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{jerzy.blaszczynski,jerzy.stefanowski}@cs.put.poznan.pl

Abstract. Learning classifiers from imbalanced data is still one of chal-
lenging tasks in machine learning and data mining. Data difficulty factors
referring to internal and local characteristics of class distributions dete-
riorate performance of standard classifiers. Many of these factors may be
approximated by analyzing the neighbourhood of the learning examples
and identifying different types of examples from the minority class. In
this paper, we follow recent research on developing such methods for as-
sessing the types of examples which exploit either k-nearest neighbours
or kernels. We discuss the approaches to tune the size of both kinds of
neighborhoods depending on the data set characteristics and evaluate
their usefulness in series of experiments with real-world and synthetic
data sets. Furthermore, we claim that the proper analysis of these neigh-
borhoods could be the basis for developing new specialized algorithms
for imbalanced data. To illustrate it, we study generalizations of over-
sampling in pre-processing methods and neighbourhood based ensembles.

1 Introduction

Supervised classification is one of the well studied tasks of machine learning, data
mining and statistical data analysis. Its aim is to learn the relationship between
values of attributes describing examples and a target class of interest. Since many
problems can be represented in the attribute value form it has a wide spectrum
of possible applications [1]. The classification relationships learned from labeled
examples can be used as a classifier to predict class labels for new, unclassified
examples. Numerous approaches, based on different principles, have been already
introduced to learn classifiers. Nevertheless they may be insufficient when dealing
with complexities affecting the data representation.

One of these complexities is class imbalanced data, where at least one of the
target classes contains a much smaller number of examples than the other classes.
This class is usually called the minority class, while the remaining classes are
denoted as majority class(es). Imbalanced data often occur in practical prob-
lems, such as, medical data analysis, fraud detection, technical diagnostics or
image recognition, see, e.g., [8, 20, 60]. In all these problems correct recognition
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of the minority class is of key importance. Nevertheless, the standard learning
algorithms usually do not work properly for these problems since they are bi-
ased toward better recognition of the majority classes and they met difficulties,
or even are unable, to classify correctly new objects from the minority class [61].

Although the difficulty while learning classifiers from imbalanced data has
been known in practical applications for decades, this problem received a par-
ticular, growing research interest in the beginning of the current century and
several specialized methods have been proposed (for their review see, e.g., [7, 20,
21, 56]). They are usually categorized as classifier-independent pre-processing
techniques or modifications of algorithms for learning particular classifiers.

Researchers still treat learning from class imbalanced data as a research chal-
lenge and look for new more effective directions. One of these directions includes
studying the nature of the imbalanced data, key properties of its underlying
distribution and consequences they bring for learning better classifiers or for
constructing specialized pre-processing methods.

While examining these properties, it has been noticed that the high, global
imbalance ratio between cardinalities of minority and majority classes is not the
only and not even the main reason of difficulties in learning classifiers. Other, as
we call them, data difficulty factors, referring to internal characteristics of class
distributions, are also influential. They include: decomposition of the minority
class into many rare sub-concepts playing a role of small disjuncts [25, 26], the
effect overlapping between the classes [46, 15] or presence of many minority class
examples inside the majority class region [39]. When these data difficulty factors
occur together with class imbalance, they may seriously hinder the recognition
of the minority class, see e.g., experimental studies [36, 40, 42, 48].

Please note that aforementioned data factors correspond to local data charac-
teristics, occurring in some sub-regions of the minority class distribution rather
than at the global level of the entire data set. Furthermore, the development
of several informed pre-processing methods, such as [31, 9], is strongly based
on exploiting information about example distribution in the neighborhood of
considered minority examples.

In the previous research Napierala and Stefanowski have linked data difficulty
factors to different types of examples forming the minority class distribution [39,
40, 52, 55]. It has led the authors to a differentiation between safe and unsafe
examples for recognizing the minority class. These types of examples were iden-
tified by analyzing class labels distribution among examples’ neighbours [40].
Two ways of modeling the neighbourhood have been proposed, either by consid-
ering, k – nearest neighbours or kernel functions [40, 38]. These approaches can
be applied to several crucial issues for learning classifiers from imbalanced data:

– to analyze internal characteristics of real-world data sets and establish their
difficulty for recognizing minority classes [40, 38];

– to support comparisons of algorithms for learning classifiers as well as pre-
processing methods [42];

– to construct new, specialized algorithms for improving classifiers [5].
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Nevertheless, in these studies the size of neighborhood was chosen in the
simplest way and usually with the same value of the crucial hyper–parameter
for all considered data sets. Although it has proven to be sufficiently effective in
previous works, a more systematic tuning of this parameter with respect to data
set characteristics is still an open research problem and requires more studies.

Therefore, the main aims of the this paper are the following:

1. To introduce a new approach to tune the size of the neighborhood depending
on the data characteristics. Unlike the previous works [40, 42], we pay more
attention to using kernels in this analysis.

2. To experimentally study usefulness of kernels for an analysis of imbalanced
data - also for identifying more types of examples than proposed in [40].

3. To discuss the applicability of this special tuned neighborhood for construct-
ing dynamic pre-processing methods as well as to learning neighbourhood
based ensembles dedicated to, imbalanced data.

The paper is organized as follows. The next section summarizes related works
on data difficulty factors and using local information in pre-processing methods.
The previous approach to an identification of types of minority examples is dis-
cussed in Section 3. The new proposal of tuning its parameters is introduced in
Section 4 and validated in the experiments in Section 5. The following section
discusses its use to construct new pre-processing techniques. Similarly, its ap-
plicability for the Nearest Neighbourhood Ensemble is presented in Section 7.
Other possible extensions of the presented neighborhood analysis are discussed
in Section 8. The final section draws conclusions.

2 Related Research on Imbalanced Data Characteristics

In this section we will briefly discuss the issues most related to studying local
characteristics of class imbalanced data. We do not intend to provide here a
comprehensive review of methods for dealing with these data. For such a review,
the reader is referred to the monograph [20] covering the most representative
issues, as well as to systematic surveys, such as [7, 8, 21, 56].

2.1 Nature of the Class Imbalance Problem

Recall that a data set is considered class imbalanced when it is characterized by
an unequal distribution of objects in classes. Japkowicz names it a between-class
imbalance [24]. It may be quantified by a class imbalance ratio – which represents
a global point of view at data characteristics.

Generally speaking, any data set with unequal distribution of examples be-
tween class could be considered as imbalanced. However, there is no common
agreement with regard to a precise threshold defined for the global imbalance
ratio that would allow to distinguish imbalanced data set [21]. Here we also do
not define a precise threshold value but share an opinion saying that the class im-
balance problem is associated with lack of data (called also absolute rarity [60]),
which hinder the accurate recognition of minority classes [53].
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In this study we consider a two class (minority class vs. majority class) for-
mulation of class imbalance problem. It is justified by semantic importance of
the rare class versus other classes, which can be considered as the two class
problem. Moreover, this formulation of the imbalance problem is mostly studied
in the current literature. Even if the original definition of classification problem
includes more classes, they are aggregated into one majority class. Note, how-
ever, that in some applications it may be reasonable to consider multi-class data
sets, where imbalances may exist between various classes and it is required to
improve classifier performance with respect to more than one minority class. We
will come back to these issues in Section 8.

The class imbalance observed in a data set can be either intrinsic (in the sense
that it is a direct result of the nature of the data space) or extrinsic (caused by
reasons external to the data space). Extrinsic imbalance can be caused by high
costs of acquiring the examples from the minority class, e.g., due to economic or
privacy reasons or it comes from technical, time or storage, limitations [60] .

2.2 Data Complexity and Difficulty Factors

Although many authors have experimentally shown that standard classifiers have
difficulties while recognizing the minority class, it has also been observed that in
some problems characterized by high imbalance between classes (expressed by
the value of the global imbalanced data) standard classifiers are still sufficiently
accurate [2]. For instance, Napierala reports several experimental studies which
conclude that when there is a clear separation between classes, the minority class
can be sufficiently recognized regardless of the high imbalance ratio [38].

These and other studies prove that the global class imbalance ratio is not
necessarily the only, or even the main, problem causing the decrease of classifi-
cation performance and focusing only on the global ratio may be insufficient for
improving classification performance. Data complexity, understood here as the
distribution of examples from both classes in the attribute space, has a crucial
impact on learning. It is not particularly surprising, since data complexity af-
fects learning also in standard, balanced domains. However, when data complex-
ity occurs together with the class imbalance, the deterioration of classification
performance is amplified and it affects mostly (or even only) the minority class.

In the context of learning from imbalanced data the term “data complexity”
may comprise different data distribution patterns, such as: overlapping, small
disjuncts, outliers or noise. Several authors call them as data difficulty factors.
We describe them briefly below.

