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Abstract

Various approaches to extend bagging ensembles for class imbalanced data are considered. First, we review known extensions
and compare them in a comprehensive experimental study. The results show that integrating bagging with under-sampling is more
powerful than over-sampling. They also allow to distinguish Roughly Balanced Bagging as the most accurate extension. Then, we
point out that complex and difficult distribution of the minority class can be handled by analyzing the content of a neighbourhood
of examples. In our study we show that taking into account such local characteristics of the minority class distribution can be
useful both for analyzing performance of ensembles with respect to data difficulty factors and for proposing new generalizations
of bagging. We demonstrate it by proposing Neighbourhood Balanced Bagging, where sampling probabilities of examples are
modified according to the class distribution in their neighbourhood. Two its versions are considered: the first one keeping a larger
size of bootstrap samples by hybrid over-sampling and the other reducing this size with stronger under-sampling. Experiments prove
that the first version is significantly better than existing over-sampling bagging extensions while the other version is competitive to
Roughly Balanced Bagging. Finally, we demonstrate that detecting types of minority examples depending on their neighbourhood
may help explain why some ensembles work better for imbalanced data than others.

1. Introduction

An analysis of challenging real-world classification problems
still reveals difficulties in finding accurate classifiers. One of the
sources of these difficulties is class imbalance in data, where at
least one of the target classes contains a much smaller num-
ber of examples than the other classes. For instance, in medi-
cal problems the number of patients requiring special attention
(e.g., therapy or treatment) is usually much smaller than the
number of patients who do not need it. Similar situations occur
in other problems, such as: fraud detection, risk management,
technical diagnostics, image recognition, text categorization or
information filtering. In all those problems, the correct recog-
nition of the minority class is of key importance. Nevertheless,
class imbalance constitutes a great difficulty for most learning
algorithms. Often the resulting classifiers are biased toward the
majority classes and fail to recognize examples from the minor-
ity class. As it turns out, even ensemble methods, where mul-
tiple classifiers are trained to deal with complex classification
tasks are not particularly well suited to this problem.

Although the difficulty with learning classifiers from imbal-
anced data has been known earlier from applications, this chal-
lenging problem has received a growing research interest in the
last decade and a number of specialized methods have already
been proposed, for their review see, e.g., [11, 17, 18, 40]. In
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general, they may be categorized into data level and algorithm
level ones. Methods within the first category try to re-balance
the class distribution inside the training data by either adding
examples to the minority class (over-sampling) or removing ex-
amples from the majority class (under-sampling). They also in-
clude informed pre-processing methods, as e.g. SMOTE [10]
or SPIDER [37].

The other category of algorithm level methods involves spe-
cific solutions dedicated to improving a given classifier. They
usually include modifications of the learning algorithm, its clas-
sification strategy or adaptation to the cost sensitive framework.
Within the algorithm level approaches, ensembles are also quite
often applied. However, as the standard techniques for con-
structing ensembles are rather too overall accuracy oriented
they do not sufficiently recognize the minority class and new
extensions of standard techniques have been introduced. These
new proposed solutions usually either employ pre-processing
methods before learning component classifiers or embed the
cost-sensitive framework in the ensemble learning process; see
their review in [13, 29]. Most of these ensembles are based on
known strategies from bagging, boosting or random forests.

Although the ensemble classifiers are recognized as a rem-
edy to imbalanced problems, there is still a lack of a wider
study of their properties. Authors often compare their pro-
posals against the basic versions of other methods or compare
over a too limited collection of data sets. Up to now, only
two quite comprehensive studies were carried out in different
experimental frameworks [13, 24]. The first study [13] cov-
ers comparison of 20 different ensembles from simple modifi-
cations of bagging or boosting to complex cost or hybrid ap-
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proaches. The main conclusion from this study is that simple
versions of under-sampling or SMOTE re-sampling combined
with bagging works better than more complex solutions. In
the second study [24], two best boosting and bagging ensem-
bles are compared over noisy and imbalanced data. The ex-
perimental results show that bagging significantly outperforms
boosting. The difference is more significant when data are more
noisy. The similar observations on good performance of under-
sampling generalizations of bagging vs. cost like generalization
of boosting have been recently reported in [2]. Furthermore,
the most recent chapter of [29] includes a limited experimen-
tal study showing that new ensembles specialized for class im-
balance should work better than an approach consisting of first
pre-processing data and then using standard ensembles.

Following these related works which show good performance
of bagging extensions for class imbalance vs. other boosting
like or cost sensitive proposals, we have decided to focus our
interest in this paper on studying more deeply bagging ensem-
bles and to look for possible other directions of their generaliza-
tions. First, we want to study behavior of bagging extensions
more thoroughly than it was done in [13, 24]. In particular,
Roughly Balanced Bagging [19] was missed in [13], although
it is appreciated in the literature. On the other hand, the study
presented in [24], was too much oriented on the noise level
and only two versions of random under-sampling in bagging
were considered. Therefore, we will consider a larger family of
known extensions of bagging. Our comparison will include:
Exactly Balanced Bagging, Roughly Balanced Bagging, and
more variants of using over-sampling in bagging, in particular,
a new type of integrating SMOTE.

While analyzing existing extensions of bagging one can
also notice that most of them employ the simplest random re-
sampling technique and, what is even more important, they
modify bootstraps to simply balance the cardinalities of minor-
ity and majority class. So, they represent a kind of a global
point of view on handling the imbalance ratio between classes.

