
297

AI-METH 2003 - Artificial Intelligence Methods November 5–7, 2003, Gliwice, Poland

Changing representation of learning examples while inducing classifiers based on
decision rules

Jerzy Stefanowski
Institute of Computing Science, Poznań University of Technology,

ul. Piotrowo 3A, 60-965 Poznań, Poland
e-mail: Jerzy.Stefanowski@cs.put.poznan.pl

Abstract

Decision rules induced from examples are used to predict classification of new objects. Improving classification accuracy may
be obtained by changing the original representation of the learning data. Two different approaches to such a transformation
are considered in this paper: selecting the subset of the most relevant attributes with the wrapper approach, and modifying
the presence of some learning examples in the learning set by the bagging technique. Both approaches are applied to the
rule induction algorithm MODLEM and experimentally evaluated on several data sets.

Keywords: machine learning, rule induction, classification, attribute selection, multiple classifiers, bagging

1. Introduction

The aim of machine learning is to construct systems that au-
tomatically improve their performance with analysing experi-
ence represented by learning examples. In recent years many
successful machine learning applications have been developed,
in particular in domain of data mining and knowledge discov-
ery [11, 18]. One of common tasks performed in knowledge
discovery is classification. It consists of assigning a decision
class label to a set of unclassified objects described by a fixed
set of attributes (features).

Learning algorithms induce various forms of classification
knowledge from learning examples, e.g. decision trees, rules,
bayesian classifiers. In this paper we discuss a case, where
knowledge is expressed in a form of decision rules. They are
represented as logical expressions of the following form:

IF (conditions) THEN(decision class),
where conditions are formed as a conjunction of elementary
tests on values of attributes. A number of various algorithms
have already been developed to induce such rules (for a review
see e.g. [15]). Decision rules are one of the most popular type
of knowledge used in practice; one of the main reasons for
their wide application is their expressive and easily human-
readable representation, see e.g. discussions in [11, 18]. For
reviews on applications of rules see e.g. [9] or some chap-
ters in [11, 18]. The author of this paper has also took part
in projects, where induction of rules was used for technical
diagnostics of rolling bearings, reducers, engines of buses or
for an analysis of medical data [15]. Moreover, an interest-
ing study of applying inductive rule learning to mechanical
engineering design was considered by Moczulski in [12].

When using decision rules for predicting classification, clas-
sification (predictive) accuracy plays a major role in evalua-
tion of rules. It can be experimentally estimated by applying
the rule set for testing examples and calculated as relative
frequency of correct classifications [17]. The typical research
problem while creating a new classification system is an at-
tempt to improve classification accuracy. Although different
rule based classifiers have been proved to be efficient for sev-
eral learning problems, they may not led to satisfactory clas-
sification accuracy for other data sets. These difficulties may

be caused, e.g., by existence of noisy examples or irrelevant
attributes. Moreover, decision concepts may be too complex,
non-linear and difficult to be learned by simple algorithms.
One the approaches to improve classification performance is
to change representation of the input set of learning examples.
As it is discussed in literature, one of the most important

problem while constructing learning systems is to determine
the appropriate representation space for learning, e.g. choos-
ing attribute relevant to the problem at hand [10]. Specific
transformation methods looking for ”better” representation
space, possibly integrated with learning algorithms, could im-
prove the learning process.
In this paper, we will consider two different approaches to

transform the representation space. These are:

1. changing the set of attributes describing examples,

2. changing the presence of some learning examples in the
learning set, given a fixed set of originally predefined at-
tributes.

In the first approach, we will check whether removing ir-
relevant attributes may lead to improving classification per-
formance. We will use the method for selecting the most
relevant attributes, which is based on the forward or back-
ward stepwise search strategy applied inside, the so called,
wrapper model [7].
In the second approach, the set of originally defined at-

tributes remains unchanged but the presence of learning ex-
amples is modified. It is performed by a specific sampling
from the original training data considered within the frame-
work multiple classifiers. In this paper we focus attention on
the bagging approach [2], which manipulates the input data
to get several different learning sets by using sampling with
replacement of learning examples. Then, different classifiers
are generated from these learning sets and combined by a
voting strategy to form a composite classifier.
The aim of this paper is to experimentally examine the

applications of these two different approaches transforming
an original representation of data to a rule induction algo-
rithm MODLEM. This algorithm has been previously intro-
duced by the author [14]. It is particularly well suited for



298

Stefanowski J.