Within class decomposition and small disjuncts
The experimental studies with several data sets have shown that minority class
usually does not form a homogeneous, compact distribution of the target con-
cept but it is often scattered into smaller sub-parts representing separate sub-
concepts. Japkowicz named it within-class imbalance [26]. This is closely related
to the problem of small disjuncts which are harder to learn and cause more
classification errors than larger sub-concepts.
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Although the problem of within-class imbalance may occur in both minority
and majority classes, small disjuncts are more characteristic and more critical
for a minority class. In the majority class, the sub-concepts will be most often
represented by a sufficient number of examples forming larger disjuncts, while in
the minority class, in which the examples are already rare, their further decom-
position into several sub-concepts will produce small disjuncts, represented by a
too small number of examples to be correctly learned. Such fragmentation of the
minority class into five smaller sub-parts is illustrated in Figure 1. Additionally
each sub-part of the minority has a small over-lapping with the neighbours from
the majority class (which constitute an additional difficulty).

According to [25, 26] the higher deterioration of classification performance
results from an increased decomposition of the minority class into many sub-
parts containing too few examples rather than by changing the global imbalance
ratio.
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Fig. 1. Visualization of sub-concepts of the minority class additionally affecting by
class over-lapping (here represented by borderline examples) in flower data.

Overlapping between the classes

In the boundary regions between classes, the examples from different classes may
overlap – which hinders learning classifiers even in a standard, balanced case. As
the minority class is underrepresented in the data set, it may be underrepresented
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also in the overlapping region. Most learning algorithms tend to shift the decision
boundary too close to the minority class, treating the whole overlapping area as
belonging to the majority class. Indeed, the experiments on mainly artificial data
with different degrees of overlapping have shown that overlapping deteriorated
the classifier performance, especially when the minority class was concerned [46].
Furthermore, according to research of [15] the imbalance ratio calculated locally
inside the overlapping regions is more influential for the minority class than the
global ratio concerning the complete data. In other experiments a combination
of increased overlapping between the classes with decomposition of the minority
class influenced results more than than changing the class imbalance ratio [39].
Dealing with noisy or outlier examples
Single examples from one class, located far from the decision boundary inside
the other class, are usually called noisy examples. Handling noise is often con-
sidered in standard machine learning problems, however it becomes even more
important issue in learning from imbalanced data. Noisy majority examples are
particularly harmful for recognition of the minority class. They may cause a
fragmentation of the minority class and increase the difficulties in learning its
definition – see a discussion in [38]. Thus, examples of this type are usually either
removed/relabeled in the pre-processing phase [48, 55].

On the other hand, distant minority examples surrounded by the majority
class examples are not necessarily noisy. As the minority class examples are
underrepresented in the data set, such lonely examples may represent a rare
but valid sub-concept of which no other representatives could be collected for
training [40, 38]. We will call such examples outliers.

The role of noise and outliers in learning from imbalanced data has not
been deeply studied yet. Few authors have shown that randomly introduced
class or attribute value noise results in degradation of classifiers performance
on imbalanced data, see e.g., [38]. Some other authors have studied the role of
iterative filtering (or removing) noisy (difficult to be correctly classified) minority
case examples [48]. More interesting experiments presented in [39] have also
shown that single minority examples located inside the majority class regions
cannot be simply deleted from the data since their proper treatment by informed
pre-processing may improve classification performance for the minority class.

To summarize the discussion of the aforementioned data complexity factors
we would like to stress that their identification in real world data sets is not a
trivial task. The discussion of this issue and references to known methods are
presented in [38, 53].

2.3 Local Data Characteristics in Informed Pre-processing

Recall that the pre-processing methods are classifier independent and they are
designed to modify imbalanced data set in a way that transforms the class distri-
bution to a more appropriate one for learning classifiers. Many of these methods
generate a more balanced distribution of examples into classes. In general, chang-
ing the class distribution towards a more balanced one improves the performance
for most data sets and classifiers [21].
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The simplest pre-processing methods are random over-sampling which repli-
cates examples from the minority class, and random under-sampling which ran-
domly eliminates examples from the majority classes until a required degree of
balance between class cardinalities is reached. Therefore these methods exploit
global information about the data set: the current and expected imbalance ratios.

Since simple random pre-processing methods are often not effective, focused
(also called informed) methods have been introduced; see their comprehensive
reviews in [21, 7]. Many of these methods attempt to take into account inter-
nal characteristics of data regions around minority class examples. Historically,
the first such method resulted from Kubat and Matwin’s proposal of the one-
side-sampling method (OSS) [29]. These authors observed that characteristics
of mutual positions of examples from different classes is a source of difficulty.
Thus, OSS is based on distinguishing different types of learning examples: safe
examples (located inside the regions occupied by examples from the given class),
borderline (located near the decision boundary) and, so called, noisy examples
(these authors understood them as examples from the given class localed in-
side safe regions of the other classes). According to the OSS filtering approach,
borderline and noisy examples are removed from the majority classes, while the
minority class is kept unchanged (even for noisy minority examples).

Many other filtering (mainly under-sampling) methods exploits the paradigm
of edited nearest classifiers. For instance, the Nearest Cleaning Rule (NCR) [31]
applies it to removal of “difficult” examples from the majority classes. Briefly
speaking, NCR first looks for a specific number k of nearest neighbours (k = 3 is
recommended in [31]) of the “seed” example. Then, it re-classifies seed example
according to most frequent class label among neighbours. Finally, it removes
from majority class these examples, which cause the wrong re-classification.

The analysis of class labels among k nearest neighbors is also exploited in a
hybrid method SPIDER that selectively filters out the majority examples which
may lead to incorrect re-classification of the minority ones. [55]. In the first
stage it applies the edited nearest rule to distinguish between safe and unsafe
examples (which is depending how strongly k neighbours may correctly – or
incorrectly – re-classify the given “seed” example). For the majority class, the
neighbours which misclassify the seed minority example are either removed or
relabeled. Then, in the next stage, the reclassification analysis is repeated and
the remaining unsafe minority examples are additionally replicated depending
on the number of majority neighbours.

The best known method of informative over-sampling is called Synthetic Mi-
nority Over-sampling Technique (SMOTE) [9]. It is also based on the k nearest
neighbourhood and exploits it to selectively over-sample the minority class by
creating new synthetic examples with respect to the global parameter, called
over-sampling ratio. SMOTE has been further extended in different ways – see
reviews in [21, 7]. Quite often these extensions exploit different local informa-
tion about the learning examples. For instance, the authors of BORDERLINE
SMOTE do not treat all minority examples in the same way and focus oversam-
pling around examples from borderline region between classes [19].
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3 Analyzing Neighbourhoods of Minority Class Examples

3.1 Motivations

Following the critical analysis of earlier works on using local data characteristics
in informed pre-processing and studies on the complexity of imbalanced data
Napierala and Stefanowski have decided to link data difficulty factors to differ-
ent types of examples forming the minority class distribution. They proposed
to differierate between safe and unsafe examples in learning from imbalanced
data [40], however in a different way than earlier proposed, e.g. by [29]. Below
we present this categorization following their definitions from [40, 38, 42].

Safe examples are ones located in the homogeneous regions populated by
examples from one class only. Other examples are unsafe and more difficult for
learning. Unsafe examples are categorized into borderline (placed close to the
decision boundary between classes), rare cases (isolated groups of few examples
located deeper inside the opposite class), or outliers. As the minority class can
be highly under-represented in the data, it is claimed that the rare examples or
outliers, could represent a very small but valid sub-concepts of which no other
representatives could be collected for training [38]. Therefore, they cannot be
considered as noise examples which typically are then removed or re-labeled. In
Figure 2 all these four types of examples from the minority class are illustrated
in the 2-dimensional distribution of the two class data set called paw.

Recall experimental studies from [40, 38], where the graphical visualizations
techniques based on multi-dimensional scaling and non-linear t-SNE projection
have confirmed the occurrence of this categorization of example types in several
real-world imbalanced data sets. However, such an analysis cannot be directly
applied to larger data. Napierala and Stefanowski have looked for new simple
techniques which should more directly identify these types of examples.

Their method origins from the hypotheses [40] on role of the mutual positions
of the learning examples in the attribute space and the idea of assessing the
type of example by analyzing class labels of the other examples in its local
neighbourhood.

Following the proposal of [40, 38] – a term local refers to studying character-
istics of the nearest examples due to the possible sparse decomposition of the
minority class into rather rare sub-concepts with non-linear decision boundaries.
Considering a larger size of the neighbourhood may not reflect the underlying
distribution of the minority class.

Such a neighbourhood of an example could be modeled in different ways. In
the previous research Napierala and Stefanowski proposed to construct it with:

– k–nearest neighbours,
– or kernel functions.

The analysis of class labels of examples in the k–nearest approach concerns a
fixed number of nearest examples (without taking into account their distances to
the seed examples) while in the kernel approach all examples within a given ra-
dius (the kernel bandwidth) are taken into account together with their distances.
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Fig. 2. Visualization of four types of minority class examples in paw data.

