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Abstract. Roughly Balanced Bagging is based on under-sampling and
classifies imbalanced data much better than other ensembles. In this
paper, we experimentally study its properties that may influence its good
performance. Results of experiments show that it can be constructed
with a small number of component classifiers, which are quite accurate,
however, of low diversity. Moreover, its good performance comes from
its ability to recognize unsafe type of minority examples better than
other ensembles. We also present how to improve its performance by
integrating bootstrap sampling with random selection of attributes.

Keywords: class imbalance, ensembles, Roughly Balanced Bagging, types
of minority examples

1 Introduction

Learning classifiers from imbalanced data still reveals research challenges. How-
ever, di±culties are not caused by the unbalanced class cardinalities only. De-
terioration of classification performance arises when other data di±culty factors
occur together with the class imbalance ratio, such as decomposition of the mi-
nority class into rare sub-concepts, too extensive overlapping of decision classes
or presence of minority examples inside the majority class regions [9, 13].

Several methods have been introduced to deal with imbalanced data; for
their review see, e.g., [5]. New specialized ensembles are able to handle complex
imbalanced distributions better than simpler approaches; see their review in [4,
12]. They are usually modifications of bagging or boosting and either employ
pre-processing methods before learning component classifiers or embed the cost-
sensitive framework in the learning process. However, the comparative studies
of new ensembles are still too limited. Studies [1, 4, 10] have showed that exten-
sions of bagging work better than generalizations of boosting and more complex
solutions. The recent study [2] demonstrated that Roughly Balanced Bagging [6]
has achieved the best results and is significantly better than other over-sampling
extensions of bagging.

The key idea behind Roughly Balanced Bagging is a specific random under-
sampling before generating component classifiers, which reduces the presence of
the majority class examples inside each bootstrap sample. Although this ensem-
ble has been successfully used in several papers, there are not enough attempts
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to check which of its characteristics are the most crucial for improving classi-
fication of complex imbalanced data. In our opinion, its properties should be
examined more precisely.

The aim of this paper is to experimentally study the following issues: (1) the
most influential aspects of constructing Roughly Balanced Bagging and its main
properties (with respect to bootstrap construction, deciding on the number of
component classifiers, their diversity, methods for aggregating predictions); (2)
abilities of this ensemble to deal with diÆerent types of di±cult distributions of
the minority class; (3) directions for its further extension and improvements.

2 Related Works

For the reviews of ensembles dedicated for class imbalance consult [4, 5, 12].
Galar et al. in [4] distinguish mainly cost-sensitive approaches vs. integrations
with data pre-processing. Below we briefly present under-bagging proposals only,
which are most relevant to our study.

Breiman’s algorithm for learning bagging samples a number of subsets from
the training set, builds multiple base classifiers and aggregates their predictions
to make a final decision. Bootstraps are generated by uniform random sampling
with replacement of instances from the original training set (usually keeping the
size of the original set). However, as this sampling is performed on all data ele-
ments, regardless their class labels (majority or minority), the imbalanced class
distribution will be hold in each bootstrap and the ensemble will fail to su±-
ciently classify minority class. Most of current proposals overcome this drawback
by applying pre-processing techniques to each bootstrap sample, which change
the balance between classes – usually leading to the same, or similar, cardinality
of the minority and majority classes. For instance, the over-sampling methods
typically replicate the minority class data (either by random sampling or gener-
ating synthetic examples) to balance bootstraps.

In under-bagging the number of the majority class examples in each bootstrap
is randomly reduced to the cardinality of the minority class (N

min

). In the
simplest proposals, as Exactly Balanced Bagging, the entire minority class is just
copied to the bootstrap sample and then combined with the randomly chosen
subset of the majority class to exactly balance cardinality between classes.