analysing data containing a mixture of numerical and qual-
itative attributes [15]. In this study we want to check how
much the considered approaches could improve the classifi-
cation accuracy of the rule classifier induced by MODLEM.
According to our best knowledge this kind of rule classifier
has not been considered yet together with these approaches.
The bagging approach was mainly studied for decision trees,
while the attribute selection mainly for instance based learn-
ing algorithms. The only exception is the previous prelimi-
nary author’s study on using rule induction with the bagging
[16], which gave encouraging results for the current study.
The paper is organised as follows. In Section 2, we be-

gin with a presenting the attribute selection method. Then
in Section 3, we describe modification of learning sets by
the bagging approach. Section 4 contains a brief description
of the MODLEM algorithm. Results of comparative experi-
ments are given in Section 5. The discussion of these results
and conclusions are presented in the final section.

2. Selection of attributes

For some learning problems, not all attributes describing ex-
amples may be directly relevant to classification and some
attributes may be irrelevant or even redundant. If there are
too many irrelevant attributes in the initial description of ex-
amples, the complexity of a learning process may increase.
Moreover, they may decrease the classification performance
of the induced classifier [7]. Thus, only the most relevant at-
tributes should be used. The aim is to find the smallest subset
of attributes leading to a higher classification accuracy than
the set of all attributes.
As it is discussed in literature, the feature selection can

be reduced to a search problem, where one selects a good
feature subset based on a selected evaluation measure [7, 8].
Each state in the search space represents a subset of possible
features. It is a partially ordered space, where each state has
a child differing on exactly one feature. Following the idea
presented by Kohavi [7], to design a feature selection algo-
rithm one has to define three following components: search
algorithm (technique that looks through the space of feature
subsets), evaluation function (used to evaluate examined sub-
sets of features), and classifier (a learning algorithm that uses
the final subset of features). These elements can be integrated
in two ways. They are called filter and wrapper approaches,
respectively [7]. In the filter approach, features are selected
as a pre-processing step before a classifier is used. Features
are selected (i.e. filtered) basing on properties of data itself
independently of the learning algorithm used as a classifier.
In the wrapper approach, the search algorithm conducts a
search for a good subset of features using the classifier itself
as the evaluation function. An evaluation is usually done by
estimating a classification accuracy obtained by this classifier.
Each filter and wrapper approach have its own strong and

week points. Some authors claim [7] that the wrapper model
is superior because it takes into account the bias of the learn-
ing algorithm in order to get a feature subset. It should result
in a better estimate of an accuracy on unseen data than the
evaluation function used in the filter model whose, bias differs
from that of the classifier. However, the major limitation of
the wrapper approach is the additional computational cost re-
sulting from using many times the cross-validation technique
evaluating learning algorithm to check each feature subset.
On the other hand, the filter approach is less demanding.

The typical evaluation measures, e.g. Info-gain entropy, Chi-
squared statistics or correlation based measures, need less
computations than the wrapper.
As to the wrapper approach one should remember that the

classification accuracy for the final classifier induced using the
selected subset of attributes should be evaluated on extra ver-
ification examples, which are not used in the learning phase
to select attributes. It is necessary to avoid the phenomena
of the overfitting the learning algorithm to the examples [8].
The next issue concerns constructing the search algorithm.

Since the exhaustive search is of exponential complexity, it
is more efficient to perform the heuristic search. Commonly
employed algorithms are backward elimination and forward
selection. Former starts with all attributes and successively
removes the one that its elimination improves performance.
The second starts with an empty set of attributes and succes-
sively adds the one with the best performance. There are also
known more sophisticated variants of both approaches that
combine performing either adding or removing operations as
to get the best subset see, e.g.[6].
In our study we will use wrapper approach studying sepa-

rately these two forward and backward search strategies.

3. Bagging approach to select learning examples

The bagging approach is one of the methods for creating mul-
tiple classifiers. According to this idea the same learning al-
gorithm is runned several times, each time using a different
distribution of the training examples. The generated classi-
fiers are, then, combined to create a final classifier that is
used to classify new objects.
The Bagging approach (Bootstrap aggregating) was in-

troduced by Breiman [2]. It aggregates by voting classifiers
generated from different bootstrap samples. The bootstrap
sample is obtained by uniformly sampling objects from the
training set with replacement. Each sample has the same
size as the original set, however, some examples do not ap-
pear in it, while others may appear more than once. For a
training set with m examples, the probability of an example
being selected at least once is 1− (1− 1/m)m. For a large m,
this is about 1 - 1/e. Each bootstrap sample contains, on the
average, 63.2% unique examples from the training set.
Given the parameter T which is the number of repetitions,

T bootstrap samples S1, S2, . . . , ST are generated. From each
sample Si a classifier Ci is induced by the same algorithm
and the final classifier C∗ is formed by aggregating T classi-
fiers. A final classification of object x is built by a uniform
voting scheme on C1, C2, . . . , CT , i.e. is assigned to the class
predicted most often by these sub-classifiers, with ties bro-
ken arbitrarily. The approach is presented briefly below. For
more details see [2].