Recent studies on class imbalances have shown that this
global ratio between imbalanced classes is not a problem itself.
For some data sets with high imbalance ratio, the minority class
can still be sufficiently recognized even by standard classifiers.
The degradation of classification performance is often linked to
other difficulty factors related to data distribution, such as de-
composition of the minority class into many rare sub-concepts
[23], the effect of too strong overlapping between the classes
[36, 16] or presence of too many minority examples inside the
majority class regions [32]. When these factors occur together
with class imbalance, they seriously hinder the recognition of
the minority class. In earlier research of Napierala and Ste-
fanowski on single classifiers [33] it has been shown that these
data difficulty factors could be at least partly approximated by
analyzing the local characteristics of learning examples from
the minority class. Depending on the distribution of examples
from the majority class in the local neighbourhood of the given
minority example, we can evaluate whether this example could
be safe or unsafe (difficult) to be learned. This local view on
distributions of imbalanced classes leads us to main aims of
this paper.

The main aim of our paper is to study usefulness of incor-
porating the information about the results of analyzing the lo-
cal neighbourhood of minority examples into two directions:
proposing new generalizations of bagging for class imbalance
and extending analysis of classifier performance over different
imbalanced data sets.

Following the first direction our aim is to propose extensions
of bagging specialized for imbalanced data, which are based
on a different principle than existing ones. Our new approach
is to resign from simple integration of pre-processing with un-
changed bootstrap sampling technique. Unlike standard boot-
strap sampling, we want to change probability of drawing dif-
ferent types of examples. We would like to focus the sampling
toward the minority class and even more to the examples lo-
cated in the most difficult sub-regions of the minority class.
The probability of each minority example to be drawn will de-
pend on the class distribution in the neighbourhood of the ex-
ample [33]. We plan to consider this modification of sampling
in two versions of generalizing bagging: (1) over-sampling one,
which replicates the minority examples and filters some ma-
jority examples to keep the size of a bootstrap sample larger,
similar to the size of the original data set; (2) under-sampling
one, which is following the idea of explored in Rough Balanced
Bagging, and Exactly Balanced Bagging. The under-sampling
modification constructs a smaller bootstrap with the size equal
to the double the size of the minority class. We plan to evaluate
usefulness of both versions in comparative experiments.

The next aim is to better explain differences in performance
of various generalizations of bagging ensemble. Current, re-
lated studies on this subject are based on a global view on se-
lected evaluations measures over many imbalanced data sets.
We hypothesize that it could be beneficial to differentiate be-
tween groups of data sets with respect to their underlying data
difficulty factors and to study differences in performance of
classifiers within these groups. We will show that it could be
done by analyzing contents of the neighbourhood of the exam-
ples as it leads to an identification of dominating types of dif-
ficulty for minority examples. Furthermore, we plan to study
more thoroughly contents of bootstrap samples generated by
the best performing extensions of bagging. This examination
will also be based on analyzing neighbourhood of the minority
examples. We will identify differences between bootstrap sam-
ples and the original data, and we will try to find a new view on
learning of these generalized ensembles.

To sum up, the main contributions of our study are the fol-
lowing. The first one is to study more closely the best known
extensions of bagging over a representative collection of im-
balanced data sets. Then, we will present a method for ana-
lyzing contents of the neighbourhood of the examples and to
discuss its consequences. The next methodological contribu-
tion is to introduce a new extension of bagging for imbalanced
data based on this analysis of a neighbourhood of each exam-
ple, which affects the probability of its selection into a bootstrap
sample. The new proposal will be compared against the best
identified extensions. Finally, we will use the same type of the
local analysis to explain differences in performance of bagging
classifier and to answer a question why contents of bootstrap
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samples in particular extension of bagging may lead to its good
performance.

2. Related Works on Ensembles for Imbalanced Data

Several studies have already investigated the problem of class
imbalance. The reader is referred to the recent book [18] for
a comprehensive overview of several methods and the current
state of the art in literature. Below we very briefly summarize
these methods only, which are most relevant to our paper.

First, we describe data pre-processing methods as they are
often integrated with many ensembles. The simplest data pre-
processing re-sampling techniques are random over-sampling,
which replicates examples from the minority class, and random
under-sampling, which randomly eliminates examples from the
majority classes until a required degree of balance between
classes is reached. However, random under-sampling may po-
tentially remove some important examples and simple over-
sampling may also lead to overfitting. Thus, focused (also
called informed) methods, which attempt to take into account
internal characteristics of regions around minority class exam-
ples, were introduced. Popular representatives of such methods
are OSS [25], NCR [27] for filtering difficult examples from
the majority class, as well as, SMOTE [10] for introducing ad-
ditional minority examples. SMOTE considers each example
from the minority class and generates new synthetic examples
along the lines between the selected example and some of its
randomly selected k-nearest neighbors from the minority class.
The number of generated examples depends on the main pa-
rameter of this method – an over-sampling ratio α. Although
its usefulness is experimentally confirmed [4], and SMOTE is
the most popular informed pre-processing method, some of as-
sumptions behind this technique are questioned and authors still
work on its extensions, see e.g. [31]. There also exits hybrid in-
formed methods which integrate over-sampling of selected mi-
nority class examples with removing the most harmful majority
class examples, e.g. SPIDER [37].

