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Abstract. Induction of decision rules within the dominance-based rough set 
approach to the multiple-criteria sorting decision problem is discussed in this 
paper. We introduce an algorithm called DOMLEM that induces a minimal set 
of generalized decision rules consistent with the dominance principle. An 
extension of this algorithm for a variable consistency model of dominance 
based rough set approach is also presented. 

1. Introduction 

The key aspect of Multiple-Criteria Decision Analysis (MCDA) is consideration of 
objects described by multiple criteria representing conflicting points of view. Criteria 
are attributes with preference-ordered domains. For example, if decisions about cars 
are based on such characteristics as price and fuel consumption, these characteristics 
should be treated as criteria because a decision maker usually considers lower price as 
better than higher price and moderate fuel consumption more desirable than higher 
consumption. Regular attributes, such as e.g. colour and country of production are 
different from criteria because their domains are not preference-ordered. 

As pointed out in [1,6] the Classical Rough Set Approach (CRSA) cannot be 
applied to multipl-criteria decision problems, as it does not consider criteria but only 
regular attributes. Therefore, it cannot discover another kind of inconsistency 
concerning violation of the dominance principle, which requires that objects having 
better evaluations (or at least the same evaluations) cannot be assigned to a worse 
class. For this reason, Greco, Matarazzo and Slowinski [1] have proposed an 
extension of the rough sets theory, called Dominance-based Rough Set Approach 
(DRSA), that is able to deal with this inconsistency typical to exemplary decisions in 
MCDA problems. This innovation is mainly based on substitution of the 
indiscernibility relation by a dominance relation. In this paper we focus our attention 
on one of the major classes of MCDA problems which is a counterpart of multiple-
attribute classification problem within MCDA: it is called multiple-criteria sorting 
problem. It concerns an assignment of some objects evaluated by a set of criteria into 
some pre-defined and preference-ordered decision classes (categories). 

Within DRSA, due to preference-order among decision classes, the sets to be 
approximated are, so-called, upward and downward unions of decision classes. For 



each decision class, the corresponding upward union is composed of this class and all 
better classes. Analogously, the downward union corresponding to a decision class is 
composed of this class and all worse classes. The consequence of considering criteria 
instead of regular attributes is the necessity of satisfying the dominance principle, 
which requires a change of the approximating items from indiscernibility sets to 
dominating and dominated sets. Given object x, dominating set is composed of all 
objects evaluated not worse than x on all considered criteria, while dominated set is 
composed of all objects evaluated not better than x on all considered criteria. 
Moreover, the syntax of DRSA decision rules is different from CRSA decision rules. 
In the condition part of these rules, the elementary conditions have the form: 
"evaluation of object x on criterion q is at least as good as a given level" or 
"evaluation of object x on criterion q is at most as good as a given level". In the 
decision part of these rules, the conclusion has the form: "object x belongs (or 
possibly belongs) to at least a given class" or " object x belongs (or possibly belongs) 
to at most a given class". 

The aim of this paper is to present an algorithm for inducing DRSA decision rules. 
This algorithm, called DOMLEM, is focused on inducing a minimal set of rules that 
cover all examples in the input data. Moreover, we will show how this algorithm can 
be extended to induce decision rules in a generalization of DRSA, called Variable 
Consistency DRSA model (VC-DRSA). This generalization accepts a limited number 
of counterexamples in rough approximations and in decision rules [2]. 

The paper is organized as follows. In the next sections, the main concepts of 
DRSA are briefly presented. In section 3, the DOMLEM algorithm is introduced and 
illustrated by a didactic example. Extensions of the DOMLEM algorithm for VC-
DRSA model are discussed in section 4. Conclusions are grouped in final section.  

2. Dominance-based Rough Set Approach 

Basic concepts of DRSA are briefly presented (for more details see e.g. [1]). It is 
assumed that examplary decisions are stored in a data table. By this table we 
understand the 4-tuple S=<U,Q,V,f>, where U is a finite set of objects, Q is a finite set 
of attributes, U Qq qVV ∈=  and V q  is a domain of the attribute q, and f: U×Q→V is a 

total function such that f(x,q)∈Vq for every q∈Q, x∈U. The set Q is, in general, 
divided into set C of condition attributes and set D of decision attributes. 

