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Abstract. The role of abstaining from prediction by component clas-
si�ers in rule ensembles is discussed. We consider bagging and Ivotes
approaches to construct such ensembles. In our proposal, component
classi�ers are based on unordered sets of rules. In these classi�ers we use
an appropriate classi�cation strategy that solves ambiguous matching of
the object's description to the rules. We propose to induce these rule
sets by a sequential covering algorithm and to apply classi�cation strate-
gies using either rule support or discrimination measures. We adopt these
strategies to abstaining by not using partial matching strategy. The other
contribution of this paper is an experimental evaluation of this proposal.
Results of comprehensive comparative experiments show that abstain-
ing rule sets classi�ers improve the accuracy, however this e�ect is more
visible for bagging than for Ivotes.

1 Introduction

In recent years there has been much research on multiple classi�ers also called
ensembles of classi�ers. Various approaches have been proposed to construct
them with respect to either a phase of generating component classi�ers or a
phase of aggregating predictions of these classi�ers (see [8] for a review).

We are particularly interested in ensembles containing classi�ers based on
sets of rules induced from diversi�ed training samples. This interest results from
previous research of two authors on various rule induction algorithms, which have
been earlier used to build single classi�ers and, then, also successfully applied
inside some ensembles of classi�ers [13, 14]. Furthermore, one can notice that
rule ensembles such as SLIPPER or LRI proved to be competitive classi�ers
to more popular decision tree ensembles, see e.g., [4, 12, 15]. A rule classi�er
has an interesting property. Let us note that a rule assigns class only to these
objects that it covers. Moreover, it covers only a bounded part of problem space
as opposed to a decision tree. This property makes a rule classi�er interesting
to concern the research topic of this paper. Namely, studying changes in the
aggregation phase of the ensemble when some component classi�ers may abstain
from predicting class labels.

Naturally, a set of rules does not have to maintain the ability to refrain that
is typical for a single rule. Most rule sets classi�ers are designed to always assign



a class label for a new object, e.g., by using ordered priority lists of rules with
a default class label [11] or specialized strategies for solving ambiguous con�icts
with unordered rules [6]. However, there exist solutions where the classi�er may
not produce its class prediction in case of uncertainty as to the classi�ed ob-
jects. Such classi�ers called abstaining classi�ers have already been studied in
the framework of ensembles. Most of the research concerns refraining from the
�nal decision in case of disagreement between votes of component classi�ers,
e.g., see a study [12] showing that it may improve the �nal accuracy. Some re-
searches allow single classi�ers to give no answer. For instance, rule ensembles
like SLIPPER [4] are based on a weighted combination of single rules (being
component classi�ers) and a rule is excluded from voting if the new objects is
not covered by it. However, according to our best knowledge there are no simi-
lar abstaining solutions for ensembles where component classi�ers are based on
sets of unordered rules induced by sequential covering algorithms (which are the
most popular techniques for inducing rules [7]).

Therefore, the �rst aim of our paper is to present a framework for construct-
ing such an ensemble of rule classi�ers. To achieve it we propose to use sets of
rules induced by the MODLEM algorithm [13]. MODLEM proved to be compet-
itive to other rule and tree classi�ers and was successfully applied inside pairwise
coupling and extended bagging multiple classi�ers [14]. Moreover, it naturally
joins with classi�cation strategies based on matching a description of a classi�ed
object to rules. Such strategies can be adopted to abstaining from a class pre-
diction. To become independent of one speci�c solution we choose two di�erent
classi�cation strategies: the �rst, introduced by Grzymala, based on rule sup-
port [6] and the other proposed by An [1], which employs a rule discrimination
measure. Following similar motivations we decide to investigate two di�erent ap-
proaches to constructing the ensemble: bagging [2] based on bootstrap sampling
and Ivotes [3] using a sequential adaptive approach.

The second, not least important, aim of our paper is to experimentally eval-
uate the in�uence of abstaining component classi�ers based on rule sets induced
by MODLEM on the �nal accuracy of the ensemble. Although following some
related results one could expect an improvement of classi�cation accuracy, our
contribution include a comprehensive comparative study on several benchmark
data sets, where we want to examine more deeply the degree of changes with
reference to di�erent classi�cation strategies and di�erent ensembles.