The proposed extensions of ensembles for imbalanced data
may be categorized differently. The taxonomy proposed by
Galar et al in [13] distinguishes between cost-sensitive ap-
proaches vs. integrations with data pre-processing. The
first group covers mainly cost-minimizing techniques com-
bined with boosting ensembles, e.g., like AdaCost, AdaC or
RareBoost. The second group of approaches is divided into
three sub-categories: Boosting-based, Bagging-based or Hy-
brid depending on the type of classical ensemble technique
which is integrated into the schema for learning component
classifiers and their aggregation. Liu et al categorize the en-
sembles for class imbalance into bagging-like, boosting-based
methods or hybrid ensembles depending on their relation to
standard approaches [29].

As the most of related works [2, 7, 13, 24, 29] indicate good
performance of bagging extensions versus the other ensembles,
below we focus on the bagging based ensembles and they are
further considered in our study.

Recall that original Breiman’s bagging [8] is an ensemble of
T base (component) classifiers induced by the same learning

algorithm from T bootstrap samples drawn from the original
training set. The predictions of component classifiers form the
final decision as the result of equal weight majority voting. The
key concept is a bootstrap aggregation, where the training set
for each classifier is constructed by random uniform sampling
(with replacement) instances from the original training set (usu-
ally keeping the size of the original set).

As the bootstrap sampling will not change drastically the
class distribution in the final training sample, it will be still bi-
ased toward the majority class. Most of proposals overcome
this drawback by applying pre-processing techniques, which
change the balance between classes in each bootstrap samples
– usually leading to the same, or similar, cardinalities of the
minority and majority classes.

In Underbagging approaches the number of the majority
class examples in each bootstrap sample is randomly reduced to
the cardinality of the minority class (Nmin). In the simplest pro-
posal, called Exactly Balanced Bagging (EBBag), while con-
structing training bootstrap sample, the entire minority class is
copied and combined with randomly chosen subsets of the ma-
jority class to exactly balance cardinalities between classes.

Another proposal Roughly Balanced Bagging (RBBag) re-
sults from the critique of the EBBag and other its variants,
which use exactly the same numbers of majority and minor-
ity examples in each bootstrap [19]. Instead of fixing the con-
stant sample size, it equalizes the sampling probability of each
class. For each of T iterations the size of the majority class in
the bootstrap (S ma j) is set according to the negative binominal
distribution. Then, Nmin examples are drawn from the minor-
ity class and S ma j examples are drawn from the entire majority
class using bootstrap sampling as in the standard bagging (with
or without replacement). The class distribution of the bootstrap
samples may be slightly imbalanced and varies over iterations.
According to [19], this approach is more consistent with the na-
ture of the original bagging, better uses information about the
minority examples and performs better than EBBag.

There are also other variants of underbagging (see section III
in [13] or section 4 in [29]), but we focus on the above ones
as they have performed better in related works. Another way
to overcame class imbalance in a bootstrap sample consists in
performing over-sampling the minority class before training a
component classifier. In this way, the number of minority ex-
amples is increased in each sample (e.g., by a random replica-
tion), while the majority class is not reduced as in underbag-
ging. Note that in overbagging more examples will take part
in at least one bootstrap sample but, due to their replication,
the size of bootstrap samples will be larger than in the stan-
dard bagging. This idea was realized in many ways as authors
considered integration with different over-sampling techniques.
Some of these ways are also focused on increasing diversity of
bootstrap samples. We present two approaches further used in
experiments.

OverBagging is the simplest version which applies a sim-
plest random over-sampling to transform each training boot-
strap sample. S ma j of minority class examples is sampled with
replacement to exactly balance the cardinality of the minority
and the majority class in each sample. Majority examples are
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sampled with replacement as in the original bagging.
Another approach is used in SMOTEBagging to increase di-

versity of component classifiers [39]. First, SMOTE is used in-
stead of the random over-sampling of the minority class. Then,
SMOTE resampling rate (α) is stepwise changed in each itera-
tion from smaller to higher values (e.g., from 10% till 100%).
The ratio defines the number of minority examples (α × Nmin)
to be additionally re-sampled in each iteration. Quite similar
way of varying ratio α to construct bootstrap samples is also
used in ”from underbagging to overbagging” ensemble also
mentioned in [39]. According to [13], SMOTEBagging gives
slightly better results than other good random re-sampling en-
sembles. However, our preliminary experiments in [7] have al-
ready shown that it is not as accurate and works similarly to
basic OverBagging. Now we want to check it more precisely in
experiment presented in section 3.

Finally, there exist two other variations of underbagging. The
method proposed by Chan and Stolfo partitions the majority
class into a set of non overlapping subsets, with each subset
having approximately Nmin examples [9]. Then, each of these
majority subsets and all examples from the minority class form
a bag for building component classifiers. The predictions of
these classifiers were originally combined by stacking although
Liu et al argued for switching to the majority voting [29]. The
other option is to construct Balanced Random Forests as a ex-
tension of classical Random Forests [12]. This algorithm first
draws with replacement a bootstrap sample containing Nmin

from the minority class and the same number of the majority
class examples. Then, the random tree procedure originating
from CART with random feature subset selection is used at each
tree split (it is the same solution as in the original Random For-
est). Liu et al in their experiments have noticed that it works not
as good as Chan and Stolfo’s method or Balance Cascade [29].

