect}
8: if count_knn(zx,3,C) = 3 then

9: flag = as O-noisy-certain

10: else

11: flag x as O-noisy-possible

12: for each z € C' do

13:  if classify_knn(z,3) is correct then
14: if count_knn(z,3,C) =3

or count_knn(z,3,0) = count_knn(z,3,0-noisy-*) then

15: flag x as C-safe-certain

16: else

17: flag x as C-safe-possible

18:  else {classify_knn(z,3) is incorrect }
19: if count_knn(x,3,0) = count_knn(z,3,0-noisy-*) then
20: flag © as C-noisy-possible
21: else
22: flag x as C-noisy-certain

23: D « all z € O flagged as O-noisy-*
24: if relabeling and amplification then
25:  for each z flagged as C-noisy-* do

26: for each y € knn(x,3, O-noisy-*) do

27: relabel y by changing its class from O to C

28: remove y from D

29:  for each x flagged as C-noisy-certain do

30: amplify = by creating its count_knn(z,3,0-safe-*) copies

31: else if weak amplification then

32:  for each x flagged as C-noisy-* do

33: amplify x by creating its count_knn(z,3,0-safe-*) copies
34: else {strong amplification}

35:  for each x flagged as C-safe-possible do

36: amplify = by creating its count_knn(z,3,0-safe-*) copies
37:  for each x flagged as C-noisy-* do

38: if classify-knn(x,5) is correct then

39: amplify x by creating its count_knn(x, 3,0-safe-*) copies
40: else

41: amplify x by creating its count_knn(x,5,0-safe-*) copies

42: remove all x € D
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The first phase of our approach (lines 1-22) starts with identifying the types
of examples from the majority classes. If an example is correctly classified using
its 3 nearest neighbors, then it is safe — if all its 3 nearest neighbors are also from
the majority classes, then it is flagged as O-safe-certain (lines 3-4), otherwise
it is flagged as O-safe-possible (line 6). If an example is misclassified (line 7)
then it is noisy — if all its 3 nearest neighbors are from the minority class, then
it is flagged as O-noisy-certain (lines 8-9), otherwise it is flagged as O-noisy-
possible (line 11). In the similar way the types of examples from the minority
class are checked (line 12). If an example is classified correctly with its 3 nearest
neighbors, then it is safe — if all its 3 nearest neighbors are from the minority
class or all examples from the majority classes in its 3-nearest neighborhood are
noisy, then it is flagged as C-safe-certain (lines 14-15), otherwise it is flagged as
C-safe-possible (line 17). If an example is misclassified (line 18), then it is noisy
— if all examples from the majority classes in its 3-nearest neighborhood are
noisy, then it is flagged as C-noisy-possible (lines 19-20), otherwise it is flagged
as C-noisy-certain (line 22).

The second phase (lines 23-42) starts with selecting all O-noisy-* examples
into the removal set D (line 23). Further processing depends on the selected
technique. If it is relabeling and amplification (line 24), then for each C-noisy-*
example all O-noisy-* examples in its 3-nearest neighborhood are identified (line
26), relabeled (line 27), and removed from D (line 28). Then each C-noisy-certain
example is amplified by creating as many of its copies as there are O-safe-*
examples its 3-nearest neighborhood (line 30). If the selected technique is weak
amplification (line 31), then each C-noisy-* example is amplified by creating as
many of its copies as there are O-safe-* examples in its 3-nearest neighborhood
(line 33). If the selected technique is strong amplification (line 34), then each C-
safe-possible example is amplified by creating as many of its copies as there are
O-safe-* examples its 3-nearest neighborhood (line 36). Then for each C-noisy-*
example we check its extended neighborhood and classify it using its 5 nearest
neighbors. If an example is classified correctly, then it is amplified by creating as
many of its copies as there are O-safe-* examples in its 3-nearest neighborhood
(lines 38-39). Otherwise if an example is still classified incorrectly, it is stronger
amplified by creating as many of its copies as there are O-safe-* examples in
its 5-nearest neighborhood (line 41). Finally, all examples from D are removed
from a data set.