2 Related Research

The idea of classi�ers refraining from class predictions has been considered
in machine learning, in particular in cases when classi�cation is uncertain. The
classi�ed object may be located either in the boundary between classes or very far
from any class. Some techniques as threshold classi�ers producing distributions
of membership to several class, e.g., neural networks, may naturally abstain
from classi�cation if none of predictions exceeds a preferred threshold. Such an
unknown decision may be suitable in some domains, e.g., in medical diagnosis.



The concept of abstaining in ensembles of classi�ers is considered at two lev-
els. At the �rst level, abstaining occurs in the �nal decision of the ensemble.
In this case, the ensemble may abstain from classi�cation for uncertain objects,
which are characterized by the smallest di�erence between the number of indi-
cations for the most often predicted class label and the number of indications
for the second predicted label. Such a kind of abstaining classi�er has been anal-
ysed in [12] showing theoretically that it may improve PAC bounds of error
for rule ensembles. The same work also contains preliminary experiments with
the authors' proposal of stochastic algorithm showing bene�ts of abstaining from
making uncertain predictions and comparing it to bagged versions of popular rule
induction algorithms RIPPER and PART. A method for optimization of similar
abstaining classi�ers using ROC analysis was presented in [10]. Moreover, this
work contains an interesting review of other previous works on refraining from
classi�cation. As they are not directly related to our research, we skip them.
At the second level, component classi�ers may refrain from prediction. This has
been postulated in [4, 5]. However, the result of abstaining at this level on the
accuracy of the ensemble is, to our best knowledge, not deeply studied.

The most similar ensemble to presented in our paper is the one produced
by SLIPPER [4]. More precisely, such a conclusion can be drawn with respect
to presented further ensemble of rule sets classi�ers produced by Ivotes. Never-
theless, SLIPPER is di�erent to the approach we take to create an ensemble. It
uses a single rule as a component classi�er while we use a set of rules. Moreover,
it aggregates component classi�ers by a linear combination. We apply majority
voting between component classi�ers and we use mentioned before classi�cation
strategies inside each of component classi�ers.

3 Our Framework for Abstaining Rule Ensembles

To construct ensembles we �rst chose bagging. It was introduced by Breiman
[2] with a key concept of bootstrap sampling, i.e., uniform sampling with re-
placement objects, from the original learning set. Having several independent
bootstrap samples, a set of classi�ers is generated by the same learning algo-
rithm and the �nal decision is formed by aggregating predictions of classi�ers
with the majority equal weight voting scheme.

The second considered ensemble comes from the Pasting Small Votes idea.
Its original motivation was handling massive data which does not �t into com-
puter's memory. Breiman proposed using the so-called pasting votes where many
component classi�ers are trained on relative small subsets of the original train-
ing data [3]. He introduced two strategies for implementing this idea: Rvotes
and Ivotes. In Rvotes training sets are sampled randomly from large data sets
(similarly to bagging). Ivotes sequentially generates small data sets using the
importance sampling. According to this sampling each new training data sample
should have approximately 50% objects that were misclassi�ed by the ensemble
including previously generated classi�ers. The content of the particular training
data sample for each subsequent classi�er relies on sampling with replacement



where the sampling probability results from the out-of-bag estimate [3]. We
chose Ivotes as it is more similar to boosting idea and may be more accurate
than standard bagging [8].

We decided to generate sets of rules by the MODLEM algorithm, which was
originally introduced by Stefanowski in [13]. Due to the space limit we skip its
more precise presentation (see [14] for details). Brie�y speaking, it is based on
the scheme of a sequential covering and it generates an unordered minimal set
of rules for every decision concept. It is particularly well suited for analysing
data containing a mixture of numerical and qualitative attributes, inconsistent
descriptions of objects or missing attribute values. Searching for the best single
rule and selecting the best condition is controlled by a criterion based on a
modi�ed entropy measure. As it will be further explained, MODLEM unordered
sets of rules are better suited to introduced abstaining with partial matching
strategies than ordered lists of rules.

Let us remind that both considered ensembles are based on manipulating
presence of objects in bootstrap samples to produce diversi�ed training sam-
ples. MODLEM is an unstable algorithm in the sense of Breiman's postulate
[2], i.e., small perturbation of data may results in large changes in the induced
rules, see also [14]. This is a desirable property for ensembles like bagging. Using
unprunned structure should increase diversity of component classi�ers, as it was
also noted by Breiman and others [9].