We will come back to the problem of tuning their proper values in Section 4.
An analysis of the class label distribution of examples inside the neighborhood
of the given example allow us to assess its level of difficulty and as a result its
type (safe vs. unsafe to be learned).

Note, however, that constructing both types of the neighbourhood involves
decisions on choosing the distance function. In previous considerations Napierala
and Stefanowski have followed results of analyzing different distance metrics [32]
and chose the HVDM metric (Heterogeneous Value Difference Metric) [63]. Its
main advantage for mixed attributes is that it aggregates normalized distances
for qualitative and quantitative attributes. In particular, comparing to other
metrics, HVDM provides more appropriate handling of qualitative attributes as
instead of simple value matching, as it makes use of the class information to
compute attribute value conditional probabilities by using a Stanfil and Valtz
value difference metric for nominal attributes [63].

More precisely, let x be a seed example and y be another example (potential
neighbour). The HVDM is defined over m attributes as

D(x, y) =

√√√√ m∑
i=1

di(xi, yi)2
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All distances for single attributes are normalized in range 0 to 1. If one of the
attribute values of xi, yi is unknown, the distance di is equal to 1. The partial
distance for numeric attributes is defined as a normalized metric (yi−xi). Then,
the partial distance for nominal attributes is defined as:

di(xi, yi) =

{
0 if xi = yi

svdm if xi ̸= xi

Value difference metric svdm is defined as [10]:

svdm =
k∑

l=1

∣∣∣∣N(xi,Kl)

N(xi)
− N(yi,Kl)

N(yi)

∣∣∣∣
where k is the number of classes, N(xi) and N(yi) are the numbers of examples
for which the value on i-th attribute is equal to xi and yi respectively, N(xi,Kl)
and N(yi,Kl) are the numbers of examples from the decision class Kl, which
belong to N(xi) and N(yi), respectively.

In the next two sub-sections we will discuss more precisely previous proposals
of modeling these two kinds of the neighbourhood (with k–nearest neighbours
or kernel functions) and establishing types of minority class examples [40, 38].

In both cases, deciding about the type of minority examples is based on
analyzing class labels of examples in its neighbourhood.

3.2 Modeling k-neighbourhood

The k–nearest neighbourhood has been mainly exploited in the previous stud-
ies [40, 38, 42] and some applications of this approach to pre-processing [43, 62]
or specialized ensembles [5]. These authors have aimed at distinguishing whether
an example is safe, borderline, rare or outlier depending on the numbers of ex-
amples from minority vs. majority classes in the considered neighbourhood. As
we will also discuss in the next section, the size neighbourhood k should not be
smaller than 5 as it may poorly distinguish between four types of examples.

In [40] the following rule has been introduced to identify the type of the
given example. If all, or nearly all, its neighbours belong the same (usually
minority) class, this example is treated as the safe example, otherwise it is one
of unsafe types. If the number of both classes inside the k-neighbourhood are
quite similar, the example is treating as borderline one. For an extreme situation
- all neighbours belong to the opposite class it is clearly an outlier. Finally, the
examples with one or sometimes two (for larger sized of the k) neighbours from
its class was identified as a rare case.

For the most used the size of neighbourhood k = 5, the proportion of neigh-
bours from the same class against neighbours from the opposite class can range
from 5:0 (all neighbours are from the same class as the analyzed example) to
0:5 (all neighbours belong to the opposite class). Depending on this proportion,
Napierala and Stefanowski have proposed to assign the labels to the examples
in the following way:
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– 5:0 or 4:1 – an example is labelled as a safe example.
– 3:2 or 2:3 – a borderline example; Note that although the examples with the

proportion 3:2 are still correctly re-classified by its neighbours, the number
of neighbours from both classes is approximately the same, so it was assumed
that this example could be located too close to the decision boundary be-
tween the classes.

– 1:4 – labelled as a rare example.
– 0:5 – an example is labelled as an outlier.

Similar interpretations has been extended for larger values of k. For instance,
in case of k = 7 and the neighbourhood distribution 7:0 or 6:1 or 5:2 – a safe
example; 4:3 or 3:4 – a borderline example; again the number of neighbours from
both classes are approximately the same; 2:5 or 1:6 – a rare example; and 0:7 –
an outlier [38].

Besides using such thresholding, these authors also considered defining the
one coefficient expressing a safe level of the given example x – being an estimator
of conditional probability of its assignment to the minority class as p(Cmin|x) =
kmin

k , where Cmin is a minority class, k is the number of neighbours and kmin is
the number of minority class neighbours [42].

3.3 Modeling Kernel Neighborhood

An alternative approach to fixing the number of neighbours is to fix the local
area around the example as it done in kernel approaches – which was discussed
in [38] and studied in [42]. Note that due to the form of the kernel function,
different weights (probabilities) could be assigned to the neighbours, based on
their distance from the analyzed minority example x. Moreover, unlike having
always the same number of examples in the k-neighbourhood modeling, each
kernel may cover different number of examples within a fixed radius which rises
wider interpretation of local density (see our further experimental analysis in
Section 5.2).

Several kernel functions could be considered – besides the most popular
Gaussian kernel, other triangular or Epanechnikov functions are among com-
mon choices. In this study we have decided to apply Epanechnikov function
which is defined as:

K(u) =
3

4
(1 − u2)1|u|≤1,

where u = di

h , di is the distance of i-th example (xi) to the considered example
x, and h is bandwidth of the kernel. Epanechnikov kernel is suitable for our
purposes since it takes values 0 when di > h. In this sense, it resembles limits of k-
neighbourhood. Moreover, this property will be very useful inside the procedure
for tuning the neighborhood size discussed in Section 5.2. The distance between
examples di is calculated according to HVDM metric (see motivations presented
in the earlier section 3.1). Given the definition of the kernel function we estimate
a weighted sum of all minority neighbours, where weights depend on the distance
from the analyzed example. Comparing it to the weighted sum calculated for
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the majority class neighbours we can estimate the probability that the analyzed
example x may belong to the minority class p(Cmin|x).

To assess the type of a minority example, we need to discretize the range
of this value into subintervals. Inspired by earlier research [38], in this paper
we proposed the following rule: if 1 ≥ p(Cmin|x) > 0.7 then label x as safe; if
0.7 ≥ p(Cmin|x) > 0.4 then label x as borderline; if 0.4 ≥ p(Cmin|x) > 0.2 then
label x as rare; if 0.2 ≥ p(Cmin|x) > 0 then label x as outlier (we keep this
type similarly to earlier name); if p(Cmin|x) = 0 then label x as a new type
called zero. Finally, if there is no other example inside the neighbourhood of x
(even from the opposite majority class), then label x as a singleton in an empty
sub-region (further called simply empty).

Note that this rule is different than the one proposed in [38, 42] as it in-
troduces two new labels, which allow to better understand types of the kernel
neighbourhood discovered in data.

3.4 Experiences with Analyzing Types of Minority Examples

The previous experiments with modeling k-nearest neighbourhood applied to
UCI imbalanced data sets are described in [38, 42]. They have clearly demon-
strated that most of these real-world data do not include many safe minority
examples. They rather contain all types of examples, but in different propor-
tions. Depending on the dominating type of identified minority examples, the
considered data sets could be labeled as: safe, border, rare or outlier - which
show the level of their potential difficulty. Moreover, the thesis [38] has shown
that the classifier performance could be related to the category of data. First,
for the safe data nearly compared single classifiers (SVM, RBF, k-NN, decision
trees or rules) have achieved good, comparable prediction results. The larger
differentiation among these classifiers has been noticed for more unsafe data sets
(e.g. SVM is worse than k-NN and trees for data with higher number of rare
cases and outliers). The similar analysis has been carried out for the most repre-
sentative pre-processing approaches, showing that the competence area of each
method depends on the data difficulty level, based on the types of minority class
examples. For more details see [38, 42].

4 Tuning the Neighbourhood Size

In this paper we focus our interest on tuning the size of the neighborhood with
respect to characteristics of each data set.

4.1 Tuning k Value

In the previous studies Napierala and Stefanowski [40, 38, 42] exploited mainly k
nearest neighbourhood and they showed that values smaller than 5, e.g., k = 1
and k = 3, may poorly distinguish the type of examples, especially if one wants
to assign them to four types. Too high values, on the other hand, would be
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inconsistent with the assumption of the locality of the method (see [42] for more
details of the discussion why the locality is important for analyzing complex
minority class distributions in imbalanced data).

They proposed to set k = 5 as the default value. To check whether this
parameter k could strongly influence the results of labelling minority examples,
a special sensitivity analysis over 26 different data sets was carried out in [42].
Its results have shown that proportions of identified types of examples are quite
stable while changing k values (between 5 and 13 – globally defined for all of
these data sets). The recommendation of the smallest value of k has come from
the paradigm of the most local analysis of the complex decision boundaries of the
minority class and its sparsity. Furthermore, the authors pointed out that the
parameter k = 5 was recommended for many related, informed pre-processing
methods (see e.g. [9, 31, 55]).