Assuming that all condition attributes q∈C are criteria, let Sq be an outranking 
relation on U with respect to criterion q such that xSqy means “x is at least as good as 
y with respect to criterion q”. Furthermore, assuming that the set of decision attributes 
D (possibly a singleton {d}) makes a partition of U into a finite number of classes, let 
Cl={Clt, t∈T}, T={1,..., n}, be a set of these classes such that each x∈U belongs to 
one and only one Clt∈Cl. We suppose that the classes are ordered, i.e. for all r,s∈T, 
such that r>s, the objects from Clr are preferred to the objects from Cls. The above 
assumptions are typical for consideration of a multiple-criteria sorting problem. 

The sets to be approximated are upward union and downward union of classes, 
respectively:  U ts st ClCl ≥

≥ = ,   U ts st ClCl ≤
≤ = ,   t=1,...,n. 



Then, the indiscernibility relation is substituted by a dominance relation. We say 
that x dominates y with respect to P⊆C, denoted by xDPy, if  xSqy  for all q∈P. The 
dominance relation is reflexive and transitive. Given P⊆C and x∈U, the “granules of 
knowledge” used for approximation in DRSA are: 

- a set of objects dominating x, called P-dominating set, DP
+ (x)={y∈U: yDPx}, 

- a set of objects dominated by x, called P-dominated set, DP
− (x)={y∈U: xDPy}. 

Using DP
+ (x) sets,  P-lower and P-upper approximation of Clt

≥ are defined as: 

)(ClP t
≥ ={x∈U: )(xDP

+ ⊆Clt
≥ },   )(ClP t

≥ = U
Clx

P
t

xD
≥∈

+ )( ,   for t=1,...,n. 

Analogously, P-lower and P-upper approximation of Clt
≤ are defined as: 

)(ClP t
≤ ={x∈U: )(xDP

− ⊆Clt
≤ },   )(ClP t

≤ = U
Clx

P
t

xD
≤∈

− )( ,   for t=1,...,n. 

The P-boundaries (P-doubtful regions) of ≥
tCl  and ≤

tCl  are defined as: 

BnP( ≥
tCl )= )(ClP t

≥ - )(ClP t
≥ , BnP( ≤

tCl )= )(ClP t
≤ - )(ClP t

≤ , for t=1,...,n. 
These approximations of upward and downward unions of classes can serve to 

induce generalized “if... then...” decision rules. For a given upward or downward 
union ≥

tCl  or ≤
sCl , s,t∈T, the rules induced under a hypothesis that objects belonging 

to )(ClP t
≥  or to )( ≤

sClP  are positive and all the others negative, suggest an 
assignment of an object to “at least class Clt” or to “at most class Cls”, respectively. 
They are called certain D≥- (or D≤)-decision rules because they assign objects to 
unions of decision classes without any ambiguity. Next, if upper approximations 
differ from lower ones, approximate D≥≤- decision rules can be induced under a 
hypothesis that objects belonging to the intersection )()( ≥≤ ∩ ts ClPClP  (s<t) are 
positive and all the others negative. They suggest an assignment of objects to some 
classes between Cls and Clt. Yet another option is to induce D≥- (or D≤)-possible 
decision rules instead of approximate ones under the hypothesis that objects 
belonging to )(ClP t

≥  or to )(ClP t
≤  are positive and all the others negative. These 

rules suggest that an object could belong to "at least class Clt" or "at most class Cls", 
respectively. 