The set of induced rules needs to be combined with a speci�c classi�cation
strategy to constitute a classi�er. Most of these strategies are based on matching
the new object's description to condition parts of rules. If rules are ordered into
a priority list (as it is done in e.g., in popular C4.5rules [11]; another kind of
exception list with default rule is used in RIPPER) the �rst matched rule from
the list is ��red� to classify a new object. Unlike this option, in our case the
set of rules is unordered and all rules are tested for matching. This may lead
to three situations: a unique match (to one or more rules from the same class);
matching more rules from di�erent classes or not matching any rules at all. In
both last situations a suggestion is ambiguous, thus, proper resolution strategy
is necessary. We skip descriptions of some early proposals of solving it, e.g., by
Michalski in AQfamily or Clark et al. in CN2. Review of the di�erent strategies,
which could be combined with MODLEM is given in [14].

For our experiment we choose the strategy introduced by Grzymala-Busse in
[6] as it has been successfully applied in many experiments. Brie�y speaking it
is based on a voting of matching rules with their supports. The total support for
a class K is de�ned as: sup(K) =

∑m
i sup(ri), where ri is a matched rule that

indicates K, m is the number of these rules, and sup(r) is the number of learning
objects satisfying both condition and decision parts. A new object is classi�ed
to the class with the highest total support. In the case of not-matching, so called
partial matching is considered where at least one of rule conditions is satis�ed
by the corresponding attributes in the new object's description x. In this case,
a matching factor match(r,x) is introduced as a ratio of conditions matched by
the object x to all conditions in the rule r. The total support is modi�ed to



sup(K) =
∑p

i match(r, x)× sup(ri), where p is the number of partially-matched
rules, and object x is assigned to the class with its highest value.

As an alternative strategy we apply proposal of Aijun Ann [1] because it also
considers partial matching and its experimental veri�cation with ELEM algo-
rithm (simpler sequential covering than in MODLEM) showed that it is compet-
itive to C4.5rules and CN2. It uses a rule quality measure di�erent than the rule

support, i.e., a measure of discrimination: QMD = log P (r|K)×(1−P (r|¬K)
P (r|¬K)×(1−P (r|K)) , where

P denotes probability. For more technical details of estimating probabilities and
adjusting this formula to prevent zero division see [1]. Its interpretation says
that it measures the extend to which rule r discriminates between positive and
negative objects of class K. Inside the ELEM2 classi�cation strategies it is used
in similar formulas for decision scores as in the Grzymala's strategy - the only
di�erence concerns putting QMD in place of sup(r). Therefore, the di�erence
between classi�cation strategies is choosing another rule quality measure.

We propose to adopt both strategies to the abstaining from prediction by
switching o� the partially matching phase. It corresponds to the fact the induced
rules establish an area of expertise for a classi�er (i.e., a subspace of problem
space that is covered by the rules). If an object completely matches a rule, it
may be treated as being close to this area. Otherwise, in case when it is not
matched by any rule, it is far from the area of expertise and it can be classi�ed
as unknown. Moreover, assuming that classi�ers are generated from diversi�ed
samples it is more likely that their areas of expertise does not overlap. This
should result in an ensemble of experts being able to classify new objects better
than any of component classi�ers.

4 Experiments

The main goal of experiments is to evaluate the in�uence of abstaining of
component classi�ers on the �nal accuracy of the ensemble. As we discussed
in the previous section, we are conducting experiments for two di�erent ap-
proaches to construct ensembles: bagging and Ivotes. Moreover, we study the
use of two di�erent classi�cation strategies with matching object's descriptions
to rule (either An's proposal with discrimination measure and Grzymala's pro-
posal of using rule support). We additionally carried out the experiments for
the MODLEM classi�er, to show that these classi�cation strategies are useful
for working with the single classi�er. In all versions the classi�ers were based
on unprunned sets of rules induced by MODLEM - it was always induced with
standard options as described in [14].

A number of classi�ers in bagging ensemble was 20 because we noticed that
Ivotes ensemble usually consisted of less but close to 20 base classi�ers. Size of
the learning sample used by Ivotes algorithm was set to 50%. This value was
chosen because of the data sets used in experiments. As they were not so big as
idea of Pasting Small Votes assumes, we have to keep reasonable size of training
sample. Moreover, one of the author's experience shows that default version of
Ivotes classi�er has good results on smaller data sets when size of the learning



sample is higher than 40%. They also showed that Ivotes is competitive with the
standard bagging when size of the learning sample is set close to 50%.