While such under-bagging strategies seem to be intuitive and work e±ciently
in some studies, Hido et al. [6] have claimed that they do not truly reflect the phi-
losophy of bagging and could be still improved. In the original bagging the class
distribution of each sampled subset varies according to the binomial distribution
while in the above under-bagging each subset has the same class distribution as
the desired balanced distribution. In Roughly Balanced Bagging (RBBag) the
numbers of instances for both classes are determined in a diÆerent way by equal-
izing the sampling probability of each class. The number of minority examples
(S

min

) in each bootstrap is set to the size of the minority class N
min

in the
original data. In contrast, the number of majority examples is decided prob-
abilistically according to the negative binomial distribution, whose parameters
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are the number of minority examples (N
min

) and the probability of success equal
to 0.5. In this approach only the size of the majority examples (S

maj

) varies,
and the number of examples in the minority class is kept constant since it is
small. Finally, component classifiers are induced by the same learning algorithm
from each i bootstrap sample (Si

min

[Si

maj

) and their predictions form the final
decision with the equal weight majority voting.

Hido et al. compared Roughly Balanced Bagging with several algorithms
showing that it was better on G-mean and AUC measures [6]. The study [10]
demonstrated that under-bagging, including RBBag, significantly outperformed
best extensions of boosting and the diÆerence was more significant when data
were more noisy. The results of [2] showed that Roughly Balanced Bagging was
significantly better than best oversampling extensions of bagging and usually
better than Exactly Balanced Bagging. These experiments also supported us-
ing sampling with replacement in RBBag – so, we will also use it in further
experiments. However, there are not so many attempts to either to experimen-
tally examine properties of this ensemble or to more theoretically explain why
and when it should outperform other methods. Only the work [16] provides a
probabilistic theory of imbalance and its reference to under-sampling classifiers.

3 Studying the Role of Components in Roughly Balanced

Bagging

The first part of experiments aims at studying the following basic properties
of constructing Roughly Balanced Bagging, which have not been studied in the
literature yet: (1) Using diÆerent learning algorithms to built component clas-
sifiers; (2) The influence of the number of component classifiers on the final
performance; (3) The role of diversity of component classifiers.

We extend the previous implementation of RBBag done by L. Idkowiak for
the WEKA framework [2]. We choose 24 UCI datasets which have been used
in the most related experimental studies [3, 10, 13, 14]. They represent diÆerent
imbalance ratios and other data di±culty factors - so they constitute various
di±culty levels for ensembles [3, 14]. Moreover, we consider binary class versions
of these data as it is done in the related studies [4, 6, 10]. For their detailed
characteristics the reader is referred to [3].

The performance of ensembles is measured using: sensitivity of the minority
class (the minority class accuracy), its specificity (the majority classes accu-
racy), their aggregation to the geometric mean (G-mean) and F-measure. For
their definitions see, e.g., [5]. We have chosen these point measures, instead of
AUC as the most of considered learning algorithms produce deterministic out-
puts. These measures are estimated with the stratified 10-fold cross-validation
repeated several times to reduce the variance.

3.1 Choosing Algorithms to Learn Component Classifiers

The related works show that Roughly Balanced Bagging as well as other under-
sampling extensions of bagging are usually constructed with decision trees. In
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this study we check whether classification performance of this ensemble may
depend on using other learning algorithms. Besides J48 unpruned tree we con-
sidered Naive Bayes tree, rule algorithms – Ripper and PART, Naive Bayes clas-
sifiers and SVM – all available in WEKA. The RBBag ensemble was constructed
with diÆerent numbers (30, 50 and 70) of component classifiers.

Here, we summarize the Friedman test only. For all considered evaluation
measures we were unable to reject the null hypothesis on equal performance of
all versions of RBBag. For instance, average ranks in the Friedman test for G-
mean (the smaller, the better) were the following: SVM 4.1; Ripper 4.12; NBTree
4.4; J48tree/PART 4.5; NB 4.8. Quite similar rankings were obtained for other
measures. All these results did not show significant diÆerences of using any of
this algorithm inside RBBag.

Furthermore, for each single algorithm RBBag was significantly better than
its standard bagging equivalent (according to the paired Wilcoxon test).

3.2 The Influence of the Number of Component Classifiers

Related works showed that Roughly Balanced Bagging was used with rather a
high number of component classifiers. Hido et al. [6] tested it with 100 C4.5
trees. In the study [10] authors applied a dozen of components. Then, the study
[2] showed that it also performed well with 30, 50 or 70 classifiers. Thus, we have
decided to examine more systemically other (also smaller) sizes of this ensemble
and its influence on the final performance. We stayed with learning components
with J48 unpruned trees, and for each dataset we constructed a series of Roughly
Balanced Bagging ensembles increasing its size one by one - so the number of
component classifiers changed from 2 trees up to 100 ones.