(input LS learning set; T number of bootstrap samples;
LA learning algorithm
output C∗ classifier )
begin

for i = 1 to T do
begin

Si := bootstrap sample from LS; {sample with replacement}
Ci := LA(Si); { generate a sub-classifier }

end; { end for }
C∗(x) = arg maxy∈Kj

T

i=1
(Ci(x) = y)

{the most often predicted class}
end



299

Changing representation of learning examples while inducing classifiers

Experimental results presented in [2, 3] show a significant
improvement of classification accuracy while using decision
tree classifiers. For more theoretical discussion on the justifi-
cation of bagging the reader is referred to [2].

4. Rule induction by the MODLEM algorithm

The MODLEM algorithm has been introduced in [14], see also
[15]. It generates heuristicaly a minimal set of rules describing
succeeding decision classes (or their rough approximations).
Its extra specificity is handling directly numerical attributes
during rule induction when elementary conditions of rules are
created, without any preliminary discretization phase. Below
we present its basic concept. First we need to introduce nec-
essary notation. Learning examples are described by a set of
condition attributes A, where Va is a domain of a ∈ A and
a(x) denotes the value of attribute a ∈ A taken by an exam-
ple x; d /∈ A is a decision attribute that partitions examples
into a set of decision classes (concepts) {Kj : j = 1, . . . , k}.
A decision rule r describing class Kj is represented in the

following form: if P then Q, where P = w1 ∧ w2 ∧ . . . wp is a
condition part of the rule and Q is decision part of the rule
indicating that example satisfying P should be assigned to
class Kj . The elementary condition of the rule r is defined
as (ai(x) rel vai), where rel is a relational operator from the
set {=, <,≤, >,≥} and vai is a constant being a value of at-
tribute ai. [P ] is a cover of the condition part of rule r in
DT , i.e. it is a set of examples, which description satisfy
elementary conditions in P . Let B be a set of examples be-
longing to class Kj . For a certain decision rule r we require
that [P ] =


[wi] ⊆ B. The general schema of the MODLEM

algorithm is given below. It is iteratively repeated for each
set of examples B from a succeeding decision class Kj .

Procedure MODLEM (input B set of examples; criterion
- evaluation measure; output P single local covering of B )
begin

G := B; {examples not covered by conjunction from P}
P := ∅;
while G = ∅ do begin

P := ∅; {candidate for condition part of the rule}
S := U ; {set of objects covered by P}
while (P = ∅) or (not([P ] ⊆ B)) do begin

w := ∅; {candidate for elementary condition}
for each attribute a ∈ C do begin

new p := Find best condition(a, S);
if Better(new p, w, criterion) then w := new p;
{ evaluate if new condition new p is better
than previous w}

end;
P := P ∪ {w}; {add to the condition part }
S := S ∩ [w];

end; { while not([P ] ⊆ B )}
for each elementary condition w ∈ P do

if [P − w] ⊆ B then P := P − {w};
{ Test minimality of the rule }

P := P ∪ {P}; { Add P to the local covering }
G := B −


P∈P [P ];

{ Remove examples covered by the induced rule}
end; { while G = ∅ }
for each P ∈ P do if


P ∈P−P [P ] = B then P := P− P

end{procedure}

Table 1. Data sets used in the experiments

Data set Number of Number of Number of
examples classes attributes

bank 66 2 5
buses 76 2 8
zoo 101 7 8
hsv 122 4 11
iris 150 3 4
hepat 147 2 19
glass 214 6 9
bricks 216 2 10
vote 300 5 16
bupa 345 2 6
pima 768 2 8

Let us comment how function Find best condition works
– for more details see [5, 14]. Elementary conditions are rep-
resented as either (a(x) < va) or (a(x) ≥ va). For nom-
inal attributes, these conditions are (a(x) = va). We will
shortly present how best conditions are chosen for numerical
attributes. First, for a given set of objects their attribute
values are sorted in an increasing order. The candidates for
the cut-point va are computed as mid-points between succes-
sive values in the sorted order, taking into account decision
class assignment of objects. They are evaluated according to
a chosen evaluation measure either class entropy or Laplace
accuracy - in the experiment we used the entropy. The best
point among all tested ones (function Better) is chosen to be
further compared against other attributes. The best condi-
tion w for all compared attributes is chosen to be added to
the condition part of the rule.
Finally, the unordered set of induced rules is applied to

classify examples using the classification strategy introduced
by Grzymala in LERS system [4].