Nevertheless, the idea of tuning of k parameter, for each imbalanced data
set individually, has not been considered so far. Studying the literature one
may find some positions that consider changing size of neighbourhoods in a
standard k-NN classifier for class balanced data. In these works choosing value
k is made with respect to the data set or class cardinality. Refer, e.g., to [17]
which recommends approximating k ≈

√
n, where n is the total number of

learning examples. However, we hypothesize that in case of imbalanced data n
should be rather the size of the minority class. Other researches have proposed
some slightly different approximations. Enas and Chai [12] postulated to take

k = n2/8 or k = n3/8.

See also [16] for more detailed presentation of similar proposals. Since these
formulas have been designed with typical problems and k-NN classifier in mind,
Napierala and Stefanowski have expressed their doubts whether they can be
directly transferred into a different context of modeling neighborhoods for class
imbalanced data [42].

Here, we share this point of view and we propose a method of tuning k value
in a cross-validation procedure. The important question concerns the choice of
optimization criterion for the tuning method. If one refers to the idea of rec-
ognizing the minority class examples as good as possible (which is a key issue
in learning from imbalanced data) - such a criterion may reflect abilities of
k neighborhood to correctly re-classify examples. This idea is consistent with
some earlier proposals of using cross-validation to choose k value which mini-
mize the classification error of a standard k-NN classifier, as it was argued by
Dasarathy [11]. We will describe it in more detail in sub-section 4.3.

4.2 Tuning Kernel Bandwidth

Modeling neighbourhood with kernels was preliminary discussed in [38, 42] as an
alternative to using k neighbours analysis of imbalanced data. The authors pos-
tulated that the Epanechnikov function should be equal to the average distance
to the 5th neighbour of each minority example in the data set, as they wanted to
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keep the link to their basic k neighbourhood method. Furthermore, in [42] they
presented an comparative experiment of labelling the minority class examples in
26 popular imbalanced data sets and demonstrated that using the kernel method
does not change the results of k neighbourhood more than by 5-10%.

In this paper we want to consider new approaches for tuning the size of kernel
neighbourhood with respect to each data set. Firstly, note that the kernel analy-
sis is often related to kernel density estimation, i.e., non-parametric approach to
estimation of probability density function, which is one of the most fundamental
issues in statistics [33, 50, 51]. Although there are important differences between
the density estimation and our problem, one can still notice some similarities
while calculating probabilities in considered points of the example space. Recall
that exploiting class probabilities inside the kernel neighbourhood of the seed
example x may be equivalent to operating on contribution of neighbours with
respect to their kernel distance to x. It may be also interpreted in the context
of the kernel density estimator

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi),

where n is a number of neighbours xi (or more generally considered data points),
Kh a kernel function with a bandwidth size h.

It is also known that the kernel bandwidth is this parameter which strongly
influences the resulting probability estimate. Its tuning has been already in-
tensively studied in statistics. The most of approaches attempt to optimize a
criterion referring to the expected L2 risk, which is a kind of the mean inte-
grated squared error between f̂h(x)− f(x). Although basic formulations involve
unknown density function f many automatic, data-based methods have been
developed for selecting the bandwidth h; for some reviews refer, e.g., to [27].

If Gaussian basis kernel functions are used to approximate univariate data,
and the underlying density being estimated is assumed to be Gaussian, the choice
for h (that is, the bandwidth that minimizes the mean integrated squared error)
is often estimated as

h =

(
4σ̂5

3n

) 1
5

≈ 1.066σ̂n−1/5.

where σ̂ is the standard deviation of the examples in the data. This approx-
imation is known as Silverman’s rule of thumb [51] and quite often imple-
mented in statistical software. Other bandwidth selection methods were also
proposed, for instance Terrell and Scott proposed oversmoothed density esti-
mates which in case of the standard Gaussian kernel leads to the oversmoothed
bandwidth h = 1.144σ̂n−1/5. These considerations could be generalized for the
multi-dimensional kernel with H – a symmetric positive bandwidth matrix [33].
For instance the aforementioned rules of thumbs are generalized to

hi = σ̂i

(
4

(d+ 2)/n

) 1
d+4

.
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Nevertheless, the above tuning methods concern a typical estimation of den-
sity function in the unsupervised setting. Although they are sometimes applied as
a kind of pre-processing inside the supervised classifiers – in particular Bayesian
classifiers, see e.g., [34], in our opinion these methods cannot be transferred di-
rectly to our problem of supervised neighbourhood analysis for imbalanced data.
However, due to some similarities, we acknowledge inspiration in specialized
density estimation methods, which are based on cross-validation optimization of
Least Squares forms representing the integrated squared error (ISE) of density
functions or, so called, biased versions [50].

4.3 A New Tuning Method based on Cross-validation

Following the critical analysis of tuning k parameter (see Section 4.1), and kernel
bandwidth in density estimation (in Section 4.2), we propose a simple cross-
validation method to tune both of thes parameters. Our motivation is to make
use of abilities of the neighbourhoods of the example x to correctly recognize its
class labels. Recall that in learning classifiers from imbalanced data one attempts
to improve recognition of the minority class, so studying the neighborhood from
the re-classification perspective may be connected with this aim.

The tuning method is based on the optimization procedure which scans a
value of neighbourhood parameter (k for k nearest neighbourhood and band-
width h for kernel neighbourhood) from a pre-defined set of possible values. In
our further experiments, for the kernel version we will refer these values to the
average distances between minority class examples calculated for a given data set
(see Section 5.2). However, in general, they could be other appropriate values.
In case of k nearest neighbourhood we will enumerate k values starting from the
smallest possible value.

As the optimization criterion we should choose measure reflecting ability of
the neighborhoods built on the training examples to recognize the type of the
testing example. In further experiment we have decided to apply popular G-mean
measure as it aggregates re-classifications of examples from both classes.

For a given value of an analyzed parameter (bandwidth h or k) the data set
is split into training and testing parts following the stratified version of cross
validation technique. For each split the following schema is carried out:

– For each example from the training part its neighborhood is constructed and
tuned with respect to the given parameter value – its size.

– Each example from the testing part is classified by the tuned neighborhood
(of the same size as the optimized parameter).

– The classification by the neighbourhood is performed according to highest
probability p(Ci|x) that example x, from the test set may belong to class Ci

(for problems considered in this paper i = {1, 2}, since we have only minority
class Cmin, and majority class Cmaj), estimated according to distribution of
classes of examples in the neighbourhood constructed in the training set.

– The value of the optimization criterion is calculated on the basis of how many
examples from a test set are correctly classified by the tuned neighbourhood.



16 B laszczyński J., Stefanowski J.

The final value of the optimization criterion comes from averaging over sev-
eral folds inside the cross-validation. The cross-validation may be repeated sev-
eral times to reduce variance of optimization criterion. The value of the finally
chosen neighbourhood parameter that corresponds to the best average optimiza-
tion criterion is the result of this tuning method.

5 Experimental Analysis of Data Characteristics

5.1 Experimental Setup

In this section we will carry out two kinds of experiments. Firstly, we will show
how to tune the kernel neighbourhood and k- neighbourhood sizes, i.e., band-
width h and k, over different benchmark real-world data sets and synthetic data
sets. It should illustrate the usefulness of the method presented in section 4.
Secondly, given the tuned sizes of neighbourhood, we will analyze the internal
characteristics of imbalanced data sets and establish the level of their difficulty
(with respect to different types of the minority examples). This part of experi-
ment should show the applicability of the neighbourhood analysis to recognize
the different categories of imbalanced data sets.

Similarly to the related study [42] we will focus our experiments on 13 bench-
mark real-world imbalanced data sets. Their characteristics is presented in Ta-
ble 1. We have chosen the data sets which have been often studied in many
experimental studies with imbalanced data. They represent different sizes, im-
balance ratios (denoted by IR), domains and have both continuous and nominal
attributes. Following the most related results [42] some of these data sets should
be easier to learn standard classifiers while most of them constitute different
degrees of difficulties.

Table 1. Characteristics of real-world data

data set # examples # attributes minority class IR

abalone 4177 8 0-4 16-29 11.47
breast-cancer 286 9 recurrence-events 2.36

car 1728 6 good 24.04
cleveland 303 13 3 7.66

cmc 1473 9 2 3.42
ecoli 336 7 imU 8.60

haberman 306 4 2 2.78
hepatitis 155 19 1 3.84

scrotal-pain 201 13 positive 2.41
solar-flare 1066 12 F 23.79
transfusion 748 4 1 3.20

vehicle 846 18 van 3.25
yeast 1484 8 ME2 28.10
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Nearly all of benchmark real-world data sets come from the UCI repository1.
One data set is medical data set which was used in the earlier works of Ste-
fanowski et al. on class imbalance2. In data sets with more than one majority
class, they are aggregated into one class to have only binary problems, which is
also typically done in the literature.