The above approach could be combined with any learning algorithm. In this
study we combine it with MODLEM — a rough set algorithm for inducing rule-
based classifiers, which was introduced by Stefanowski [11]; see also [12] for its
detailed description. Shortly speaking, MODLEM follows the idea of sequential
covering of rough approximations of decision classes by a minimal set of rules.
While creating elementary conditions it handles both qualitative and quantita-
tive attributes, and selection of the best condition is controlled by a criterion
based on entropy. A new example is classified by matching its description to all
induced rules. As it may lead to ambiguous situations (e.g., multiple match), we
employ a strategy described in [12], which uses the strength of matched rules to
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solve conflicts (the strength of a rule is defined as the number of learning exam-
ples that satisfy the condition and the decision part of this rule). For each class
the total strength of matched rules is calculated and the example is assigned to
the strongest class. If no rule matches the classified example, the nearest rules
are identified using HVDM and their strengths are used to find the strongest
class in the same way as for matched rules — for more details see [12].

4 Experimental Study

The aim of experiments was to evaluate classification abilities of rule-based clas-
sifiers created by combining three techniques of the the selective pre-processing
(relabeling and amplification, weak amplification, strong amplification) with
MODLEM. We compared them to the basic approach with classifiers induced
by MODLEM directly from imbalanced data (without any pre-processing), and
classifiers created by combining SMOTE and NCR with MODLEM. In order to
find the best over-sampling degree for SMOTE, we tested its different values and
selected the one leading to the highest sensitivity of induced classifiers. More-
over, to extend the comparison we also included MODLEM with an approach
that modifies the classification strategy for a rule-based classifier induced di-
rectly from a data set (without pre-processing) [7]. This approach was originally
introduced by Grzymala in [6] and it is based on the idea of multiplying the
strength of all minority class rules by the same real number, called a strength
multiplier, while not changing the strength of rules from the majority classes.
As a result, during such minority class rules have a better chance to classify
new objects. The value of the strength multiplier is found by maximizing the
measure gain = sensitivity + specificity. Implementations of all methods and the
MODLEM algorithm were done in Java using the WEKA environment [16].

Table 1. Characteristics of evaluated data sets (N — number of examples, N4 — number
of attributes, C' — minority class, Nc — number of examples in the minority class,
Rc = N¢ /N - ratio of examples in the minority class)

Data set N Ny C Nc¢  Re
Acl 140 6 with knee injury 40 0.29
Breast cancer 286 9 recurrence-events 85 0.30
Bupa 345 6 sick 145 0.42
Cleveland 303 13 positive 35 0.12
Ecoli 336 7 imU 35 0.10
Glass 214 9 vehicle_windows_float_processed 17 0.08
Haberman 306 3 died 81 0.26
Hepatitis 147 19 die 31 0.21
New-thyroid 260 5 hyper 35 0.13
Pima 768 8 positive 268 0.35




Improving rule based classifiers ... 9

The experiments were carried out on 10 data sets listed in Table 1. They
come either from the UCI repository [1] or from our medical partners (acl). We
selected the data sets that were characterized by varying degree of imbalance
(ratio of examples in the minority class) and that were used in related works
[7,10]. Several data sets originally included more than two classes, however, to
simplify calculations we decided to collapse all majority classes into one.

In the experiments we evaluated sensitivity and specificity for the minority
class attained by created classifiers — see Tables 2 and 3. To control the trade-off
between these two measures we also calculated their geometric mean, denoted as
GM — see Table 4. According to [9] this measure relates to the point on a ROC
curve and besides maximizing values of both components it allows to keep them
balanced. Finally, we also evaluated overall accuracy — see Table 5. All measures
were estimated in the 10-fold stratified cross validation repeated 5 times.

In order to compare the performance of evaluated approaches on all data sets
we used the Wilcoxon Signed Ranks Test — a nonparametric test for significant
differences between paired observations (confidence o = 0.05). Considering sen-
sitivity, all other approaches significantly outperformed the basic approach with
no pre-processing. NCR led to the highest increase of sensitivity among all eval-
uated approaches — the differences between NCR and all other approaches were
significant. The second best were two new selective pre-processing techniques:
relabeling and amplification (relabel) and strong amplification (strong) — the
difference between them was not significant. The third was SMOTE and weak
amplification (weak). The approach with the strength multiplier (multiplier) led
to the smallest increase of sensitivity.