5. Experiments

5.1. Conditions of experiments

The aim of the experimental study is to check how much
two different techniques of modifying the representations of
learning data, discussed in this paper, could increase classi-
fication accuracy of the rule classifier induced by MODLEM
algorithm. More precisely, we compare performance of:

1. The single classifier obtained by MODLEM used for all
attributes (without any selection).

2. The single classifier induced for selected subsets of at-
tributes and all learning examples. Two search strate-
gies inside wrapper model are independently studied: for-
ward selection and backward elimination (denotated FS
and BE, repectively).

3. The bagging classifier composed of single classifiers in-
duced by MODLEM with the complete set of features.

The MODLEM algorithm has been used with the entropy
measure to choose elementary conditions. Moreover, if there
are any inconsistencies in the learning sets, then the rough ap-
proximations were calculated and MODLEM produced only
certain decision rules.



300

Stefanowski J.

Table 2. Comparison of classification accuracies [%] for clas-
sifiers induced by using all attributes and attribute subsets
obtained by Forward Selection and Backward Elimination
search strategies

Dataset All attributes FS BE

bank 93.81 ± 0.94 95.46 ± 1.1 92.15* ± 1.14

buses 97.20 ± 0.94 98.05* ± 1.15 97.38* ± 1.12

zoo 94.64 ± 0.67 95.01* ± 0.59 93.71* ± 0.59

hsv 54.52 ± 1.05 65.94 ± 0.69 58.41 ± 1.28

hepatitis 78.62 ± 0.93 83.91 ± 0.49 80.57 ± 0.79

iris 94.93 ± 0.5 94.67* ± 0.58 94.93* ± 0.5

glass 72.41 ± 1.23 71.42* ± 1.1 73.69* ± 1.04

bricks 90.32 ± 0.82 89.82* ± 0.37 89.89* ± 0.5

vote 92.67 ± 0.38 88.67 ± 0.82 93.91 ± 0.48

bupa 65.77 ± 0.6 62.28 ± 0.79 65.15* ± 0.55

pima 73.57 ± 0.67 74.92 ± 0.47 75.82 ± 0.51

All experiments have been performed on the benchmark
data sets, which are coming from Machine Learning Reposi-
tory at the University of California at Irvine [1] or from au-
thor’s case studies (data buses, hsv, bricks, see [15]). Their
characteristics is given in Table 1. The classification accuracy
was estimated by stratified version of 10-fold cross-validation
technique, i.e. the training examples were partitioned into 10
equal-sized blocks with similar class distributions as in the
original set.

5.2. Attribute selection

For all data sets we used the wrapper approach with two
search strategies forward selection (FS) or backward elimi-
nation (BE) . The obtained classification accuracies are pre-
sented in Table 2. They are calculated as average classifica-
tion accuracy with standard deviation. An asterisk indicates
that differences for compared classifiers and the given data
set are not statistically significant.
Let us remind that the classifier obtained for a selected

attribute subset should be evaluated on the verification ex-
amples, which are not used inside the wrapper evaluation.
Therefore, we employed two level ”k-fold cross validation”
technique. First, in the outside cross-validation, the examples
are randomly divided into the learning and verification sets.
Then, for the wrapper search strategy, the other ”inner”10-
fold cross validation is used only in the learning set to find the
selected subset. In our experiments for both cross validations,
k has been equal to 10.
We have also analysed the structure of attribute subsets

selected by both methods FS and BE. We have noticed that
these subsets were not the same for any data set, except glass
and bupa. Usually, the forward strategy selected much smaller
number of attributes than the backward elimination.