Furthermore, we have decided to study few synthetic data sets with known
data distribution. We apply a specialized generator for imbalanced data [64] and
produced two different types of data sets. The examples of both minority classes
are generated randomly inside predefined spheres and the majority class exam-
ples are uniformly distributed in an area surrounding them. We consider two
configurations of these minority class spheres: called paw and flower – see their
2-D illustrations at Figures 1 and 2. In both data sets the global imbalanced ratio
IR is equal to 7, and the total cardinality of examples are 1200 for paw and 1500
for flower always with three attributes. The minority class is decomposed into
3 sub-parts or 5 sub-parts. Moreover, each of this data sets has been generated
with different numbers of unsafe examples – which is denoted by four numbers
inside the name of data. For instance flower5-3d-30-40-15-15 means that the
generated minority class should contain approximately 30% of safe examples,
30% inside the class overlapping, 15% rare and 15% outliers.

5.2 Tuning Kernel Bandwidth and k-neighbourhood

In this experiment we used the method presented in Section 4 to tune the best
size of kernels’ bandwidth h and the best value of parameter k representing the
number of nearest neighbours. The results of the tuning on benchmark real-world
data are presented in Table 2, while the results of tuning on synthetic data are
presented in Table 3. The results presented in these tables come from stratified
10-fold cross-validation averaged 5 times to improve reproducibility and reduce
possible variance of the optimization criterion (here G-mean).

Note that the considered bandwidth h sizes refer to the average distance to
k-th nearest neighbour in the minority class of the given data set. This setting
allows us to obtain more comparable results and make the bandwidth size de-
pendent on the characteristics of each data set that was analyzed. Please note
that value of k-neighbour according to the average distance in the minority
class relates to some extend to the value of k in the other approach based on
nearest neighbours. Technically, we considered values of the kernel bandwidth
corresponding to average distance to k-th neighbour, with k from interval [0.5, 9]
with a basic step 0.5.

We have chosen these values as we wanted to check smaller neighbourhoods,
which was already well motivated in the previous research presented in [42].
In case of the other approach based on nearest neighbours, we considered only
k = {5, 6, 7, 8, 9} for the same reasons. The choice of k ≥ 5 is motivated here by

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
2 We are grateful to prof. W. Michalowski and the MET Research Group from the

University of Ottawa for providing us an access to scrotal-pain data set
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the fact that neighbourhoods smaller than 5 do not allow to perform sensible
labelling of example types that we presented in Section 5.3. This argument is not
viable for average k values related to the bandwidth size. In Tables 4 and 5, we
present an average number of examples inside the kernel for bandwidths tuned
in experiments on real-world and synthetic data sets, respectively.

Note that average numbers of nearest neighbours in kernels of real-world
data sets, presented in Tables 4, are always higher than 5. For synthetic data
sets, presented in Table 5, one can observe that the average number of examples
inside kernels is smaller than 3 in case of the most difficult to learn distributions
of examples (data sets: flower5-3d-10-20-35-35, paw3-3d-10-20-35-35). In
case of these two data sets, rare and outlier examples are the most numerous in
the minority class. This result can be explained when we take a look at results
from the Table 3. For these data sets the value of average k is the smallest
possible, which means that it was better to keep the neighbourhood (and the
bandwidth) as small as possible to obtain the best optimization result of G-mean.

Table 2. Bandwidth h and k tuned on real-world data

kernel k-NN
data set avg. k h G-mean k G-mean

abalone 6.5 0.074 36.679 5 45.547
breast-cancer 8 0.087 52.480 7 57.324

car 8 ≃0 77.265 5 87.627
cleveland 1 0.523 22.190 5 41.997

cmc 1 0.059 47.963 5 58.233
ecoli 7 0.332 76.739 9 80.300

haberman 9 0.328 43.624 5 56.552
hepatitis 6 0.812 65.695 7 71.893

scrotal-pain 8.5 0.408 55.955 9 77.244
solar-flare 1 0.038 27.095 5 50.609
transfusion 3 0.128 53.976 7 60.710

vehicle 8.5 0.516 88.682 5 93.883
yeast 2.5 0.430 34.391 5 60.018

A comparison of results obtained with tuning kernels and nearest neigh-
bours variants, reported in Tables 2, and 3, shows that kernel neighbourhoods
works differently than k nearest neighbourhoods. This observation comes mainly
from the comparison of G-mean values obtained in the tuning process. Regard-
less whether we compare on real-world or synthetic data sets, k-neighbourhood
achieves higher G-mean values than kernel neighbourhood.

However, one should be careful with drawing conclusions from comparing
average k related to the tuned kernel bandwidth with k tuned directly for nearest
neighbours as the kernel approach using other ranges. Nevertheless, it is visible
that higher values of bandwidths in kernels relate always to higher values of k in
nearest neighbours. We can also notice that larger neighbourhoods are selected
for easier data sets.
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Table 3. Bandwidth h and k tuned on synthetic data

kernel k-NN
data set avg. k h G-mean k G-mean

flower5-3d-10-20-35-35 0.5 0.058 43.199 7 52.549
flower5-3d-100-0-0-0 9 0.077 91.906 9 96.407

flower5-3d-30-40-15-15 2.5 0.103 79.623 9 80.998
flower5-3d-30-70-0-0 9 0.076 89.802 9 96.082
flower5-3d-50-50-0-0 9 0.077 92.757 8 96.506
paw3-3d-10-20-35-35 0.5 0.066 44.088 7 49.319
paw3-3d-100-0-0-0 8.5 0.099 95.425 9 97.067

paw3-3d-30-40-15-15 2 0.113 78.178 7 79.186
paw3-3d-30-70-0-0 9 0.100 90.252 7 93.189
paw3-3d-50-50-0-0 8.5 0.098 92.458 9 95.090

Table 4. Average k (for tuned bandwidth) and average number of examples inside a
kernel for real-world data

data set avg. k avg. n

abalone 6.5 115.04
breast-cancer 8 41.12

car 8 14.39
cleveland 1 18.74

cmc 1 6.96
ecoli 7 25.37

haberman 9 54.25
hepatitis 6 36.69

scrotal-pain 8.5 58.46
solar-flare 1 273.93
transfusion 3 38.55

vehicle 8.5 22.33
yeast 2.5 62.24

Table 5. Average k (for tuned bandwidth) and average number of examples inside a
kernel for synthetic data

data set avg. k avg. n

flower5-3d-10-20-35-35 0.5 3.10
flower5-3d-100-0-0-0 9 12.56

flower5-3d-30-40-15-15 2.5 18.16
flower5-3d-30-70-0-0 9 12.96
flower5-3d-50-50-0-0 9 12.55
paw3-3d-10-20-35-35 0.5 2.88
paw3-3d-100-0-0-0 8.5 12.28

paw3-3d-30-40-15-15 2 15.82
paw3-3d-30-70-0-0 9 14.81
paw3-3d-50-50-0-0 8.5 12.94
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The size of the kernel bandwidth (the distance values) presented in Tables 2,
and 3 is not easy to interpret since it is a value of HVDM metric (please see
Section 3). Note, however, that values of the bandwidth on real-world data sets
have higher variance than these observed for synthetic data sets. It seems natural
that real-world data sets should present more variability than synthetic ones.

5.3 Analyzing Types of Minority Examples

In this part experiment, we used the previously tuned bandwidths of kernels and
k-neighbourhoods to label different types of minority class examples in real-world
and synthetic data sets (it is somehow inspired by the earlier analysis in [40]).
The results obtained for benchmark real-world data sets with kernel neighbour-
hood are presented in Table 6, and the ones obtained with k-neighbourhood are
presented in Table 7.

Table 6. Labelling of minority class examples in real-word data for the tuned band-
width

data set safe [%] borderline [%] rare [%] outlier [%] zero [%] empty [%]

abalone 4.78 10.15 8.66 70.75 3.58 2.09
breast-cancer 17.65 18.82 31.76 29.41 1.18 1.18

car 0.00 47.83 43.48 8.70 0.00 0.00
cleveland 2.86 2.86 25.71 42.86 17.14 8.57

cmc 13.81 21.32 24.02 13.21 20.42 7.21
ecoli 5.71 68.57 14.29 5.71 5.71 0.00

haberman 1.23 25.93 39.51 29.63 2.47 1.23
hepatitis 28.12 21.88 3.12 34.38 6.25 6.25

scrotal-pain 15.25 20.34 28.81 22.03 1.69 11.86
solar-flare 4.65 6.98 16.28 65.12 4.65 2.33
transfusion 5.06 38.76 27.53 16.85 6.74 5.06

vehicle 55.78 35.68 5.53 0.00 0.50 2.51
yeast 7.84 11.76 27.45 39.22 9.80 3.92

Let us first explain differences in the number of example types identified
by the two approaches to model neighbourhoods. Recall that differently than
in [42], we have not applied the same labelling rule and the tuned values of k
are different and vary depending on the given data set (see values of k for k-NN
in Table 2 for details). Instead we used analogous rules, which are formulated
according to estimated values of probability of minority class, for both kernels
and k-neighbourhood (please see Section 4 for details).