Assuming that for each criterion q∈C, Vq⊆R (i.e. Vq is quantitative) and that for 
each x,y∈U, f(x,q)≥f(y,q) implies xSqy (i.e. Vq is preference-ordered), the following 
five types of decision rules can be considered: 
1)  certain D≥-decision rules with the following syntax: 

if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp , then  x∈Clt
≥ , 

2)  possible D≥-decision rules with the following syntax: 
if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp , then  x could belong to Clt

≥ , 
3)  certain D≤-decision rules with the following syntax: 

if  f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp , then  x∈Clt
≤ ,  

4)  possible D≤-decision rules with the following syntax: 



if  f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp , then  x could belong to Clt
≤ , 

where P={q1,...,qp}⊆C, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp and t∈T;  
5)  approximate D≥≤-decision rules with the following syntax: 

if  f(x,q1)≥rq1 and f(x,q2)≥rq2 and ... f(x,qk)≥rqk and f(x,qk+1)≤rqk+1 and ... f(x,qp)≤rqp 
, then x∈Cls∪Cls+1∪…∪Clt, 

where O’={q1,...,qk}⊆C, O’’={qk+1,...,qp}⊆C, P=O’∪O’’, O’ and O’’ not necessarily 
disjoint, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp,  s,t∈T  such that  s<t.  As it is possible that 
{q1,...,qk}∩{qk+1,...,qp}≠∅, in the condition part of a D≥≤-decision rule we can have 
“f(x,q)≥rq” and “f(x,q)≤r'q”, where rq≤r'q, for some q∈C. Moreover, if rq=r'q, the two 
conditions boil down to “f(x,q)=rq”. 

The rules of type 1) and 3) represent certain knowledge extracted from the data 
table, while the rules of type 2) and 4) represent possible knowledge, and rules of 
type 5) represent ambiguous knowledge. 

Moreover, each decision rule should be minimal. Since a decision rule is an 
implication, by a minimal decision rule we understand such an implication that there 
is no other implication with an antecedent of at least the same weakness (in other 
words, rule using a subset of elementary conditions or/and weaker elementary 
conditions) and a consequent of at least the same strength (in other words, rule 
assigning objects to the same union or sub-union of classes). 

Consider a D≥-decision rule "if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp, then  
x∈Clt

≥ ". If there exists an object y∈ )(ClP t
≥  such that f(y,q1)=rq1 and  f(y,q2)=rq2 and 

… f(y,qp)=rqp, then y is called basis of the rule. Each D≥-decision rule having a basis 
is called robust because it is "founded" on an object existing in the data table. 
Analogous definition of robust decision rules holds for the other types of rules. 

We say that an object supports a decision rule if it matches both condition and 
decision parts of the rule. On the other hand, an object is covered by a decision rule if 
it matches the condition part of the rule. 

A set of certain and approximate decision rules is complete if three following 
conditions are fulfilled: each y∈ )( ≥

tClC  supports at least one certain D≥-decision rule 
whose consequent is x∈Clr

≥ ", with r,t∈{2,...,n} and r≥t ;  each y∈ )( ≤
tClC  supports 

at least one certain D≤-decision rule whose consequent is x∈Clu
≤ ", with u,t∈{1,...,n-

1} and u≤t ; and each y∈ )(ClC s
≤ ∩ )(ClC t

≥  supports at least one approximate D≥≤-
decision rule whose consequent is x∈Clv∪Clv+1∪…∪Clz", with s,t,v,z∈T and  
s≤v<z≤t. 

In simple words, complete means that the set of rules is able to cover all objects 
from the data table in such a way that consistent objects are re-assigned to their 
original classes and inconsistent objects are assigned to clusters of classes referring to 
this inconsistency. An analogous definition of completeness can be formulated for a 
set of possible decision rules.   

We call minimal each set of minimal decision rules that is complete and non-
redundant, i.e. exclusion of any rule from this set makes it non-complete.  



3. DOMLEM algorithm 

Various algorithms have been proposed for induction of decision rules within 
CRSA (see e.g. [4,7,3] for review). Many of these algorithms tend to generate a 
minimal set of rules with the smallest number of rules. It is an NP-hard problem, so it 
is natural to use heuristic algorithms for rule induction, like LEM2 algorithm 
proposed by Grzymala [3]. In this paper, we approach the same problem with respect 
to DRSA. 