5.3. Bagging and modification of the learning set

While creating the multiple classifier, the parameter T being
the number of sub-classifiers inside bagging was set at the
following values: 3, 5, 7 and 10. Choosing these small values
of T was inspired by good results obtained by Quinlan for
studying C4.5 decision trees with the bagging [13].
The results of these experiments are given in Table 3. For

each data set, the first column shows the average classifi-
cation accuracy obtained by a single classifier over the ten

Table 3. Comparison of classification accuracies [%] obtained
by the single MODLEM classifier and the bagging approach

Dataset Single Bagging
classifier

bank 93.81 ± 0.94 95.22 ±1.02

buses 97.20 ± 0.94 97.45* ± 1.13

zoo 94.64 ± 0.67 93.68 ± 0.70

hsv 54.52 ± 1.05 65.94 ± 0.69

hepatitis 78.62 ± 0.93 84.0 ± 0.49

iris 94.93 ± 0.5 94.33* ± 0.59

glass 72.41 ± 1.23 76.09 ± 0.68

bricks 90.32* ± 0.82 90.77* ± 0.72

vote 92.67 ± 0.38 96.01 ± 0.29

bupa 65.77 ± 0.6 75.69 ± 0.7

pima 73.57 ± 0.67 77.87 ± 0.39

cross-validations. Standard deviation is also given. The next
column contains results for composite bagging classifier. An
asterisk indicates that differences for compared classifiers and
given data sets are not statistically significant. For nearly all
data set we present results obtained for T=10 which was the
best value, except: bank T=7, hsv T=5.

6. Discussion of results and final remarks

Firstly, let us discuss results of the comparative experiments
performed on 11 data sets.
The rule classifier built with attributes determined by the

forward selection strategy was better than the classifier using
all attributes on 4 data sets (bank, hsv, hepatitis, pima) and
worse on 2 data sets (vote, bupa). The difference between
both classifiers was not significant on the remaining 5 data
sets.
Using backward elimination search strategy, an improved

classification accuracy was observed on 4 data sets (hsv, hep-
atitis, vote, pima). For other data sets the difference between
classifiers were not significant.
Comparing the number of attributes selected by each

search strategy, we noticed that the forward selection usu-
ally identified smaller subsets than the backward elimination.
Moreover, the time of computations for the forward selection
was usually shorter.
The other approach to modify the number of examples, i.e.

bagging, outperformed the single classifier on 7 of 11 data
sets. The difference between classifiers was non-significant on
3 data sets (buses, iris, bricks) and the single classifier was
better only for 1 data sets zoo. In fact, the slightly worse
performance the bagging was observed for quite small data
sets (e.g. buses - which could be difficult for representative
sampling) or data sets rather easy to be learned by standard
single classifier (as e.g. iris). Bagging substantially improves
the classification accuracy for data sets contating higher num-
ber of examples. Let us notice, that for some of these data
bagging allowed to achieve the highest improvement of clas-
sification (see e.g. glass, vote, bupa or pima).
Comparing the experimental results between the two ap-

proaches to change the data representations, we can conclude
that the bagging approach is more efficient for improving clas-
sification accuracy. It could be, somehow, explained by the
specific properties of the used rule induction. In general, the



301

Changing representation of learning examples while inducing classifiers

attribute selection should be useful for such learning algo-
rithms, which are particularly sensitive to the presence of
irrelevant attributes [8]. For instance, this could be the k–
nearest neighbor algorithm, where all attributes influence the
way of calculating the distance or similarity between exam-
ples. We have examined it in our previous studies [6]. How-
ever, the rule induction algorithm chooses the best elementary
condition (referring to attributes) just inside a rule genera-
tion. Quite often, only part of the original attributes may
be used in the finally induced rules. Therefore, this kind of
learning algorithm has a kind of ”internal ability” to select the
most relevant attributes. Although the usefulness of an addi-
tional attributes selection in the wrapper approach is limited,
we observed an improvement for a few data sets.
On the other hand, the main aim of introducing the bag-

ging approach was just to improve the classification perfor-
mance [2]. Our experimental results have confirmed it also
for using of the MODLEM algorithm. Let us remind that
according to some authors [2, 3] the bagging should work es-
pecially well for, the so called, unstable learning algorithms,
i.e. ones whose output classifier undergoes major changes in
response to small changes in learning data. Indeed the al-
gorithm MODLEM is the unstable algorithm in the sense of
this postulate.
Finally, let us comment on the computational costs. As

the bagging approach needs the number T of sub-classiers,
it requires around T more computational efforts than single
learning algorithm. While costs of the wrapper depend on the
number of attributes subsets to be examined during the search
process. Moroever, for each examined subset it is necessary
to perform the cross-validation evaluation. Therefore, it is
more demanding approach than the bagging.
However, there is another disadvantage of the bagging ap-

proach - loosing a simple and easy interpretable structure of
knowledge represented in a form decision rules. While, the
attribute selection maintains a typical form of the rule set.
For future research, it could be interesting to consider yet
another way of improving the original representation of at-
tributes - i.e. generating new attributes, which may be func-
tion of the original ones. It is consistent with the postulate
of the constructive induction [10].