For all considered datasets increasing the number of component classifiers
improves the evaluation measures up to the certain size of the ensemble. Then,
values of measures stay at a stable level or slightly vary around the certain
level. Due to page limits, in Fig. 1 we present the most representative changes
of G-mean values. Figures for few other datasets present similar trends.

What is even more surprised the RBBag ensemble achieves this good perfor-
mance for a relatively small number of component classifiers. For most datasets,
the stable highest value of G-mean is observed approximately between 10 and
15 trees. In case of the sensitivity or F-measure we noticed similar tendencies.

Moreover, we decided to examine confidence of the final decision of RBBag.
We refer to a margin of the ensemble prediction. For standard ensembles, it
is usually defined as a diÆerence between the number of votes of component
classifiers for the most often predicted class label and the number of votes for the
second predicted label. Here, we modified it as: marg = (n

cor

°n
incor

)/n
cptclas

,
where n

cor

is the number of votes for the correct class, n
incor

is the number of
votes for the incorrect class and n

cptclas

is the number of component classifiers in
the ensemble. The higher absolute value of marg is interpreted as high confidence
while values closer to 0 indicate uncertainty in making a final decision for a
classified instance. In Fig 2 we present a representative trend of changes of the
relative margin with the size of RBBag for ecoli and cmc data. For many other
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Fig. 1. G-mean vs. a number of component classifiers in RBBag for selected datasets.

datasets the trend line of the margin also stabilizes after a certain size (Note the
resolution of the margin scale is more detailed than G-mean, so margin values
achieve a satisfactory level also quite fast). We can conclude that the good
performance of Roughly Balanced Bagging comes from rather a small number
of component classifiers.
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Fig. 2. G-mean and margin vs. a number of component classifiers in RBBag for cmc

(left) and ecoli (right) datasets.

3.3 Diversity of Component Classifiers

The final accuracy of ensembles may be also related to their diversity - which is
usually understood as the degree to which component classifiers make diÆerent
decisions on one problem (in particular, if they do not make the same wrong
decisions). Although, such an intuition behind constructing diverse component
classifiers is present in many solutions, research concerns the total accuracy per-
spective [11]. It is still not clear how diversity aÆects classification performance
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especially on minority classes. The only work on ensembles dedicated for im-
balance data [17] does not provide a clear conclusion. Its authors empirically
studied diversity of specialized over-sampling ensembles and noticed that larger
diversity improved recognition of the minority class, but at the cost of deterio-
rating the majority classes. However, nobody has analysed diversity of Roughly
Balanced Bagging.

To evaluate diversity we calculated the disagreement measure [11]. For a pair
of classifiers it is defined as a ratio of the number of examples on which both
classifiers make diÆerent predictions to the number of all classified examples.
This measure is calculated for each pair of component classifiers. Then the global,
averaged disagreement D of an ensemble is averaged over all pairs of classifiers.
The larger its value is, the more diverse classifiers are [11]. We calculated the
global average disagreement D for predictions in both classes and also for the
minority class only (denoted as D

min

). These values are presented in Table 2 -
two first columns for RBBag ensemble and next columns refer to its extension
discussed in Sec. 5 – both ensembles were constructed with 30 component J48
trees. As this table concerns further extension of RBBag for a higher number of
attributes, the list of datasets is reduced.

Notice that values of disagreement measures are relatively low. For nearly
all datasets they are between 0.1 and 0.3. The small diversity concerns both
class predictions (D) and minority class (D

min

), although D
min

is usually lower
than D. Similar low values occurred for the remaining datasets, not included in
Table 2. We also checked that changing the number of component classifiers in
RBBag did not influence values of the disagreement measures.

To sum up, the high accuracy of Roughly Balanced Bagging is not directly
related to its higher diversity. We have also analysed predictions of particular
pairs of classifiers and noticed that they quite often make the same decisions
(most often correct ones).