The proposed rule induction algorithm, called DOMLEM, is built on the idea of 
MODLEM algorithm [8]. The latter, inspired by LEM2 [3], was designed to handle 
directly numerical attributes during rule induction. 

The main procedure of DOMLEM is iteratively repeated for all lower or upper 
approximations of the upward (downward) unions of decision classes. Depending on 
the type of the approximation we are getting the corresponding type of decision 
rules,:  e.g. of type1) from lower approximation of upward unions of classes, and of 
type 2) from upper approximation of upward unions of classes. 

Moreover, taking into account the preference-order of decision classes and the 
requirement of minimality of decision rules, the procedure is repeated starting from 
the strongest union of classes, e.g. for type 1) decision rules the lower approximations 
of upward unions of classes should be considered in the decreasing order of the 
classes. 

In the algorithm, P⊆C and E denotes a complex (conjunction of elementary 
conditions e) being a candidate for a condition part of the rule. Moreover, [E] denotes 
a set of objects matching the complex E. Complex E is accepted as a condition part of 
the rule iff BeE Ee ⊆=≠∅ ∈I ][][ , where B is the considered approximation. For the 
sake of simplicity, in the following we present the general scheme of the DOMLEM 
algorithm only for a case of type 1) decision rules.  

Procedure DOMLEM 
(input: Lupp – a family of lower approximations of upward unions of decision classes: 

{ )(ClP t
≥ , )( 1

≥
−tClP ,… )( 2

≥ClP };output: R≥ set of D≥-decision rules); 
begin 
 R≥:= ∅; 
 for each B∈ Lupp do 
 begin 
  E:=find_rules(B); 
  for each rule E ∈ E do 
  if  E is a minimal rule then  R≥ := R≥ ∪E; 
 end 
end. 

Function find_rules 
(input: a set B;  output: a set of rules E covering set B); 
begin 
 G := B; {a set of objects from the given approximation} 
 E := ∅; 



 while G ≠ ∅ do  
 begin 
  E := ∅; {starting complex} 
  S := G; {set of objects currently covered by E} 
  while (E = ∅) or not ([E] ⊆ B) do  
  begin 
   best := ∅;  {best candidate for elementary condition} 
   for each criterion qi ∈ P do begin 
    Cond:={(f(x,qi)≥rqi) : ∃x∈S  (f(x,qi)=rqi)};  
    {for each positive object from S create an elementary condition} 
    for each elem ∈ Cond do 
   if evaluate({elem}∪E) is_better_than evaluate({best}∪E)  then best:=elem; 
   end;{for} 
   E := E ∪ {best}; {add the best condition to the complex} 
   S := S ∩ [best];  
  end; {while not ([E] ⊆ B)} 
  for each elementary condition e ∈ E do  
    if [E − {e}] ⊆ B then E := E − {e}; 
  create a rule on the basis of E; 
  E := E ∪ {E};  {add the induced rule} 
  G := B – ∪E∈E[E];  {remove examples covered by the rule} 
 end; {while G ≠ ∅} 
end {function} 
Let us comment the choice of a best condition using function evaluate(E). A 
candidate E for a condition part of a rule could be evaluated by various measures. In 
the current version of DOMLEM the complex E with the highest ratio |[E] ∩ G|/|[E]| 
is chosen. In case of a tie, the complex E with the highest value of |[E] ∩ G| is 
chosen. 

In the case of other types of decision rules, the above scheme works with 
corresponding approximations and elementary conditions. For example, in the case of 
type 3) rules, the corresponding approximations are the lower approximations of the 
downward unions of classes, considered in the increasing order of preference, and the 
elementary conditions are of the form f(x,qi)≤rqi. In the case of type 5) rules, there are 
considered intersections of upper approximations of upward and downward unions of 
classes )()( ≥≤ ∩ ts ClPClP , s<t, and the elementary conditions have the form f(x,q)≥rq 
and f(x,q')≤r'q' for q,q'∈C; if q=q', then rq≤r'q. Furthermore, because of testing 
minimality of rules, in the case of type 5) rules, it is useful to discover in a given 
intersection K= )()( ≥≤ ∩ ts ClPClP , s<t, two subsets of objects, called "lower edge" 
and "upper edge" defined respectively as: the set of objects from K that do not 
dominate any other object from K having different evaluation on considered criteria, 
and the set of objects from K that are not dominated by any other object from K 
having different evaluation on considered criteria. Then combinations of conditions 



based on object from the “lower edge” with conditions based on objects from the 
“upper edge” are the only candidates for entering a complex. 