Table 1. Characteristics of data sets

Data set Objects Attributes Classes

breast-w 699 9 2

bupa 345 6 2

credit-german 1000 20 2

crx 690 15 2

diabetes 768 8 2

ecoli 336 7 8

glass 214 9 7

heart-cleveland 303 13 5

hepatits 155 19 2

ionosphere 351 34 2

pima 768 8 2

sonar 208 60 2

vehicle 846 18 4

vowel 990 13 11

All experiments were carried out on 14 data sets from the UCI repository1.
Their characteristics are given in Table 1. We chose them because they were
often used by other researchers working with rule ensembles.

The classi�cation accuracy was estimated by the strati�ed 10-fold cross-
validation, which was repeated several times. Tables with results always contain
an average classi�cation accuracy with a standard deviation. Moreover in brack-
ets we present a rank of the best performance among all variants of classi�ers
for the given data set (the smaller, the better). We show them because they are
used in the statistical test further described. Last row of each table shows an
average rank scored by a given classi�cation strategy.

In the �rst experiment we evaluate the use of both classi�cation strategies in
the single classi�er based on MODLEM induced rule. In Table 2 we show two
variants: abstaining (i.e., classi�cation without partial matching) and no abstain
(use of complete strategies with partial matching). The second experiment con-
cerns using abstaining inside ensembles of MODLEM based classi�ers. Results
of this experiment are presented in Tables 3 and 4.

We use a statistical approach to compare di�erence in performance between
classi�ers in variants which we mentioned above. First, we apply Friedman test
to globally compare performance of four di�erent classi�ers on multiple data
sets [7]. The null-hypothesis in this test is that all compared classi�ers perform
equally well. It uses ranks of each of classi�ers on each of the data sets. The lower
rank, the better classi�er. We started from analyzing results of single MODLEM

1 see http://www.ics.uci.edu/ mlearn/MLRepository.html



Table 2. Accuracy of a single classi�er with di�erent classi�cation strategies.

Data set
Classi�cation strategy

Discrimination measure Rule support
abstain no abstain abstain no abstain

breast-w 92.73±1.00 (3) 94.71±0.67 (1) 92.53±1.06 (4) 93.88±0.70 (2)

bupa 59.88±2.00 (4) 66.96±2.64 (2) 60.41±1.70 (3) 68.35±1.95 (1)

credit-german 62.72±1.41 (4) 68.26±1.51 (2) 63.56±1.51 (3) 71.26±0.92 (1)

crx 77.28±0.87 (4) 81.97±1.22 (2) 77.33±0.76 (3) 83.33±0.90 (1)

diabetes 64.17±1.29 (3) 70.73±0.90 (2) 63.85±1.12 (4) 71.20±0.87 (1)

ecoli 74.52±1.48 (3) 77.56±1.65 (1.5) 74.05±1.74 (4) 77.56±1.42 (1.5)

glass 62.71±2.18 (3) 70.28±2.10 (1) 61.96±2.60 (4) 70.09±1.72 (2)

heart-cleveland 71.42±2.03 (4) 76.83±1.71 (2) 71.75±2.09 (3) 77.76±1.79 (1)

hepatits 56.65±3.32 (3) 70.19±2.53 (2) 56.39±2.96 (4) 80.90±0.77 (1)

ionosphere 88.21±1.59 (3) 90.20±1.43 (2) 87.81±1.19 (4) 90.83±0.58 (1)

pima 64.87±1.32 (3) 71.95±1.41 (2) 64.61±0.88 (4) 72.01±0.98 (1)

sonar 67.21±2.16 (4) 75.77±3.38 (1) 67.79±1.72 (3) 75.00±1.01 (2)

vehicle 66.50±0.80 (3) 71.39±1.03 (1) 66.19±1.04 (4) 67.54±1.06 (2)

vowel 75.076±0.67 (3) 75.80±0.57 (2) 74.63±0.84 (4) 76.14±0.76 (1)

average rank 3.36 1.68 3.64 1.32

classi�ers presented in Table 2. Friedman statistics for these results gives 59.59
which exceeds the critical value 2.84 (for con�dence level 0.05). We follow the
same procedure with results of bagging presented in Table 3 and results of Ivotes
presented in Table 4. In case of bagging, Friedman statistics gives 6.03. In case of
Ivotes, Friedman statistics gives 2.47. Thus, we can reject the null hypothesis, at
given con�dence level 0.05, for single classi�er and bagging. On the other hand,
the value of Friedman statistic for Ivotes is close to critical value (p-value for this
test is 0.076). We have not presented complete post-hoc analysis of di�erences
between classi�ers. However, we show the average ranks of each of classi�ers in
tables. The results of Friedman test and observed di�erences in average ranks
between classi�ers allow us to state that there is a signi�cant di�erence between
them.