3. Comparison of Known Bagging Extension

In the first experiments we compare known best extensions
of bagging. All their implementations are done1 in Java for
WEKA framework. The following bagging variants are consid-
ered: Exactly Balanced Bagging (denoted further as EBBag),
Roughly Balanced Bagging (RBBag) as the best representa-
tives of under-sampling extensions, OverBagging (abbreviated
as OvBag) and SMOTEBagging (abbreviated as SmBag) for
over-sampling perspectives. In case of using SMOTE with
Bagging, following literature recommendations we choose 5
neighbours and oversampling ratio α was stepwise changed in
each sample starting from 10%. Moreover, we decide to use
SMOTE in yet another way. In the new ensemble, called Bag-
gingSMOTE (abbreviated BagSm), the bootstrap samples are
drawn in a standard way, and than SMOTE is applied to bal-
ance majority and minority class distribution in each bootstrap
sample (but with the same α ratio). We also include standard
bagging (abbreviated as Bag) as a baseline for the comparison.

1We are grateful to our Master students Lukasz Idkowiak and Marcin Szajek
for their help in implementing these algorithms

Table 1: Data characteristics
Data set # examples # attributes Minority class IR
breast-w 699 9 malignant 1.90

abdominal-pain 723 13 positive 2.58
acl 140 6 1 2.5

new-thyroid 215 5 2 5.14
vehicle 846 18 van 3.25

car 1728 6 good 24.04
scrotal-pain 201 13 positive 2.41
ionosphere 351 34 b 1.79

pima 768 8 1 1.87
credit-g 1000 20 bad 2.33

ecoli 336 7 imU 8.60
hepatitis 155 19 1 3.84

haberman 306 4 2 2.78
breast-cancer 286 9 recurrence-events 2.36

cmc 1473 9 2 3.42
cleveland 303 13 3 7.66

hsv 122 11 4.0 7.71
abalone 4177 8 0-4 16-29 11.47

postoperative 90 8 S 2.75
solar-flareF 1066 12 F 23.79
transfusion 748 4 1 3.20

yeast 1484 8 ME2 28.10
balance-scale 625 4 B 11.76

Component classifiers in all ensembles are learned with C4.5
tree learning algorithm (J4.8), which uses standard parameters
except disabling pruning (following experiences from earlier
experiments as [37]). For all bagging variants, we test the fol-
lowing numbers T of component classifiers: 20, 50 and 100.
The results for T = 50 are slightly better than for T = 20, while
increasing T lead to similar general conclusions but introduces
additional computational costs. Thus is why we present detailed
results for T = 50 only, due to space limit.

We choose 23 real-world data sets representing different do-
mains, sizes and imbalance ratios and because they have been
used in most related experimental studies [4, 20, 24, 30]. Most
of them come from the UCI repository [3]. Three data sets
abdominal, hsv and scrotal-pain come from our medical
applications. For data sets with more than two classes, we chose
the smallest one as a minority class and combined other classes
into one majority class. The characteristics of data sets are pre-
sented in Table 1, where IR is the imbalance ratio defined as
Nma j

Nmin
. The data sets were ordered from the safest one, at the top

of Table 1, to the most unsafe at the bottom. This ordering re-
sults from the analysis of data set types presented in section 6.2.

The performance of bagging ensembles is measured using:
sensitivity of the minority class (the minority class accuracy), its
specificity (an accuracy of recognizing majority classes), their
aggregation to the geometric mean (G-mean) and F-measure
(referring to the minority class, and used with equal weights 1
assigned to precision and recall). For their definitions see, e.g.,
[18, 17, 22]. These measures are estimated with the stratified
10-fold cross-validation repeated ten times to reduce the vari-
ance. The average values of G-mean and sensitivity are pre-
sented in Tables 2 and 3, respectively. The differences between
classifier average results will be also analyzed using Fried-
man and Wilcoxon statistical tests. For their description see,
e.g., [22]. In all these tables the last row contains average ranks
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Table 2: G-mean [%] for known bagging extensions

Dataset Bag EBBag RBBag OvBag SmBag BagSm
breast-w 95.88 96.03 96.37 96.23 95.88 96.77

abdominal-pain 78.95 80.65 80.35 79.44 80.85 79.86
acl 88.18 90.71 89.35 88.35 88.64 87.81

new-thyroid 92.41 96.91 96.58 95.36 95.18 92.89
vehicle 93.91 94.58 95.44 94.61 94.34 94.20

car 84.53 96.73 96.58 95.29 95.26 95.18
scrotal-pain 70.75 73.18 75.65 72.01 70.42 70.68
ionosphere 88.96 90.44 90.67 90.47 90.30 90.26

pima 71.54 74.22 75.64 73.54 72.33 71.38
credit-g 63.98 65.82 67.82 71.75 80.68 66.11

ecoli 68.67 72.24 88.85 51.42 58.38 80.11
hepatitis 62.81 78.93 78.66 72.16 68.47 74.29

haberman 43.11 65.41 63.43 58.11 60.02 62.82
breast-cancer 54.30 58.82 59.37 56.17 52.57 57.25

cmc 52.76 64.61 65.27 59.95 57.74 62.77
cleveland 12.61 72.32 71.02 22.77 25.03 50.96

hsv 0.00 36.27 35.74 2.84 5.37 16.61
abalone 49.58 78.93 79.32 61.95 63.67 69.65

postoperative 1.99 24.97 34.03 15.01 1.57 11.55
solar-flare 13.70 85.39 83.21 58.07 55.04 54.40
transfusion 55.72 66.75 67.32 64.83 63.96 65.76

yeast 51.48 84.55 84.68 59.70 59.41 57.94
balance-scale 0.00 59.07 54.23 1.40 0.00 0.67
average rank 5.61 1.96 1.61 3.65 4.26 3.91

calculated as in the Friedman test – the lower average rank, the
better classifier.