Notice that requirement for inducing robust decision rules restricts the search 
space as only conjunctions of elementary conditions with thresholds referring to the 
same basis objects are allowed. Let us shortly discuss the computation complexity of 
the DOMLEM algorithm. We assume that the basic operation is checking which 
examples are covered by a complex (condition). Let m denotes the number of 
attributes, n is the number of objects. In the worst case each rule covers a single 
object using all criteria. In this case inducing robust rules requires at most n(nm+3m-
2)/2 operations. On the other hand, while looking for non-robust rules one cannot 
restrict the search to conditions based on basic object only. Thus (assuming that each 
criterion is on average chosen once) we need at most nm(n+1)(m+1)/4 operations. So, 
the complexity of the algorithm is polynomial. 
Illustrative example: 
Consider the following example (see Table 1.). A set of 17 objects is described by the 
set of 3 criteria C={q1, q2, q3} – all are to be maximized according to preference. The 
decision attribute d classifies objects into three decision classes Cl1, Cl2, Cl3 which 
are preference-ordered according to increasing class number.  

Table 1. Illustrative data table 

Object q1 q2 q3 d 
1 1.5 3 12 Cl2 
2 1.7 5 9.5 Cl2 
3 0.5 2 2.5 Cl1 
4 0.7 0.5 1.5 Cl1 
5 3 4.3 9 Cl3 
6 1 2 4.5 Cl2 
7 1 1.2 8 Cl1 
8 2.3 3.3 9 Cl3 
9 1 3 5 Cl1 

10 1.7 2.8 3.5 Cl2 
11 2.5 4 11 Cl2 
12 0.5 3 6 Cl2 
13 1.2 1 7 Cl2 
14 2 2.4 6 Cl1 
15 1.9 4.3 14 Cl2 
16 2.3 4 13 Cl3 
17 2.7 5.5 15 Cl3 

The downward and upward unions of classes are the following 
≤
1Cl ={3,4,7,9,14}, ≤

2Cl ={1,2,3,4,6,7,9,10,11,12,13,14,15}, 
≥
2Cl ={1,2,5,6,8,10,11,12,13,15,16,17},  ≥

3Cl ={5,8,16,17}. There are 5 inconsistent 
objects violating the dominance principle, i.e. 6,8,9,11,14. For instance, object # 9 
dominates object # 6, because it is better on all criteria q1, q2, q3, however, it is 
assigned to the decision class Cl1 worse than Cl2 to which belongs object # 6. So, the 



C approximations of upward and downward unions of decision classes are: 
)( 1

≤ClC ={3,4,7}, )( 1
≤ClC ={3,4,6,7,9,14}, )( 1

≤ClBnC ={6, 9,14}, 

)( 2
≤ClC ={1,2,3,4,6,7,9,10,12,13,14,15}, )( 2

≤ClC ={1,2,3,4,6,7, 8,9,10,11,12, 

13,14,15}, )( 2
≤ClBnC ={8,11}, )( 2

≥ClC ={1,2,5,8,10,11,12,13,15,16,17}, )( 2
≥ClC = 

{1,2,5,6,8,9,10,11,12,13,14,15,16,17}, )( 2
≥ClBnC ={6,9,14}, )( 3

≥ClC ={5,16,17}, 

)( 3
≥ClC ={5,8,11, 16,17}, )( 3

≥ClBnC ={8,11}. 
Let us illustrate in detail the induction of certain D≥-decision rules for the upward 