4 Influence of the Type of Examples

According to Napierala and Stefanowski [13, 14] the data di±culty factors con-
cerning distributions of imbalanced classes can be modeled by the following types
of examples: safe examples (located in the homogeneous regions populated by
examples from one class only); borderline (placed close to the decision boundary
between classes); rare examples (isolated groups of few examples located deeper
inside the opposite class), or outliers. Following the method introduced in [13]
the type of example can be identified by analysing class labels of the k-nearest
neighbours of this example. For instance, if k = 5, the type of the example is
assigned in the following way [13, 14]: 5:0 or 4:1 – an example is labelled as safe
example; 3:2 or 2:3 – borderline example; 1:4 – labelled as rare example; 0:5 –
example is labelled as an outlier. This rule can be generalized for higher k val-
ues, however, results of recent experiments [14] show that they lead to a similar
categorization of considered datasets. Therefore, in the following study we stay
with k = 5.
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Repeating conclusions from experimental studies [13, 14] the most of datasets
considered in this paper contain rather a small number of safe examples from the
minority class. The exceptions are two datasets composed of many safe examples:
new-thyroid, and car. Many datasets such as cleveland, balance-scale or
solar-flare do not contain any safe examples but many outliers and rare cases.

In the current experiments we identified a type of the testing example and
recorded whether it was correctly classified or not. Additionally, we refer types
of examples in both (minority and majority) classes to the relative margins of
the RBBag predictions (these are presented as histograms of numbers of testing
examples with a given value of the margins). In Fig 3 and 4 we present a rep-
resentative results of RBBag and the standard bagging for cleveland dataset.
Histograms for other datasets present similar observations.

Fig. 3. Histogram of RBBag margins for cleveland dataset with respect to a class and
a type of example. Blue vertical line shows the value of the margin’s median.

Notice that RBBag quite well recognizes the borderline examples from the
minority class. Rare minority examples are more di±cult, however, on average
RBBag can still recognize many of them. It classifies them much better than the
standard bagging. Outliers are the most di±cult, but RBBag classifies correctly
some of them and again this is the main diÆerence to standard bagging and other
its over-sampling extensions evaluated in [3]. The similar tendency is observed
for other unsafe datasets which are not visualized due to page limits. If the
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Fig. 4. Histogram of standard bagging margins for cleveland dataset with respect to a
class and a type of example. Blue vertical line shows the value of the margin’s median.

dataset contains some safe minority examples, nearly all of them are correctly
classified with high margins.

On the other hand, for the majority class, one can notice that RBBag cor-
rectly classifies most of safe examples while facing di±culties with borderline
ones. It also holds for other non-visualized datasests (where the margin’s me-
dian for borderline majority examples is always worse than the median for bor-
derline minority examples). The majority class does not contain any rare or
outlying examples for nearly all considered datasets. For few exceptions, pima.
breast-cancer or cmc, these rare majority examples are misclassified with the
high negative margin.

In conclusion, we can hypothesize that Roughly Balanced Bagging improves
recognition of unsafe minority examples, but at the cost of worse dealing with
unsafe majority examples. However, as the number of unsafe examples is rela-
tively small in the majority class, the final performance of RBBag (e.g., averaged
by G-mean) is improved.

5 Applying Random Selection of Attributes

Although Roughly Balanced Bagging performs quite well, it can still be im-
proved. Here, we have focused on modifications of constructing bootstrap sam-
ples. Observations of rather limited diversity of RBBag components have led us
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to considering inspirations from earlier research on applying random attribute
selection while constructing component classifiers. Recall that Ho introduced in
[7] Random Subspace method (RSM) for highly dimensional data, where in each
iteration of constructing the ensemble a subset of all available attributes is ran-
domly drawn and a component classifier is built using only this subset. Then,
Breiman combined bootstrap sampling with random selection of attributes in
nodes of trees inside the Random Forest ensemble. Recent experiments of [12]
also demonstrated that combing re-sampling with Random Forests helps for class
imbalance. However, we are more interested in adapting Random Subspace into
the context of Roughly Balanced Bagging as it is a classifier independent strat-
egy. To best of our knowledge it has not been considered for RBBag yet. In the
only related work [8] authors successfully applied this method to SMOTE based
oversampling ensemble.

In our extension of RBBag, after sampling each bootstrap we randomly select
f attributes from the set of all attributes. Subsequently, we train base classifier
on a sample from which we removed not selected ones. We denote this extension
as RBBag+RSM.