Let us analyze first values of G-mean presented in Table 2.
In the test Friedman we reject the null hypothesis (p-value in
this case is smaller than 0.00001). Carrying out the Nemenyi
post-hoc analysis (critical difference CD = 1.61) shows that all
extensions, except SmBag, are significantly better than the stan-
dard version. Then both under-sampling extensions EBBag and
RBBag are significantly better than all over-sampling variants.
According to average ranks RBBag seems to be slightly bet-
ter than EBBag and this trend is even more visible for a higher
number of component classifiers, and using bootstrap sampling
with replacement. However, according to the paired Wilcoxon
test the null hypothesis on no significant difference between re-
sults of both ensembles cannot be rejected (p-value = 0.24).
While using SMOTE to over-sample the minority class, the new
integration BagSm performs better than the previously known
SmBag and OvBag (this is reflected by average ranks. How-
ever according to the Wilcoxon test BagSm is not so strongly
outperforming OvBag (p-value = 0.53) but it is significantly
better than SmBag (p-value = 0.009).

The similar analysis is carried out for the sensitivity measure,
which are presented in Table 3. The Friedman test allows us to
claim significance of differences between compared classifiers
(again with p-value, which is smaller than 0.00001). Nemenyi
post-hoc analysis (with the same critical difference CD = 1.61)
shows that both EBBag and RBBag lead to significantly better
sensitivity than all other bagging variants. According to average
ranks EBBag is only very slightly better than RBBag but the
paired Wilcoxon test indicates that differences between these
two classifiers are not significant (p-value = 0.24), while they
are both significantly better than all other variants. Again while

Table 3: Sensitivity [%] for known bagging extensions

Dataset Bag EBBag RBBag OvBag SmBag BagSm
breast-w 94.88 96.01 96.98 95.98 95.02 95.17

abdominal-pain 72.05 81.65 79.16 74.22 71.57 76.86
acl 83.33 93.33 89.00 85.00 85.00 85.83

new-thyroid 87.50 95.50 95.71 93.06 92.22 93.89
vehicle 91.29 91.16 97.04 93.46 92.14 94.97

car 73.97 100.00 100.00 92.62 92.54 92.13
scrotal-pain 58.11 73.78 75.59 65.89 58.56 58.56
ionosphere 81.79 85.73 85.24 84.70 83.70 83.76

pima 61.28 76.70 78.54 67.38 65.13 63.38
credit-g 48.89 72.50 68.13 60.83 71.67 63.11

ecoli 56.67 78.20 91.14 66.67 55.00 77.11
hepatitis 49.44 81.00 76.56 62.78 54.44 67.25

haberman 26.38 60.56 55.68 49.86 49.81 66.25
breast-cancer 35.93 56.06 57.41 44.91 34.35 50.05

cmc 36.67 66.61 64.50 46.47 40.05 53.10
cleveland 9.72 77.22 69.43 16.11 17.22 36.11

hsv 0.00 55.00 23.48 3.33 5.00 21.67
abalone 25.47 79.98 77.58 40.51 42.98 54.99

postoperative 1.67 27.22 22.08 11.67 1.11 8.89
solar-flare 7.00 86.00 85.12 42.17 37.33 34.40
transfusion 34.62 65.45 66.69 56.54 51.53 68.66

yeast 32.22 90.22 87.65 39.11 39.11 57.94
balance-scale 0.00 49.33 60.00 0.67 0.00 0.67
average rank 5.76 1.67 1.72 3.85 4.70 3.30

considering over-sampling generalization, the new integration
BagSm performs better than the previously known SmBag and
OvBag (this is reflected by average ranks and also the Wilcoxon
test BagSm vs OvBag (p-value = 0.023) and BagSm vs SmBag
(p-value = 0.002).

We also analyzed sampling with or without replacement.
Conclusions are not univocal. For best under-sampling vari-
ants like EBBag differences are insignificant while for over-
sampling standard replacement sampling works much better.

We skipped the presentation of F - measure due to space
limits. The results are quite similar to analyzing the sensitiv-
ity, i.e. the ranking of the methods is nearly the same (the
only difference is that RBBag is now better than EBBag). In
this case, RBBag with replacement is better than EBBag in the
Wilcoxon test (p-value = 0.038). Again, underbagging general-
izations are better than all overbagging (for instance, according
to the Wilcoxon test EBBag is better than BagSm with p-value
= 0.04).

To sum up these experiments we can conclude that a under-
sampling bagging extensions as EBBag and RBBag have out-
performed all over-sampling ensembles. The difference be-
tween them and the best oversampling bagging is much higher
than we could expected from the literature survey. Moreover, a
new over-sampling bagging variant, where SMOTE is applied
with the same over-sampling ratio, works better than the previ-
ously promoted SmBag applying different ratios [39].

If one should choose between under-sampling variants
EBBag and RBBag, we will rather promote Roughly Balanced
Bagging as its experimental evaluation is slightly better (in par-
ticular for the most important measure in our study - G-mean)
and its methodological principle are more consistent with the
bagging sampling paradigm. This is why, we will choose it for
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further experiments in section 6.

4. Studying Local Characteristics of Minority Examples

The further proposed extensions of bagging and method for
analyzing distributions of minority examples in data sets de-
scend from results of studying sources of difficulties in learn-
ing classifiers from imbalanced data. Notice first that although
many authors have experimentally shown that standard clas-
sifiers met difficulties while recognizing the minority class,
it has also been observed that in some problems character-
ized by strong class imbalance (e.g., new-thyroid data set
from [3]) standard classifiers are capable to be sufficiently accu-
rate. Therefore, the discussion of data difficulty in imbalanced
data still goes on, for its current review see, e.g., [30, 35, 38].