union ≥
3Cl . The lower approximation )( 3

≥ClC  is an input set B to the DOMLEM 
function find_rules. The elementary conditions for objects {5,16,17} are as follows 
(reported elements mean: the condition ei, the set of objects satisfying the condition 
ei, the first evaluation measure |[ei]∩G|/|[ei]|, the second evaluation measure |[ei]∩G|):  
e1=(f(x,q1)≥2.3),  {5,8,11,16,17},  0.6,  3; e5=(f(x,q2) ≥5.5), {17},  1.0,  1; 
e2=(f(x,q1)≥2.7),  {5,17},  1.0,  2;   e6=(f(x,q3) ≥9),  {1,2,5,8,11,15,16,17},  0.38,  3; 
e3=(f(x,q2) ≥4),  {2,5,11,15,16,17},  0.5,  3;  e7=(f(x,q3) ≥13),  {15,16,17},  0.67,   2; 
e4=(f(x,q2) ≥4.3),  {2,5,15,17},  0.5,  2; e8=(f(x,q3) ≥15) ,  {17},   1.0,   1; 

The condition e2 is found the best because its first measure is the highest and it 
covers more positive examples than e5 and e8. Moreover, as e2 satisfies the inclusion 
[e2]⊆B, it can be used to create a rule covering two objects # 5 and 17. They are 
removed from G and the last remaining positive example to be covered is 16. Now, 
there are available three elementary conditions: e9=(f(x,q1)≥2.3),  {8,11,16},  0.33,  1; 
e10=(f(x,q2) ≥4)  {2,11,15,16},  0.25,  1;  e11=(f(x,q3) ≥13),   {15,16},  0.5,  1. 

The condition e11=(f(x,q3) ≥13) is chosen due the highest first evaluation measure. 
On the other hand, it is not sufficient to create a rule using only this condition 
because it covers object # 15 which is a negative example. So, in the next iteration 
one has to consider complexes E=e9∧e11 and E= e10∧e11. As the complex E=e9∧e11 
has a higher first evaluation measure e9 is chosen. Notice that (f(x,q3) ≥13) and 
(f(x,q1)≥2.3) can be now accepted for the condition part of a rule as it covers objects # 
16 and 17. 
Proceeding in this way one obtains finally the minimal set of decision  rules: 
if (f(x,q3) ≤2.5),  then x∈ ≤

1Cl      {3, 4} 

if (f(x,q2) ≤1.2),  and (f(x,q1) ≤1.0) then x∈ ≤
1Cl       {4, 7} 

if  (f(x,q1) ≤2.0),  then x∈ ≤
2Cl      {1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15} 

if (f(x,q1)≥ 2.7),  then x∈ ≥
3Cl      {5, 17} 

if (f(x,q3)≥ 13.0) and (f(x,q1)≥ 2.3),  then x∈ ≥
3Cl      {16, 17} 

if (f(x,q1)≥ 1.2) and (f(x,q3)≥ 7.0),  then x∈ ≥
2Cl      {1, 2, 5, 8, 11, 13, 15, 16, 17} 

if  (f(x,q2)≥ 2.8) and (f(x,q3)≥ 6.0),  then x∈ ≥
2Cl      {1, 2, 5, 8, 11, 12, 15, 16, 17} 

if (f(x,q2)≥ 2.8) and (f(x,q1)≥ 1.7),  then x∈ ≥
2Cl      {2, 5, 8, 10, 11, 15, 16, 17} 

if (f(x,q1) ≥2.3) and  (f(x,q2) ≤3.3),  then x∈Cl2∪Cl3     {8} 
if (f(x,q1) ≥2.5) and (f(x,q2) ≤4.0),  then x∈Cl2∪Cl3    {11} 



if (f(x,q3) ≤6.0) and (f(x,q1) ≥2.0),  then x∈Cl1∪Cl2     {14} 
if (f(x,q3) ≥4.5) and (f(x,q3) ≤5.0),  then x∈Cl1∪Cl2     {6, 9} 