We continue our comparison with examination of importance of di�erence in
classi�cation performance between each pair of classi�ers. We apply Wilcoxon
test [7] with null-hypothesis that the medians of results on all data sets of the
two compared classi�ers are equal. Let us remark, that in the paired tests ranks
are assigned to the value of di�erence in accuracy between compared pair of
classi�ers. When we apply this test to results of single MODLEM classi�ers,
it detects statistically important di�erence in pairs between classi�ers that ab-
stain and those that does not (p-values for both classi�cation strategies are
around 0.0001). In case of bagging, Wilcoxon test indicates an important di�er-
ence between classi�ers that abstain regardless of classi�cation strategy and this
that use discrimination measure while not abstaining (p-values in this case are



Table 3. Comparison of using di�erent classi�cation strategies in Bagging.

Data set
Classi�cation strategy

Discrimination measure Rule support
abstain no abstain abstain no abstain

breast-w 96.28±0.52 (1) 96.17±0.28 (2) 96.08±0.45 (3) 95.34±0.29 (4)

bupa 73.28±1.15 (3) 73.51±1.74 (2) 73.10±1.57 (4) 74.67±0.75 (1)

credit-german 76.10±0.99 (2) 75.26±0.74 (4) 76.30±0.55 (1) 75.50±0.45 (3)

crx 86.35±0.25 (1) 85.54±0.42 (4) 86.26±0.17 (3) 86.32±0.30 (2)

diabetes 75.05±0.68 (3) 75.00±0.44 (4) 75.36±0.71 (1) 75.26±0.68 (2)

ecoli 84.29±0.35 (2) 82.56±0.30 (3) 84.70±0.24 (1) 81.01±0.29 (4)

glass 77.29±1.09 (2) 75.98±1.05 (3.5) 77.38±1.44 (1) 75.98±1.27 (3.5)

heart-cleveland 80.92±1.44 (3) 80.40±1.87 (4) 81.19±0.86 (2) 81.52±1.52 (1)

hepatits 81.42±1.89 (3) 77.81±1.90 (4) 81.68±2.26 (2) 82.19±1.33 (1)

ionosphere 93.33±0.39 (2) 92.54±0.71 (4) 93.50±0.38 (1) 93.22±0.33 (3)

pima 75.47±0.62 (3) 74.92±0.78 (4) 75.91±0.83 (1) 75.76±0.63 (2)

sonar 83.56±0.71 (2.5) 83.56±1.23 (2.5) 84.04±0.64 (1) 81.73±1.43 (4)

vehicle 75.67±0.70 (1) 75.08±0.66 (3) 75.53±0.80 (2) 72.70±0.57 (4)

vowel 94.34±0.26 (1.5) 88.18±0.55 (4) 94.34±0.18 (1.5) 91.86±0.19 (3)

average rank 2.14 3.43 1.75 2.68

around 0.005). A di�erence is also reported between abstaining classi�er that use
rule support and the one that is not abstaining and use rule support (p-value
0.058). Moreover, there is a statistically important di�erence between abstaining
classi�er that use discrimination measure and abstaining classi�er that use rule
support (p-value equal to 0.043). In case of examining Ivotes results, the situa-
tion is slightly di�erent. In this case, statistically important di�erences are found
only when abstaining classi�ers that use discrimination measure are compared
in pairs with not abstaining classi�ers (p-value around 0.05).

5 Conclusions

Let us summarize results of experiments. First of all, we conclude that in-
troducing abstaining of classi�ers by excluding partial matching for rule sets
has improved the total accuracy of the ensemble. However, the statistical anal-
ysis clearly shows that the range of this improvement depends on the type of
ensemble and classi�cation strategy.