Several researchers have already hypothesized, that the class
imbalance ratio (i.e. cardinality of the majority class referred
to the total number of minority class examples) is not neces-
sarily the only, or even the main, problem causing the decrease
of classification performance and focusing only on this ratio
may be insufficient for improving classification performance.
In other words, besides the imbalanced ratio other data diffi-
culty factors may cause a severe deterioration of classification
performance.

The experimental studies by Japkowicz et al. on large collec-
tion of artificial data sets have clearly demonstrated that degra-
dation of classification performance is linked to the decompo-
sition of the minority class into many sub-parts containing very
few examples [21, 23]. They have shown that the minority class
does not form a homogeneous, compact distribution of the tar-
get concept but it is scattered into many smaller sub-clusters
surrounded by majority examples. In other words, minority
examples form, so called, small disjuncts, which are harder
to learn and cause more classification errors than larger sub-
concepts.

Other data factors related to the class distribution are linked
to the effect of too strong overlapping between minority and
majority class. Strong overlapping occurs frequently together
with class rarity. In [36], authors have generated many artificial,
numerical, data sets and basing on them they have shown that
increasing overlapping has been more influential than chang-
ing the class imbalance ratio. An analogous experiment, but
concerning six classifiers compared with more evaluation mea-
sures, has been carried out in [16] leading to similar conclu-
sions. However, these authors have also noticed the the lo-
cal imbalance inside overlapping area is more influential than
changing the global imbalance ratio. Finally, few researchers
have claimed that another data factor, which influences degra-
dation of classifiers performance on imbalanced data, is noisy
examples [1]. Experiments presented in [32] have shown that
single minority examples located inside the majority class re-
gions cannot be treated as noise since their proper treatment
by informed pre-processing may improve classifiers. In most
of these experiments researchers focused on studying a single
data difficulty factor only. Studies as [38] emphasize that sev-
eral data factors usually occur together for imbalanced data sets.

Although all of these studies give an insight into the impor-
tant aspects of imbalanced data distribution and sources of dif-
ficulties in learning classifiers in this setting, their conclusions
might not be easy to apply in the real-world settings. The main
problem is that it is not easy to identify different data factors in
the real-world data sets.

In our opinion one of the main conclusions from the studies
is that the global information about the data sets (mainly the
global imbalance ratio) is not so important as considering local
characteristics of the class distribution. Local characteristics
of learning examples could be modeled in different ways. Here,
we follow earlier works on specialized informed pre-processing
methods [25, 27, 37] and on other studies on the nature of im-
balanced data [32, 35]. We link data factors to different types of
examples forming the minority class distribution. What follows
is a differentiation between safe and unsafe examples.

Safe examples are ones located in the homogeneous regions
populated by examples from one class only. Other examples
are unsafe and more difficult for learning. Unsafe examples are
categorized into borderline (placed close to the decision bound-
ary between classes), rare cases (isolated groups of few exam-
ples located deeper inside the opposite class), or outliers. As
the minority class can be highly under-represented in the data,
we claim that the rare examples or outliers, could represent a
very small but valid sub-concepts of which no other representa-
tives could be collected for training. Therefore they cannot be
considered as noise examples which typically are then removed
or re-labeled. A similar opinion was also expressed in [25],
where authors suggested that minority examples should not be
removed as they are too rare to be wasted while majority ex-
amples could be removed. Moreover, earlier works of Napier-
ala with graphical visualizations of real-world imbalanced data
sets [33, 35] have confirmed usefulness of such a classification
of example types.

The next question is how to automatically and possibly sim-
ply identify these types of examples. We keep the hypotheses
[33] on role of the mutual positions of the learning examples in
the attribute space and the idea of assessing the type of exam-
ple by analyzing class labels of the other examples in its local
neighbourhood. Such a local neighbourhood of the minority
class example could be modeled in different ways. In further
considerations we will use an analysis of the class labels among
k-nearest neighbours following positive experiences with sin-
gle classifiers and pre-processing methods [33, 35]. Depending
on the number of examples from the majority class in the lo-
cal neighbourhood of the given minority class example, we can
evaluate whether this example could be safe or unsafe (difficult)
to be learned. If its all, or nearly all, neighbours belong the mi-
nority class, this example is treated as the safe example. On the
other hand, a minority example with all neighbours from the
majority class is clearly an outlier. Then, when the numbers of
neighbours from both classes are approximately the same, so
we assume that this example could be located close to the deci-
sion boundary between the classes. Finally, an example having
one minority neighbour and other majority ones is a candidate
for a rare case.

In general, constructing this type of the neighbourhood is re-
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lated with choosing the value of k and the distance function.
In further considerations we follow results of analyzing differ-
ent distance metrics [35] in the considered here method and
also more general experimental comparisons of several hetero-
geneous distances applied to k-NN classifier [28]. Following
these recommendations we choose the HVDM metric (Hetero-
geneous Value Difference Metric) [41]. It aggregates normal-
ized distances for qualitative and quantitative attributes. Com-
paring to other metrics it provides more appropriate handling of
qualitative attributes. Instead of simple value matching, HVDM
makes use of the class information to compute attribute value
conditional probabilities by using a Stanfil and Valtz value dif-
ference metric for nominal attributes [41]. For numeric at-
tributes, it uses a standardized Euclidean distance.