The next important difference comes from the new assumption that the kernel
approach allows us to identify more types of examples. It is clearly visible for
the real-world data sets (see Table 6) which contain minority examples of all six
different types. A similar observation is valid for the same data sets analyzed
with k-neighbourhood (in Table 7), although here we distinguish four types.
Let us also note that the results presented in Table 7 correspond well with the
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Table 7. Labelling of minority class examples in real-word data for tuned k

data set safe [%] borderline [%] rare [%] outlier [%]

abalone 11.04 8.36 23.58 57.01
breast-cancer 29.41 28.24 29.41 12.94

car 60.87 21.74 13.04 4.35
cleveland 0.00 22.86 17.14 60.00

cmc 23.72 18.32 31.23 26.73
ecoli 28.57 48.57 14.29 8.57

haberman 14.81 29.63 38.27 17.28
hepatitis 43.75 28.12 12.50 15.62

scrotal-pain 38.98 42.37 15.25 3.39
solar-flare 0.00 18.60 32.56 48.84
transfusion 26.97 33.71 15.17 24.16

vehicle 78.89 13.57 6.03 1.51
yeast 15.69 19.61 21.57 43.14

previous ones presented in [42]. Nevertheless, some differences in proportions are
visible mostly for more difficult data sets (e.g., abalone, solar-flare, yeast).

Even though numbers of examples into different types labelled by kernel
neighbourhood and k-neighbourhood are not exactly the same, the character-
istics of the particular data sets (i.e. their categorization with respect to dom-
inating types of minority examples) are generally quite similar. In particular,
the highest number of outliers is discovered for the same data sets: yeast,
solar-flare, abalone, cleveland. The highest number of rare type exam-
ples is also discovered for the same data sets: cmc, breast-cancer (although
k-neighbourhood discovers the same amount of safe examples), haberman. The
same applies to borderline and safe examples. The highest number of border-
line examples is discovered for data sets: transfusion, and ecoli. The highest
number of safe examples is discovered by both kernel and k neighbourhood for
vehicle. Limited differences in labeling are observed for few data sets only:
hepatitis, scrotal-pain, and car.

Table 8. Labelling of minority class examples in synthetic data for tuned bandwidth

data set safe [%] borderline [%] rare [%] outlier [%] zero [%] empty [%]

flower5-3d-10-20-35-35 20.21 22.87 21.28 0.00 35.11 0.53
flower5-3d-100-0-0-0 84.57 14.89 0.53 0.00 0.00 0.00

flower5-3d-30-40-15-15 35.64 34.04 3.19 14.36 12.77 0.00
flower5-3d-30-70-0-0 76.60 23.40 0.00 0.00 0.00 0.00
flower5-3d-50-50-0-0 77.13 22.34 0.53 0.00 0.00 0.00
paw3-3d-10-20-35-35 14.67 20.67 24.67 0.67 36.00 3.33
paw3-3d-100-0-0-0 65.33 34.67 0.00 0.00 0.00 0.00

paw3-3d-30-40-15-15 26.00 42.67 4.67 11.33 15.33 0.00
paw3-3d-30-70-0-0 44.67 52.00 3.33 0.00 0.00 0.00
paw3-3d-50-50-0-0 57.33 40.67 2.00 0.00 0.00 0.00
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One can notice that new types of examples discovered by the kernel neigh-
bourhood are present in almost all data sets. There are two exceptions: zero
type examples are not discovered in car; then empty type examples are not
found in car, and ecoli. These type of examples are not dominant in any data
set. Since they reflect poor performance of kernel neighbourhood at estimating
probability of minority class, one should not expect to find a lot of them. Still,
relatively high numbers of zeros and empty type examples is found in data sets:
cleveland and cmc. Relatively high number of zero examples only is found in
yeast. Furthermore, a relatively high number of empty type examples is found
in scrotal-pain. Some relations between the numbers of discovered zero and
empty type examples and the predictive performance of kernel neighbourhood
(in Table 2) can be also observed.

The labeling results obtained for synthetic data sets with kernel neighbour-
hood and k-neighbourhood are presented in Table 8 and in Table 9, respectively.

Table 9. Labelling of minority class examples in synthetic data for tuned k

data set safe [%] borderline [%] rare [%] outlier [%]

flower5-3d-10-20-35-35 25.00 5.32 36.17 33.51
flower5-3d-100-0-0-0 87.77 12.23 0.00 0.00

flower5-3d-30-40-15-15 52.66 17.55 17.02 12.77
flower5-3d-30-70-0-0 77.13 22.87 0.00 0.00
flower5-3d-50-50-0-0 90.43 9.57 0.00 0.00
paw3-3d-10-20-35-35 18.00 12.00 34.67 35.33
paw3-3d-100-0-0-0 70.67 29.33 0.00 0.00

paw3-3d-30-40-15-15 54.00 16.00 14.67 15.33
paw3-3d-30-70-0-0 76.00 23.33 0.67 0.00
paw3-3d-50-50-0-0 66.00 34.00 0.00 0.00

We can conclude that the types of examples injected to synthetic data sets
are rather well discovered by both kernel neighbourhood and k-neighbourhood.
Safer distributions of examples in data sets (without rare and outlier type exam-
ples) are recognized in the best way. There is a tendency to mislabel some of safe
examples as borderline (which could explained for examples located very closed
to the decision boundaries that they are too dominated by neighbors from the
opposite class), however, the reverse tendency (to mislabel borderline as safe) is
also observable (especially for k-neighborhood). Rare and outlier types of exam-
ples are much better recognized by k-neighborhood than kernel neighborhood.
We can hypothesize that the kernel neighborhood expresses a worrying tendency
to discover outliers as zero type (and also sometimes empty type) examples. This
result can be linked to choosing too small bandwidth by the tuning procedure
for difficult distributions of examples.

To sum up, this kind of labeling analysis shows the usefulness of modeling the
neighborhood to identify the level of difficulty of the studied data set. Generally
speaking, the less safe examples, the more difficult could be the data set. It is
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also interesting to notice that most of studied data sets do not contain too many
safe examples. The percentage of rare, outlier or even empty example is quite
high for some of data sets. In particular the kernel analysis may provide more
information than k neighborhood approach due to new types of examples.

6 Improving Pre-processing Techniques with the
Neighbourhood Analysis

One can ask whether the estimation of probability of minority class examples,
which is behind the labelling of minority class, may be useful to improve pre-
processing of imbalanced data sets. Therefore, we compare performance of a
standard unprunned J48 classifier trained on data sets pre-processed accord-
ing to the neighbourhood analysis with kernel and k-neighbourhoods against
the same classifier trained on not-processed and randomly over-sampled data
sets. The choice of over-sampling is motivated by its’ ease of implementing as
compared to under-sampling.

Table 10. G-mean [%] for unprunned J48 learned on base (original) and over-sampled
real-world data

data set base random kernel k-NN

abalone 53.790 60.198 60.802 60.481
breast-cancer 56.495 68.139 68.764 68.791

car 89.851 90.356 90.157 89.681
cleveland 48.984 56.570 50.365 51.716

cmc 56.706 64.142 64.541 64.494
ecoli 70.489 74.011 74.080 74.401

haberman 56.060 54.559 57.394 56.492
hepatitis 63.136 72.058 66.507 68.809

scrotal-pain 69.563 70.570 70.313 71.781
solar-flare 44.249 44.522 42.867 44.110
transfusion 60.018 56.071 56.456 56.564

vehicle 91.929 94.405 93.912 92.609
yeast 54.564 53.735 55.535 57.219

The proposed over-sampling technique uses probability of minority class esti-
mated for each of minority class example according to the frequency of examples
in tuned kernel neighbourhood and k neighbourhood (we use the same tuning as
comes from the analysis carried out in Section 5.3). The estimated probability
is used as a weight of example in the sampling procedure. The difference with
respect to the neighbourhood analysis is that, since we apply over-sampling, we
want difficult examples (thus, having low value of the probability) to be more
represented in the over-sampled data set than safe ones. To achieve this result
we simply use inverse of the probability as the weight and replicate them pro-
portionally to this value. In general, we want to achieve approximately balanced
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classes, so we estimate the global number of need copies and divide this number
among all minority examples with respect to their weights.

Classification performance of J4.8 with pre-processing technique is measured
by standard measures such as G–mean and sensitivity. G-mean results are pre-
sented in Tables 10, and 11, for real-world, and synthetic data sets, respectively.