First, we conclude that classi�cation improvements are more signi�cant for
bagging than for Ivotes. This conclusion is further con�rmed by values of average
ranks. We can attribute this e�ect to the adaptive nature of Ivotes. In impor-
tance sampling consecutive classi�ers should be more focused on learning objects
misclassi�ed by classi�ers constructed in previous iterations. This may reduce
the e�ect of abstaining. We suspect that similar behavior may be observed for
other boosting approaches. On the other hand, in bagging, classi�ers are con-
structed on independent samples. Moreover, each of the classi�ers is constructed



Table 4. Comparison of using di�erent classi�cation strategies in Ivotes.

Data set
Classi�cation strategy

Discrimination measure Rule support
abstain no abstain abstain no abstain

breast-w 96.76±0.13 (1) 96.33±0.24 (2) 95.80±0.24 (3) 95.18±0.36 (4)

bupa 72.08±1.43 (3) 71.30±0.63 (4) 72.17±0.47 (2) 73.82±1.98 (1)

credit-german 75.37±0.09 (3) 75.87±0.21 (1) 75.67±0.25 (2) 75.23±0.76 (4)

crx 86.33±0.14 (2) 86.28±0.48 (3) 85.99±1.20 (4) 86.71±0.60 (1)

diabetes 75.74±0.93 (2) 75.17±0.32 (3.5) 75.17±0.12 (3.5) 76.13±0.37 (1)

ecoli 84.42±1.25 (2) 83.43±0.70 (3) 85.32±1.38 (1) 81.55±0.24 (4)

glass 74.92±0.79 (2.5) 74.92±1.88 (2.5) 75.08±1.23 (1) 73.52±2.10 (4)

heart-cleveland 82.95±0.56 (1.5) 82.95±0.82 (1.5) 81.63±1.12 (1) 81.96±2.02 (3)

hepatits 84.09±0.80 (2) 75.27±1.69 (4) 84.95±0.80 (1) 82.15±0.80 (3)

ionosphere 93.16±0.23 (3) 92.78±0.59 (4) 93.73±0.23 (1) 93.45±0.23 (2)

pima 76.22±0.75 (1) 75.56±0.06 (4) 75.91±0.38 (2) 75.82±0.85 (3)

sonar 79.49±1.26 (2) 78.37±3.74 (3) 79.65±1.94 (1) 76.60±1.63 (4)

vehicle 74.23±0.60 (3) 74.55±0.20 (2) 75.14±0.22 (1) 73.68±0.15 (4)

vowel 91.78±0.50 (1) 86.13±0.62 (4) 91.58±0.98 (2) 91.18±0.59 (3)

average rank 2.07 2.96 2.04 2.93

separately. Errors made by each of the component classi�ers in learning phase do
not a�ect the other classi�ers. This makes the e�ects of abstaining more visible
as it is not compensated during learning.

Although the aim of our experiment was not to compete with other rule
ensembles, we also refer our best results against literature results of SLIPPER
and other variants of bagging with rules [4, 12], noticing comparable accuracy.

Analysing the results of using classi�cation strategies, with discrimination
measures or rule support, we claim that abstaining helped for both of them.
The advantage depends on the particular ensemble. Generally speaking, Grzy-
mala's strategy with rule support is a bit more e�ective, in particular for bagging.
However, the other strategy also works surprisingly well in abstaining ensembles.
Although its classi�cation performance is worse than for using rule support, the
di�erence of accuracies between variants with and without abstaining mecha-
nism are larger than for the strategy with rule support. We can interpret it by
speci�city of evaluating discrimination measures. For unprunned sets of rules,
which is a case in our experiment, the values of this measures are very similar
among rules (most of them equal to 1). So the matching strategy is not powerful,
as just counts nearly equally important rules. In the other strategy values of rule
support are strongly diversi�ed and may more contribute to class prediction. We
also noticed that this di�erence much in�uences the performance of the single
classi�er (see Table 2) where the partial matching signi�cantly improved the
accuracy, however, using rule support is de�nitely more e�ective.

Finally, in our experiments we also recorded the average number of classi�ers
that refrain from predictions. We can conclude that for data sets, where abstain-



ing has improved accuracy, the number of these abstaining classi�ers is not very
high � on average usually between 2 and 4 classi�ers (e.g., with respect to 20
components in bagging). This observation can lead us to a research question
whether it is worth to further increase the level of abstaining. In our framework,
it is possible to modify multiple matching part of classi�cation strategy and
produce unknown answer in case of uncertainty between two competitive class
assignments. This could be a topic of future research.
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