Since RSM is a method designed for high-dimensional data, we have chosen
to our experiments only these datasets from earlier phases of experiments, which
contain more then 11 attributes. As this condition holds for 9 datasets only, we
added 4 new, high-dimensional imbalanced datasets from UCI repository. Fi-
nally, in this experiment we examine 13 following datasets: abdominal-pain (13
attributes), cleveland (13), credit-g (20), dermatology (35), hepatitis (19),
ionosphere (34), satimage (37), scrotal-pain (13), segment (20), seismic-
bumps (19), solar-flare (12), vehicle (18) and vowel (14).

We tested with J48 decision tree (without pruning) and SVM as base classi-
fiers. Following the literature review, we considered setting f parameter to d

p
F e,

dlog
2

F +1e and d1/
2

F e, where F is the total number of attributes in the dataset.
Due to space limit we present results only for J48 decision trees and f = d

p
F e,

since this parameter setting gives, on average, the highest increments.
We consider RBBag ensemble containing 30 component classifiers to be con-

sistent with earlier experiments, in particular on diversity. However, following
earlier observations, as e.g. [7], that randomization of attributes should increase
the variance of bootstrap samples, we compare RBBag against the new pro-
posed RBBag+RSM ensemble having also larger sizes (besides 30, also 50 and
70 components).

The values of G-mean and sensitivity are presented in Table 1. One can notice
increases of both measures, in particular RBBag+RSM with more trees. For
instance, the increase on sensitivity (abdominal-pain, hepatitis – above 6%)
and G-mean (abdominal-pain, hepatitis, scrotal-pain, seismic- bumps –
above 3%). We performed the paired Wilcoxon test to compare RBBag+RSM
against RBBag. With the confidence Æ = 0.05, RBBag+RSM is better on G-
mean for 50 (p = 0.007) and 70 (p = 0.003) trees and nearly for 30 trees (p =
0.054). Similar results of this text hold for the sensitivity measure. Thus, it is
better to construct RBBag+RSM with more trees than its RBBag equivalent.
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Sensitivity G-mean

RBBag RBBag+RSM RBBag RBBag+RSM

Dataset 30 30 50 70 30 30 50 70

abdominal-pain 0.7955 0.8523 0.8623 0.8563 0.8077 0.8336 0.8411 0.8358

cleveland 0.7067 0.6800 0.7117 0.7567 0.7161 0.6938 0.7197 0.7410

credit-g 0.6610 0.6493 0.6407 0.6540 0.6735 0.6930 0.6923 0.7007

dermatology 0.9900 1.0000 1.0000 1.0000 0.9868 0.9986 1.0000 1.0000

hepatitis 0.7500 0.8200 0.8267 0.8267 0.7663 0.8131 0.8113 0.8029

ionosphere 0.8553 0.8660 0.8737 0.8796 0.9063 0.9068 0.9104 0.9152

satimage 0.8690 0.8738 0.8720 0.8777 0.8727 0.8677 0.8678 0.8698

scrotal-pain 0.7400 0.7467 0.7560 0.7453 0.7484 0.7869 0.7846 0.7884

segment 0.9863 0.9918 0.9933 0.9930 0.9892 0.9945 0.9955 0.9953

seismic-bumps 0.6312 0.6624 0.6629 0.6612 0.6824 0.7103 0.7153 0.7124

solar-flare 0.8690 0.8450 0.8670 0.8670 0.8499 0.8351 0.8437 0.8458

vehicle 0.9688 0.9990 0.9990 0.9990 0.9525 0.9590 0.9588 0.9599

vowel 0.9667 0.9911 0.9911 0.9900 0.9623 0.9751 0.9766 0.9789

Table 1. Sensitivity and G-mean for Roughly Balanced Bagging (RBBag) and its
modification by random attribute selection (RBBag+RSM).

Additionally we calculated the disagreement measure for all examples (D)
and also the minority class (D

min

). The values presented in Table 2 are calcu-
lated for 30 trees. For reader convenience we present our results together with
diÆerence of disagreement between RBBag+RSM and original RBBag.

One can notice that Random Subspace method resulted in an increase of dis-
agreement on almost all data sets (except seismic-bumps). Interestingly, despite
a decline of the disagreement measure on this dataset we observed improvement
on both G-mean and sensitivity.