Considering the value of k, different values could be used
respect to particular data set characteristics. We will check
several values during further experiments to see their impact
on the types of minority examples and Neighbourhood Bal-
anced Bagging ensemble. However, as the distribution of the
minority class is ”difficult”, this class is often decomposed in
smaller sub-parts, and as our assumptions focus on quite local
neighbourhood for minority class example we claim that it is
reasonable to choose rather small values of k. Moreover one
can refer to some related experimental studies, as e.g. [5, 14]
containing systematic examinations of different values k over
many UCI imbalanced data sets, which concluded that for diffi-
cult data distributions and using HVDM, more local classifiers
(with smaller k values from 5 till 11) were recommended. Fi-
nally, following earlier experimental studies of Napierala [35]
we will start modeling the neighbourhood with k = 5, and ad-
ditionally examine higher values as 7 and 9.

Finally, we will repeat our hypothesis that the appropriate
treatment of these types of minority examples within new pro-
posal of classifiers should lead to improving classification per-
formance. Recall that it has been earlier observed by Ste-
fanowski for the informed pre-processing method SPIDER [37]
and in BRACID a novel rule induction algorithm [34] special-
ized for imbalanced data. Now, we want to introduce this way
of thinking on the local characteristics into designing new ex-
tensions of bagging ensemble.

5. Neighbourhood Balanced Bagging for Imbalanced Data

5.1. Motivations
Our aim is to show that the analysis of class distribution in

the neighbourhood of examples can be applied to propose a new
kind of generalizing bagging ensembles for imbalanced data.
Recall that existing approaches to generalize bagging treat all
learning examples in the same way while constructing boot-
strap samples. It results from the fact that these generalizations
do not change the standard bootstrap sampling technique. They
rather offer different ways to integrate bootstrap sampling with
various pre-processing techniques applied on constructed boot-
straps. For instance, over-sampling extensions relay on coping
randomly selected examples from the minority class. In such
a case, due to the global imbalance ratio, the amount of repli-
cation of minority examples may be quite large. One can ask

whether each minority example is equally important. Moreover,
one can ask whether drawing of minority examples should be
done in a blind way or whether it should be directed depend-
ing on the difficulty type of example. Earlier related works
on pre-processing methods for single classifiers have already
showed that plain random sampling is less efficient than in-
formed methods as, e.g., NCR [27], SMOTE [10] or SPIDER
[37]. Moreover focusing transformations around more unsafe
examples has been usually more beneficial then amplifying safe
minority examples, see e.g. the discussion in [17] or recent ex-
tensions of SMOTE [15]. Similar experiences with differenti-
ated role of learning examples have been reported as to edited
k-nearest neighbor classifier, and specialized methods integrat-
ing rule and instances representations for class imbalanced, as
e.g., BRACID [34].

Following these motivations, we present new generalizations
of bagging. In these propositions, we resign from treating all
minority examples in the same way. We focus bootstrap sam-
pling toward more difficult sub-regions of the minority class.
Our hypothesis is that by increasing probabilities of drawing
less safe types of the minority class examples and by decreas-
ing, at the same time, probabilities of drawing majority class
examples, we can modify the local characteristics of examples
in resulting bootstrap samples. This modification should lead to
bootstrap samples with more safe distribution of minority class
examples as compared to original learning set. In result, we ex-
pect component classifiers in constructed bagging ensembles to
be more likely to better learn the minority class.

Referring to experimental studies on the characteristics of
often tested UCI imbalanced data sets, see e.g. [35], and
also some results presented in section 6.2, one may notice that
the minority class distributions are generally quite unsafe with
many borderline examples or even outliers. Therefore, we think
that treating all minority examples in the same way and us-
ing only the global between class ratio to simply balance class
cardinalities inside bootstrap samples is less realistic and more
limited than applying local approaches presented in the previ-
ous section. We plan to consider both options of modifying
bagging which follows either increasing the cardinality of the
minority class or reducing the number of majority examples in
the bootstraps.

The first option is more similar to over-sampling minority
class inside the bootstraps, however, since it also decreases
chance for sampling majority examples it can also be seen as
a kind of hybrid approach. Within this proposal we would like
to keep the final size of the bootstrap similar to the cardinal-
ity of the original data set. We expect that this generalization
could be more accurate than existing over-sampling extensions
of bagging ensemble.

Considering the other option comes mainly from experimen-
tal studies, as presented in section 3 or [24], which show that
generalizations with under-sampling of majority classes are
more accurate than over-sampling based bagging ensembles.
This is why we would like to construct the bootstraps with the
size equal to double cardinality of the minority class inside the
original data. However, we think that for such bootstraps, being
much smaller than in other generalizations of bagging, it is par-
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ticularly interesting to check which minority examples should
be sampled. Recall that EBBag just copies all the content of the
minority class inside each bootstrap and even RBBag selects
around 66% examples from this class and randomly amplifies
some of these examples. Here we want to put a question on the
usefulness of a more informed sampling process which takes
into account the local characteristics of these examples.

5.2. Modification of Sampling Technique

The idea behind a new extension called Neighbourhood Bal-
anced Bagging (NBBag) is to focus sampling of bootstraps to-
ward these minority examples, which are hard to learn (i.e. un-
safe ones) while decreasing probabilities of selecting examples
from the majority class at the same time. The idea of chang-
ing sampling probabilities has been considered in our previous
work with applying bagging to noisy data and improving the
overall accuracy [6]. Here, we postulate another strategy to
change bootstrap samples, which is carried through a conjunc-
tion of modifications at two levels: global level (the whole data
set level) and local level (the example neighbourhood level).