4. Decision rules in Variable Consistency model of Dominance-
based Rough Set Approach 

In [2] we proposed a generalization of DRSA to variable consistency model (VC-
DRSA). It allows to define lower approximations of the unions of decision classes 
accepting limited number of negative examples controlled by pre-defined level of 
consistency l∈(0, 1]. Within VC-DRSA, given P⊆C and consistency level l, the P-
lower and P-upper approximations of the upward unions of classes are the following: 

)( ≥
t

l ClP ={x∈Clt
≥ : 

))((
))((

xDcard
ClxDcard

P

tP
+

≥+ ∩
≥l},  

)( ≥
t

l ClP  = Clt
≥ ∪ {x∈ tCl −

≤
1 : 

))((

))(( 1

xDcard

ClxDcard

P

tP
−

≤
−

− ∩
<l }.  

The definitions of approximations for downward unions are analogic – see [2]. 
These approximations are used for induction of decision rules having the same syntax 
as in DRSA. In the VC-DRSA context each decision rule is characterized by an 
additional parameter α called confidence of the rule. It is the ratio of the number of 
objects supporting the rule and the number of objects covered by the rules. 

The induction of such rules can be done after simple modifications of the 
DOMLEM algorithm. First, the inputs B of the algorithm are the new Pl-
approximations of upward or downward unions of decision classes. Notice that in 
DRSA the complex E was accepted as a condition part of a rule iff [E]⊆B. This 
corresponds to the requirement that |[E]∩B|/|[E]|, should be equal to 1. The keypoint 
of VC-DRSA is a relaxation of this requirement permitting to build a rule based on a 
complex E having a confidence α not worse than the consistency level l. The rest of 
the algorithm remains unchanged.  
Continuation of the example. Let us assume that the user considers only criteria 
P={q1,q2} and is interested in analysing upward union ≥

2Cl . The DRSA leads to 

)( 2
≥ClP ={1,2,5,8,10,11,15,16,17} and boundary )( 2

≥ClBnP ={6,9,12,13,14}. The 

two following decision rules are induced to describe objects from )( 2
≥ClP : 

   if  (f(x,q1)≥ 1.7) and (f(x,q2)≥ 2.8), then x∈ ≥
2Cl , {2,5,8,10,11,15,16,17} 

   if (f(x,q1)≥ 1.5) and (f(x,q2)≥ 3), then x∈ ≥
2Cl , {1,2,5,8,11,15,16,17}. 

Let us assume now that the user works  with VC-DRSA accepting consistency 
level l equal to 0.75. As P-dominating sets of objects  # 6, 12 and 13 are contained in 

≥
2Cl  with a degree greater than the consistency level (0.83, 0,9 and 0.91, 

respectively) they can be added to the lower approximation )( 2
75.0 ≥ClP . The 

boundary region is now composed of only two objects  # 9 and 14.  Further on, the 



following rules are induced from the lower approximation ( )≥275.0 ClP  (within 
parentheses there are objectss supporting the corresponding rules and objects only 
covered by the corresponding rules but not satisfying their decision parts - the latter 
are marked by "*"): 
if  (f(x,q1)≥1.2), then x∈ ≥

2Cl   with confidence 0.91, {1,2,5,8,10,11,13,14*,15,16,17} 

if (f(x,q2)≥2), then x∈ ≥
2Cl  with confid. 0.79, 

{1,2,3*,5,6,8,9*,10,11,12,14*,15,16,17} 
One can also notice that these rules are supported by more examples (i.e. 10 and 

11, respectively) than the previous ones (8 in both). 

6. Conclusions 

The paper addressed the important issue of inducing decision rules for multicriteria 
sorting problems. As none of already known rule induction algorithms can be directly 
applied to multicriteria sorting problems, we introduced a specific algorithm called 
DOMLEM. It produces a complete and non-redundant, i.e. minimal, set of decision 
rules. It heuristically tends to minimize the number of generated rules. It was also 
extended to produce decision rules accepting a limited number of negative examples 
within the variable consistency model of the dominance rough sets approach. 
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