Table 11. G-mean [%] for unprunned J48 learned on base and over-sampled synthetic
data

data set base random kernel k-NN

flower5-3d-10-20-35-35 0.000 39.627 38.835 38.426
flower5-3d-100-0-0-0 89.410 88.692 87.245 88.190

flower5-3d-30-40-15-15 72.924 72.281 70.576 73.215
flower5-3d-30-70-0-0 87.205 87.496 86.000 85.125
flower5-3d-50-50-0-0 90.530 89.306 89.834 88.442
paw3-3d-10-20-35-35 0.000 33.252 34.634 33.474
paw3-3d-100-0-0-0 88.205 89.231 89.894 88.192

paw3-3d-30-40-15-15 71.320 73.613 74.417 74.074
paw3-3d-30-70-0-0 88.491 85.650 86.153 84.993
paw3-3d-50-50-0-0 89.499 87.421 86.449 86.088

G-mean classification results on real-world data sets show rather limited in-
fluence of the proposed pre-processing on predictive performance. In general,
one can observe improvements for several difficult data sets: yeast, haberman,
then smaller improvements are also noted for: abalone, breast-cancer, and
ecoli. For safer data sets like: vehicle, car one may expect that no over-
sampling (base) or random over-sampling may be sufficient solutions (i.e., they
may perform better). Then, we acknowledge that no oversampling is best per-
forming on transfusion. Moreover, random over-sampling works best on two
data sets:solar-flare, and cleveland.

The results on synthetic data sets also show no significant improvement when
kernel and k-neighborhood over-sampling is applied. Better performance in com-
parison to random over-sampling and no over-sampling (base) can be observed
on some more difficult distributions. Sensitivity results confirm the observations
made with respect to G-mean. Thus, we do not include tables with these results
due to the page limits.

More encouraging results have been obtained for modifications of SMOTE, in
particular the recent proposal called Local Neighbourhood extension of SMOTE
(briefly LN-SMOTE) which is inspired by the analyzing local data characteristics
of the minority examples [37]. Its comparative study against basic SMOTE and
two other related generalizations applied with 3 different classifiers (J48, Naive
Bayes and k-NN) showed that it improved G-mean and F-measure on several
of real world data sets. Yet another modifications of SMOTE with respect to
individual difficulty weights of examples has been also considered in [43].
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7 Neighbourhood Based Ensembles

Ensembles are another kind of methods which could be improved by the neigh-
bourhood analysis. The current proposals of ensembles dedicated to class imbal-
anced data are mainly extensions of known strategies as bagging, boosting or
random trees. They usually either employ pre-processing methods before learn-
ing component classifiers or embed the cost-sensitive framework in the ensemble
learning process; see their review in [14]. Previous comparative studies, such as
[4, 14], have showed that extensions of bagging ensembles are quite promising.
The most popular extensions pre-process bootstrap samples by under-sampling
the majority class or over-sampling the minority class to obtain a balance of
class cardinalities in each bootstrap sample. Roughly Balanced Bagging (RB-
Bag), which is a kind of specialized under-sampling approach leads to best im-
provements [54].

In this section we want to show that using neighbourhood based approach
to change distributions of minority class examples in bootstrap samples may
improve performance of bagging ensemble classifiers and result in solutions being
competitive to Roughly Balanced Bagging.

We focus on k-neighbourhoods in bagging ensembles, since they proved to
better render the distribution of minority class examples in Section 5.2. More-
over, they have been already successfully integrated in the Neighbourhood Bal-
anced Bagging (NBBag), which we have proposed [5].

Neighbourhood Balanced Bagging is based on a different principle than all
known bagging extensions for class imbalance. First, instead of integrating bag-
ging with pre-processing, it keeps the standard bagging idea. What changes are
probabilities of sampling examples to bootstraps. The chance of drawing minor-
ity examples is, sometimes radically, amplified (which is controlled by a special
hyper-parameter ψ). Furthermore, the amplification depends on the type of dif-
ficulty of minority example identified according to its k-neighbourhood.

We have already shown that NBBag works in both types of bagging gener-
alizations: over-sampling and under-sampling [5]. In first type of generalization,
it is similar to over-sampling minority class examples into bootstraps, however,
at the same time, the probabilities of drawing majority class examples are de-
creased. The size of bootstrap is kept the same as the size of the original learning
set. The second type is inspired by under-sampling generalizations, which pre-
dicts better than over-sampling generalizations [5]. The probabilities of drawing
minority class examples are increased, while probabilities of drawing majority
class examples are decreased.

Most of the extensions of bagging for imbalanced data are non-parametric [6].
They do not introduce any new parameters, which need to be adjusted during
construction of an ensemble of classifiers. On the one hand, one can argue that
bagging itself is a parametric method since the adequate size of the ensemble for
a given problem is not known a priori. The size of the ensemble is a parameter,
which may influence the performance of each of the considered extensions. On
the other hand, fixing this parameter enables comparison of ensembles of the
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same size, which should allow to distinguish ones which perform better than the
others under the same conditions.

Different types of parameters are introduced in NBBag [5] to control the
characteristics of neighbourhood: size of neighbourhood k, and amplification
factor ψ. In the experiments comparing NBBag to other bagging extensions
presented in [5] these two parameters were carefully selected to provide the best
average performance. The previous tuning of these parameters was made post-
hoc, i.e., first results were obtained for a number of promising pairs of parameter
values and then the best values were chosen. On the other hand, we need to look
for more appropriate approaches to tune these parameter inside learning an
ensemble rather than in a post-hoc way.

Tuning of such model parameters is a known problem in machine learn-
ing [18]. However, to our best knowledge, this problem has drawn rather limited
attention in the context of learning ensembles from imbalanced data. Class im-
balance may limit using some more advanced parameter tuning techniques. To
put it simply, minority class examples are to valuable to spare them for tuning
purposes only, while majority class examples are not. Following this observation,
we investigate a basic technique taken from tree learning. In the same way as
reduced-error pruning uses training data [47], we divide training data set into
two stratified samples. The first sample is used for training NBBag models and
the second one to validate the trained models. After the best parameters are
selected, NBBag classifier is constructed on the whole training set. Contrary
to what was presented in [5], this technique does not allow to distinguish best
values of parameters for all data sets nor even for one data set when learning
of a classifier is repeated, as e.g., in cross-validation. Tuning of parameters is
performed independently for each constructed component classifier.

In the following, we present performance of two variants of Neighbourhood
Balanced Bagging: under-sampling (uNBBag) and over-sampling (oNBBag) with
tuning of k and ψ parameters among a limited set of values (small k, and limited
amplification of examples weight represented by ψ – please consult [6] for details).
Tuning of best parameter values is performed on 2/3 of the training set. The
remaining 1/3 of training set is used for the validation.

Now we experimentally compare classification performance of uNBBag and
oNBBag to Exactly Balanced Bagging (EBBag) [23], Over-Bagging (OverBag) [58],
and Roughly Balanced Bagging (RBBag) [22]. The size of ensembles is fixed to
50 components, J48 with exactly the same parameters as in Section 6 is used as
component classifier. We restrict our comparison to real-world data sets only.

The results of G-mean and sensitivity are presented in Tables 12 and 13,
respectively. These results were estimated by a stratified 10-fold cross-validation
repeated ten times to reduce the variance of measures.

Looking at both Tables 12 and 13, one can notice that uNBBag and RBBag
stand out as the best performing classifiers. Another observation is that over-
sampling extensions of bagging, represented by OverBag and oNBBag, provide
worse performance that under-sampling extensions. When we compare G-mean
performance of ensemble classifiers to performance of over-sampled single classi-
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Table 12. G-mean [%] of NBBag and other bagging ensembles on real-world data

data set EBBag OverBag uNBBag oNBBag RBBag

abalone 78.845 69.230 79.517 78.706 79.035
breast-cancer 58.175 60.718 58.465 58.795 60.091

car 96.668 96.959 96.356 96.851 96.568
cleveland 73.628 51.629 73.260 66.754 71.130

cmc 64.191 61.036 65.051 63.787 65.350
ecoli 88.178 83.896 88.435 85.380 88.430

haberman 64.144 63.329 63.742 61.779 63.533
hepatitis 79.137 75.816 78.035 74.762 79.457

scrotal-pain 73.679 74.038 72.923 71.997 75.618
solar-flare 83.710 64.649 83.149 79.994 83.421
transfusion 66.607 67.748 66.449 66.476 67.143

vehicle 95.038 94.934 95.440 95.115 95.417
yeast 84.018 63.167 84.475 79.557 85.016

fiers (see Table 10) it is clear that ensembles provide better performance except
for breast-cancer, where ensembles are only better than single classifier trained
on not pre-processed data (i.e., base). A more detailed comparison on G-mean
shows that RBBag and uNBBag does not perform best only in case of some
relatively safe data sets like: car (both classifiers), scrotal-pain (uNBBag) or
more difficult breast-cancer (uNBBag), and cleveland (RBBag).