RBBag RBBag+RSM DiÆerence

Dataset D Dmin D Dmin D Dmin

abdominal-pain 0.1564 0.1310 0.2995 0.2580 0.1431 0.1269

cleveland 0.2807 0.2470 0.3506 0.3050 0.0700 0.0581

dermatology 0.0211 0.0162 0.1815 0.1384 0.1604 0.1222

credit-g 0.2648 0.2279 0.4075 0.3951 0.1427 0.1672

hepatitis 0.2476 0.2127 0.3156 0.2915 0.0680 0.0788

ionosphere 0.0733 0.0909 0.1158 0.1650 0.0424 0.0741

satimage 0.1549 0.1160 0.1782 0.1448 0.0233 0.0288

scrotal-pain 0.1871 0.1670 0.3522 0.3139 0.1651 0.1469

semgent 0.0168 0.0106 0.0659 0.0293 0.0491 0.0187

seismic-bumps 0.2891 0.2373 0.2470 0.2383 °0.0421 0.0010

solar-flare 0.1062 0.0999 0.2362 0.2395 0.1300 0.1396

vehicle 0.0592 0.0509 0.1461 0.0972 0.0869 0.0463

vowel 0.0461 0.0251 0.2126 0.0825 0.1665 0.0574

Table 2. Disagreement measures, calculated for examples from both classes (D) and
from the minority class only (Dmin), for Roughly Balanced Bagging (RBBag) and its
modification by random attribute selection (RBBag+RSM).

6 Discussion and Final Remarks

This study attempts to extend knowledge on properties of Roughly Balanced
Bagging, which is one of the most accurate ensemble dedicated for class imbal-
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ances. Our experiments show that it can be constructed with a relatively small
number of component classifiers (approx. 15 ones). It is an interesting observa-
tion, as this ensemble may require a heavy under-sampling. One could expect
that due to such strong changes inside distributions in bootstrap samples, their
variance will be high, and the ensemble should reduce it by applying many com-
ponents. However, the experimental results have showed that it is not a case.
Moreover, this can be a promising indication for mining complex, larger data and
for constructing this ensemble in an iterative way (starting from a smallest size
and stepwise adding a new component while testing it with the extra validation
set). According to other experiments the choice of the considered algorithms for
learning component classifiers does not influence the final performance of RBBag

Another discovery is quite low diversity of RBBag. We have also confirmed
it by calculating Q statistics diversity measure [11, 17]. Comparing it to ear-
lier results [2] we argue that RBBag is less diversified than over-bagging or
SMOTE-based bagging. On the other hand, RBBag is more accurate than these
more diversified ensembles. We have also checked that its components are quite
accurate and pairs of classifiers often make the same correct decisions. It may
open another research on studying the trade oÆ between accuracy and diversity
of ensembles for imbalanced data.

Studying the local recognition of types of classified examples shows that
RBBag improves classification of unsafe minority examples. Its power for deal-
ing with borderline, rare and outlying examples distinguishes it from other en-
sembles. Here, we recall experiments from [3], which were focused on analysing
distributions of example types in bootstraps. Their results revealed that several
unsafe minority examples from the original data were changed by RBBag boot-
strap sampling into safer ones which was not a case for other bagging extensions.

In this study we advocate for further modifications of bootstrap sampling.
Our experiments have demonstrated that an integration of random selection of
attributes improves the classification performance. However, other modifications
could be still considered. In [3] we have already introduced Nearest Balanced
Bagging which exploits information on types of minority examples and directs
sampling towards the more unsafe examples. Although its experimental results
are encouraging (for some datasets even better than RBBag) it generates boot-
strap samples containing more minority examples than majority ones. Thus, it
may be still shifted too much to improving sensitivity at the cost of removing
too many majority examples. Recall that experiments from Sec. 4 have shown
that RBBag also improves recognition of unsafe minority examples while wors-
ening classification of borderline majority examples. Considering diÆerent types
of examples from both classes while modifying bootstrap sampling in Roughly
Balanced Bagging is still an open challenge.

Furthermore, a decomposition of classes into sub-concepts [9] could be con-
sidered. In [15] authors applied k-means clustering to stratify sampling majority
examples inside their modifications of standard bagging. Looking for another
semi-supervised clustering to better handle complex boundaries of data distri-
butions could be yet another direction for future research.
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