In case of specificity, the basic approach was significantly better than all
other approaches. The differences between the remaining approaches, except
NCR, were not significant. Specificity attained by NCR was the lowest. Similar
observation applies to overall accuracy — the basic approach was the best, then
there were three techniques of new proposed approach, SMOTE and multiplier.
All of them were significantly better than overall accuracy achieved by NCR.

NCR provided good results in terms of GM for a few data sets (cleveland,
ecoli, glass), where increase of sensitivity caused only slight decrease of speci-
ficity. In general, we can conclude that very high increase of sensitivity was usu-
ally connected with decrease of specificity and consequently deteriorated overall
accuracy. For other data sets, the proposed selective approach often demon-
strated good trade off between sensitivity and specificity - although differences
were not significant, the highest GM were obtained for the relabel technique.

When comparing the new approach to SMOTE we observed that it led to
higher sensitivity allowing to “maintain” similar specificity and overall accuracy.
The multiplier approach was the least efficient in improving sensitivity, however,
quite good in keeping specificity close to the basic approach.
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Table 2. Sensitivity for evaluated approaches and data sets (basic — no pre-processing,
relabel — relabeling and amplification, weak - weak amplification, strong — strong am-
plification, multiplier - strength multiplier)

Data set None SMOTE NCR Relabel Weak Strong Multiplier
Acl 0.7350 0.7500 0.9100 0.8950 0.8900 0.8900 0.7800
Breast cancer 0.3186 0.4681 0.6381 0.5544 0.4369 0.5386 0.4508
Bupa 0.5199 0.7529 0.8734 0.8375 0.7985 0.8047 0.5973
Cleveland 0.0717 0.1967 0.2850 0.2033 0.1600 0.1883 0.0933
Ecoli 0.4400 0.6300 0.7283  0.6367 0.6233 0.6333 0.4683
Glass 0.1700 0.2800 0.3400  0.2800 0.3200 0.3100 0.1800
Haberman 0.2397 0.3139 0.6258 0.4681 0.4039 0.4828 0.4011
Hepatitis 0.3833 0.4167 0.5300 0.5250 0.4283 0.4617 0.4950
New-thyroid  0.8067 0.8950 0.8100 0.8500 0.8467 0.8883 0.8233
Pima 0.4853 0.6147 0.7933  0.7377 0.6853 0.7377 0.7050

Table 3. Specificity for evaluated approaches and data sets (basic — no pre-processing,
relabel — relabeling and amplification, weak - weak amplification, strong — strong am-
plification, multiplier - strength multiplier)

Data set None SMOTE NCR Relabel Weak Strong Multiplier
Acl 0.9220 0.9080 0.8320 0.8860 0.8860 0.8860 0.9060
Breast cancer 0.8043 0.6570 0.5227  0.6212 0.7097 0.6061 0.6866
Bupa 0.8200 0.5720 0.3080 0.3930 0.4530 0.4590 0.7690
Cleveland 0.9553 0.9017 0.9092 0.9381 0.9418 0.9412 0.9441
Ecoli 0.9714 0.9462 0.9235 0.9514 0.9641 0.9581 0.9674
Glass 0.9818 0.9788 0.9634 0.9737 0.9758 0.9778 0.9778
Haberman 0.8155 0.7720 0.6583 0.7196 0.7455 0.7127 0.7366
Hepatitis 0.9208 0.9315 0.8570 0.9147 0.9062 0.9168 0.8867
New-thyroid  0.9900 0.9844 0.9844 0.9867 0.9878 0.9856 0.9856
Pima 0.8556 0.7852 0.6580 0.7204 0.7736 0.6980 0.7092

Table 4. GM for evaluated approaches and data sets (basic — no pre-processing, relabel
—relabeling and amplification, weak - weak amplification, strong — strong amplification,
multiplier - strength multiplier)