Acknowledgment: The research has been supported from
the BW grant.

References

[1] C. Blake, E .Koegh , C.J. Mertz , Repository of Machine
Learning, University of California at Irvine 1999 [URL:
http://www.ics.uci.edu/ mlearn/MLRepositoru.html].

[2] L. Breiman, Bagging predictors. Machine Learning, 24
(2), (1996), 123–140

[3] E. Bauer, R. Kohavi, An empirical comparison of voting
classification algorithms: Bagging, boosting, and vari-
ants. Machine Learning 36 (1/2), (1999) , 105–139.

[4] J.W. Grzymala-Busse, Managing uncertainty in machine
learning from examples. In: Proc. 3rd Int. Symp. in In-
telligent Systems, Wigry, Poland, IPI PAN Press, 1994,
70–84.

[5] J.W. Grzymala-Busse, J. Stefanowski, Three approaches
to numerical attribute discretization for rule induction.

International Journal of Intelligent Systems, 16 (1),
(2001), 29–38.

[6] K. Krawiec , J. Jelonek, J. Stefanowski, Comparative
study of feature subset selection techniques for machine
learning tasks. In Proceedings of VIIth Intelligent Infor-
mation Systems IIS’98 Malbork, 15-19 June 1998, IPI
PAN Press Warszawa 1998, 68-77.

[7] G. John, R. Kohavi, K. Pfleger, Irrelevant features
and the subset selection problem. Proceedings of the
Eleventh International Machine Learning Conference,
New Brunswick NJ, Morgan Kaufmann, 1994, 121-129.

[8] R. Kohavi , D. Sommerfield , Feature Subset Selection
Using the Wrapper Method: Overfitting and Dynamic
Search Space Topology. Proceedings of the First Inter-
national Conference on Knowledge Discovery and Data
Mining, Montreal, AAAI Press, 1995, 192-197.

[9] P. Langley, H.A. Simon, Fielded applications of machine
learning, In: R.S. Michalski, I. Bratko, M. Kubat (eds.),
Machine learning and data mining, John Wiley & Sons,
1998, 113-129.

[10] R.S. Michalski, A theory and methodology of inductive
learning. In: R.S. Michalski, J.G. Carbonell and T.M.
Mitchell, (eds.), Machine Learning: An Artificial Intelli-
gence Approach, vol. 1, Morgan Kaufman, 1983 83–134.

[11] R.S. Michalski, I. Bratko, M. Kubat (eds.), Machine
learning and data mining, John Wiley & Sons, 1998.

[12] W. Moczulski, Inductive learning in design: A method
and case study concerning design of antifriction bearing
systems. In: R.S. Michalski, I. Bratko, M. Kubat (eds.),
Machine learning and data mining, John Wiley & Sons,
1998, 203-220.

[13] J.R. Quinlan, Bagging, boosting and C4.5. In: Proceed-
ings of the 13th National Conference on Artificial Intel-
ligence, 1996, 725–730.

[14] J. Stefanowski, The rough set based rule induction tech-
nique for classification problems. In: Proceedings of 6th
European Conference on Intelligent Techniques and Soft
Computing EUFIT’98, Aaachen 7-10 Sept. 1998, 109-
113.

[15] J. Stefanowski, Algorithims of rule induction for knowl-
edge discovery. (In Polish), Habilitation Thesis published
as Series Rozprawy no. 361, Poznan Univeristy of Tech-
nology Press, Poznan, 2001.

[16] J. Stefanowski, Bagging and induction of decision
rules. In: Klopotek M., Wierzchon S. Michalewicz M.
(eds.), Int. Symposium on Intelligent Systems; Post-
Proceedings of the IIS’2002. Series ”Advances of Soft
Computing”, Physica Verlag, Heidelberg, 2002, 121-130.

[17] S.M. Weiss, C.A. Kulikowski, Computer Systems That
Learn: Classification and Prediction Methods from
Statistics, Neural Nets, Machine Learning and Expert
Systems, Morgan Kaufmann, San Francisco, 1991.

[18] W. Klosgen, J.M. Żytkow, Handbook of Data Mining and
Knowledge Discovery. Oxford Press, 2002.



302