Table 13. Sensitivity [%] of NBBag and other bagging ensembles on real-world data

data set EBBag OverBag uNBBag oNBBag RBBag

abalone 80.925 51.224 80.776 75.851 77.045
breast-cancer 63.412 54 65.176 59.059 58.471

car 100 95.652 100 95.942 100
cleveland 80.286 30.571 79.143 63.429 69.143

cmc 70.240 50.721 68.739 63.423 64.685
ecoli 92 76 92 84 90.571

haberman 56.914 59.136 63.827 66.543 55.802
hepatitis 83.438 67.188 79.062 69.688 77.500

scrotal-pain 76.271 70.169 76.441 73.051 75.763
solar-flare 88.140 46.977 86.744 81.395 85.581
transfusion 66.517 61.236 72.697 67.753 65.674

vehicle 97.236 94.523 97.286 95.477 96.935
yeast 91.765 40.980 90.392 73.529 88.431

With respect to values of sensitivity (Table 13) uNBBag and EBBag are
clearly the best performing classifiers. uNBBag provides the best recognition of
minority class in case of almost all of considered real-world data sets.

This analysis of classification performance of bagging extensions leads to
conclusions, which are concordant with the ones presented in [5] and in [6].
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RBBag and uNBBag are identified as two outstanding alternatives. Moreover,
an exploitation of a relatively simple parameter tuning technique, including a
dynamic adaptation of the neighborhood size, allowed us to obtain quite satis-
factory predictive performance of NBBag.

8 Extensions of the Neighbourhood Analysis

In this section we briefly point out potential extensions of the neighbourhood
approaches which may be useful for some applications – although they are not
studied in this paper. We focus our attention on the following three issues:
Identification of class decomposition into sub-concepts

The discussed neighbourhood analysis may approximate some data difficulty
factors only. In particular, it does not directly identify a decomposition of the mi-
nority class into sub-concepts. As it was discussed in the Section 2.1 research of
Japkowicz and her collaborators on within-class imbalance showed that increas-
ing the number of the sub-concepts decreased classification performance more
than increasing the global imbalance ratio between class imbalance [24, 26]. The
comprehensive summary of other studies on the role of such class decomposition
is presented in [53].

The open question is how to automatically identify such sub-concepts in real-
world data sets. In cluster-oversampling proposal, Japkowicz applied k-means
clustering algorithm to examples from each class separately [44]. However, it is
necessary to estimate the unknown number of expected clusters or to choose an
optimization criterion (the most popular criteroa are not defined for the context
of imbalanced data). Moreover, these kinds of algorithms are not appropriate
for dealing with complex decision boundaries or outlier examples. In our opinion
there is a need for developing a new kind of a semi-supervised algorithm (where
it is necessary to deal with presence of minority vs. majority examples inside
clusters).
Highly-dimensional data sets

The presented approach uses HVDM metric to calculate distances between
examples. Similarly to using Euclidean metric in most of pre-processing meth-
ods it is more suitable for problems with relatively small or medium number
of attributes. On the other hand, high dimensional data sets may occur in im-
age analysis, bio-medical data analysis, genetics or other fields. The use of such
dissimilarity measures and k-nearest neighbor principle on such data sets may
suffer from the curse of dimensionality as it has been recently showed by Toma-
sev’s research on, so called, hubness-aware shared neighbor distances for high-
dimensional k-nearest neighbor classification [57].

Recall that this problem is also a challenge for standard learning of classi-
fiers as it increases risks of over-fitting as well as spurious findings. However,
considering it with class-imbalanced predictions presents an additional source of
difficulties, as it biases classification towards majority class for most classifiers
(see, e.g., experimental analyses from [3]). In standard balanced classification fea-
ture selection or projections techniques, such as: SVD or PCA, are often applied
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to enhance predictive performance. Although these methods have been exten-
sively studied, they mey be too biased toward majority class. Although, some
new class imbalance techniques have been recently introduced, we postulate still
more research also in the context of an identification of types of examples.
Multiple Imbalanced Classes

A binary classification task is mostly studied in case of imbalanced data. This
formulation is justified by focus an interest on the most important class and
real-world semantics, like in medical diagnosis (distinguishing sick vs. healthy
patients). On the other hand, in some situations it may be reasonable to distin-
guish more classes with low cardinalities [59].

Considering multiple minority classes makes the learning task more difficult
as relations between particular classes become more complex [59]. Internal data
distributions or decision boundaries will be different than in case when some
classes are aggregated. Techniques developed for binary imbalanced problems
are usually not directly applicable to multi-class problems. Quite often they lose
performance on one class while trying to gain it on another. A brief review of
current specialized techniques is available in [49].

We could ask a question on possible generalizations of the neighbourhood
analysis for more than one minority class. Although it has not been studied yet,
two directions could be considered. Either one can decompose the multi-class
imbalanced data set to a set of binary problems - one minority class vs. all other
classes; consider them independently and somehow aggregate results. According
to [28] it is a dominating strategy in specialized ensembles, see e.g., [13].

However, in such decomposition of the multiple imbalanced classes, pairwise
relations between two classes may be too strongly over-simplified and they do not
reflect more complex relations / interactions between several of classes, as one
class influences several neighboring classes at the same time. Therefore, it may
be more interesting to consider interaction of examples from various minority
classes while defining types of examples or exploiting other information from the
neighbourhood analysis – however, it is still a topic for further research.

9 Final Remarks

In this paper we follow earlier research on studying the internal characteristics
of class imbalanced data and its consequences for difficulties while learning clas-
sifiers. We share opinions of researches [25, 26, 15, 36] who showed that the high
imbalance ratio between the minority and majority classes (measured on the
global level of the data) is not the only and not even the main reason of these
difficulties. Other data difficulty factors, such as decomposition of the minority
class into many rare sub-concepts, the effect of too strong overlapping between
the classes or a presence of too many minority examples inside the majority
class region, referring to more local characteristics of class distributions, are
more influential.

Our current study on these local data characteristics and difficulties goes
along research lines introduced by Napierala and Stefanowski in [40, 42]. They
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have proposed to capture the aforementioned data difficulty factors by consid-
ering the local characteristics of learning examples from the minority class and
by an identification of four basic types of examples: safe, borderline, rare case
and outlier. It has been achieved by analyzing the class distribution of examples
from different classes inside a local neighborhood of the considered example which
could be modeled either by means of k-neighbours or kernels.

As the tuning the size of these two kinds of neighbourhoods with respect
to characteristics of given data sets have not been sufficiently studied yet, the
first contribution of this paper is discussing tuning methods. In our opinion
simple rules of thumb are simply not suitable. We have rather promoted tuning
bandwidth of a kernel neighbourhood or number k of nearest neighbours using
the adapted version of cross validation optimization methods.

Results of many experiments presented in Section 5 have confirmed usefulness
of these tuning methods. Moreover, they were sufficiently consistent with earlier
results of establishing categories of data set difficulty with respect to dominating
types of minority class examples [40, 42]. However, unlike the earlier studies, in
this paper we have managed to find an individual size of neighbourhood for each
data sets. A general observation is that this size is larger for easier imbalanced
data while it becomes smaller for data sets treated as more difficult to be learned.

The other contribution of the current paper is to promote incorporating the
results of analyzing this neighbourhood of minority class examples in construc-
tion of new methods for learning classifiers from imbalanced data. We have
“implemented” this postulate by considering two main categories of methods
specialized for imbalanced data: (1) the most popular over-sampling and (2) the
generalization of bagging ensembles which incorporates the results of an analyz-
ing the local neighbourhood to re-sample examples into bootstrap samples.

The experiments presented in Section 7 have demonstrated that Nearest Bal-
anced Bagging in the version of under-sampling with local tuning the size of
neighbourhoods and the level of re-sampling achieved the best predictive re-
sults. Furthermore, experiments presented in Sections 5.2, and 6 have shown
that the k nearest neighbours variant has led to better predictions than the
kernel neighbourhood. On the other hand, the kernel analysis allows to identify
new types of minority class examples: singletons in empty sub-regions (which
is an extreme rarity situation being different to single examples surrounded by
k-neighbours from opposite classes - this extension may be valuable in studying
medical complex data with many untypical cases of disease, see [45])

Issues of dealing with the local characteristics of imbalanced data may still
open several lines of future research. Besides already mentioned semi-supervised
clustering for detecting small disjuncts, re-considering the neighbourhood based
methods in highly dimensional spaces or multi-class imbalanced problems one
could look for other tasks such as:

– Other, more sophisticated proposals of dynamic re-sampling (also under-
sampling) of both classes with respect to identified different, local charac-
teristics of sub-regions of imbalanced data.
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– Considering a new type of cost-sensitive re-sampling where costs of misclas-
sification between classes will be taken into account while defining types of
the minority examples; Then the cost post-posterior probability should be
joined together with an estimation of different density of examples in various
sub-regions.

– Studying differences between outliers and real noise in imbalanced data; de-
tecting them, developing a new method for dealing with such noisy examples.

– Exploiting information about types of examples in modifications of other
algorithms, see e.g., promising results of the rule induction algorithm, called
BRACID [41].

– Studying imbalanced data streams affected by concept drifts, i.e., changes in
definitions of target classes over time [65]; In particular, recent studies have
shown needs for developing new kinds of ensembles for the imbalanced and
evolving data streams.
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