Data set None SMOTE NCR Relabel Weak Strong Multiplier
Acl 0.8232 0.8252 0.8701  0.8905 0.8880 0.8880 0.8406
Breast cancer 0.5062 0.5546 0.5775  0.5869 0.5568 0.5714 0.5563
Bupa 0.6529 0.6562 0.5187  0.5737 0.6014 0.6077 0.6777
Cleveland 0.2617 0.4211 0.5090 0.4367 0.3882 0.4210 0.2968
Ecoli 0.6538 0.7721 0.8201 0.7783 0.7752 0.7790 0.6731
Glass 0.4085 0.5235 0.5723  0.5221 0.5588 0.5506 0.4195
Haberman 0.4421 0.4923 0.6418 0.5804 0.5487 0.5866 0.5436
Hepatitis 0.5941 0.6230 0.6740 0.6930 0.6230 0.6506 0.6625

New-thyroid  0.8937 0.9386 0.8930 0.9158 0.9145 0.9357 0.9008
Pima 0.6444 0.6947 0.7225 0.7290 0.7281 0.7176 0.7071
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Table 5. Overall accuracy for evaluated approaches and data sets (basic — no pre-
processing, relabel — relabeling and amplification, weak - weak amplification, strong —
strong amplification, multiplier - strength multiplier)

Data set None SMOTE NCR Relabel = Weak Strong Multiplier
Acl 86.86%  86.29% 85.43% 88.86% 88.71% 88.71% 87.00%
Breast cancer 65.97%  60.02% 55.62% 60.07% 62.85% 58.58% 61.62%
Bupa 69.36%  64.79% 54.54% 57.94% 59.80% 60.38% 69.65%
Cleveland 85.35%  82.05% 83.72% 85.36% 85.17% 85.43% 84.63%
Ecoli 91.62%  91.38% 90.36% 91.90% 92.87% 92.45% 91.56%
Glass 91.80%  92.43% 91.49% 91.90% 92.47% 92.55% 91.52%
Haberman 66.29%  65.04% 64.93% 65.23% 65.45% 65.12% 64.73%
Hepatitis 80.79%  82.34% 78.87% 83.19% 80.59% 82.00% 80.39%
New-thyroid  96.01%  97.03% 95.63% 96.47% 96.48% 97.03% 95.91%
Pima 72.65%  72.58% 70.55% 72.65% 74.29% 71.20% 70.77%

5 Conclusions

In the paper we introduced the new approach to selective pre-processing of im-
balanced data that aims at improving sensitivity of an induced classifier, while
keeping overall accuracy at an acceptable level. It combines selective filtering
of the majority classes with over-sampling of the minority class. Our approach
removes less examples than NCR and, unlike SMOTE, it does not introduce
any artificial examples, but replicates some of existing ones. Moreover, it does
not require the parameterized degree of oversampling as it identifies minority
class regions difficult to classify and modify only these examples, which could
be misclassified. Within the proposed approach we developed three techniques
of processing these examples involving amplification of examples from the mi-
nority class and relabeling examples from the majority classes — relabeling and
amplification, weak amplification and strong amplification.

Our approach was verified in the experimental study where we compared it
to other pre-processing methods, the basic basic approach with no-preprocessing
and the approach that changes classification strategy. All these approaches were
combined with rule-based classifiers. Results of experiments supported our initial
intuition for NCR as a method strongly oriented toward improvement of sensi-
tivity by extensive “cleaning” examples from the majority classes. Such cleaning
made the majority classes more difficult to classify, thus, improvement of sensi-
tivity was at a cost of decreased accuracy for the majority classes. Our approach
was a bit worse (but it was the second best among all evaluated approaches)
in terms of improving sensitivity, however, it demonstrated better specificity
and overall accuracy. Moreover, when comparing the three techniques within
the new proposed approach we could notice that more radical techniques (rela-
beling and amplification, strong amplification) were more efficient than weaker
changes of class distribution (weak amplification). Similar experiments were also
conducted using the C4.5 algorithm and tree-based classifiers. Although rel-
ative improvements of sensitivity were smaller, general behavior of compared
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approaches remained unchanged. Thus, we can conclude that the new proposed
selective pre-processing approach leads to improved sensitivity for the minority
class while preserving overall accuracy for various types of classifiers.
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