At the first, global level, we attempt at increasing the chance
of drawing the minority examples with respect to the imbal-
ance ratio in the original data set. We implement it by changing
the probability of sampling of majority examples. More pre-
cisely, probability of sampling is, in our setting, proportional to
the weight that we associate with each learning example. First
we set weight p1

min for each minority example to 1. Then, we
downscale weight p1

ma j associated with sampling of each major-
ity example to Nmin

Nma j
, where Nmin, Nma j are numbers of examples

in the minority and majority class in the original data, respec-
tively. Intuitively, it could refer to the situation, where minority
and majority classes contain examples of the same type, e.g.,
safe ones, and the class distributions are not affected by other
data difficulty factors. Thus, this modification of probabilities
exploits information about the global between-class imbalance.

Recall that such a global balancing of bootstraps is not the
sufficient technique according to the experimental studies as
[7, 13, 24]. Moreover, most studied imbalance data sets con-
tain many unsafe minority examples while the majority classes
comprise rather safe ones, see e.g. [32]. This leads us to con-
sidering additional local level of modifying probabilities, which
is based on the analysis the local characteristics of examples.

This local level of modifying probabilities is intended to shift
sampling of minority examples to these unsafe examples that
are harder to learn. The extent to which a minority example is
unsafe may be quantified by analyzing its k-nearest neighbours
(with using HVDM distance metric as described in section 4).
We have decided to take a rather simple approach and to only
count the number of majority examples in the neighbourhood.
Then, partly inspired by earlier successful experiences with in-
formed pre-processing methods, we use a simple rule: the more
unsafe example, the more should be amplified probability of its
drawing. We also decide that the probability should be mono-
tonic with respect to the number of majority examples in the
neighbourhood. This leads to the following formula L2

min, which

defined as below, is either linear or exponential:

L2
min =

(N′ma j)
ψ

k
, (1)

where N′ma j is the number of examples in the neighbourhood,
which belong to the majority class; ψ is a scaling factor, which
in case of a linear amplification is set to 1. Although this factor
introduces a problem of parametrization, our intuition is that
it can be optimized depending on results of analyzing charac-
teristics of particular data set (see further analysis presented in
section 6.2). So, the value ψ may be increased, resulting in an
exponential amplification, if one wants to strengthen the role of
rare cases and outliers in bootstraps. We claim that this expo-
nential amplification may be beneficial for such data sets where
the analysis of types of examples indicates that the minority
class distribution is scattered into many rare cases or outliers,
and the number of safe examples is significantly limited. In
Figure 1 we present an illustration of different profiles repre-
senting amplifications of probability of selecting the minority
class with respect to a few selected values of ψ, which will be
further considered in experimental studies.

The formula L2
min requires re-scaling as it may lead to the

probability equal to 0 for completely safe examples, i.e., for
N′ma j = 0. We propose to re-formulate it as:

β × (L2
min + 1) (2)

where β is a technical coefficient referring to drawing a com-
pletely safe example. Intuitively, safe examples from both mi-
nority and majority classes should have the same probability of
being selecting to bootstraps. Setting β to 0.5 keeps this intu-
ition. Adding the 1 corresponds to a normalization of sampling
probabilities inside the conjunctive combination, if one expects
that for linear amplification pmin ∈ [0, 1] (pmin is weight of mi-
nority examples – see definition (3)).

Then, we hypothesize that examples from majority class are,
by default, not exactly balanced on the second, local level,
which is reflected by L2

ma j = 0. The intuition behind this hy-
pothesis is that examples from majority class, are more likely
to be safe (see the results of such analysis further presented in
section 6.2). Even when the hypothesis is false for some data, it
is still quite apparent that amplifying majority rare or outlying
examples, at this level, would interact with the amplification of
minority examples and increase difficulties of learning classi-
fiers from the minority classes.

Finally, local and global levels are combined by multiplica-
tion. This leads us to the final formulation of weights associated
with probability of selecting examples from minority and ma-
jority classes, respectively as:

pmin = p1
min × β(L2

min + 1) = (3)
= p1

min × 0.5(L2
min + 1) = 0.5(L2

min + 1),
pma j = p1

ma j × β(L2
ma j + 1) = (4)

= p1
ma j × 0.5 =

Nmin

Nma j
× 0.5,

resulting from L2
ma j = 0, and default β set to 0.5. Such a formu-

lation may be interpreted as amplification of chances to select
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Figure 1: L2
min weights depending on ψ.

●

●

●

●
●

●

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

N'maj

L2
m

in

● psi = 0.5
psi = 1
psi = 1.5
psi = 2

minority examples according to parameterized local factor L2
min

in combination with lowering chances to select majority exam-
ples according to imbalance rate in the whole data set.

Finally, we present the general schema of using these modifi-
cations of probability sampling in both types of Neighbourhood
Balanced Bagging, i.e., following the ideas of under-sampling
the majority class and the other, similar to over-sampling the
minority class (please see Algorithm 1).

6. Experimental Evaluation of NBBag

The first part of experiments is focused on an evaluation of
classification performance of Neighbourhood Balanced Bag-
ging (NBBag), and its comparison to known extensions of bag-
ging. The second part concerns an analysis of local character-
istics of different types of minority class examples in the boot-
strap samples produced by these extensions.

6.1. Evaluation of Bagging Extensions

We compare performance of NBBag with the best previ-
ously proposed extensions of bagging. Following our earlier
study [7], we choose Rough Balanced Bagging (RBBag) as
the best under-sampling extension. Since NBBag is consid-
ered in two variants: under-sampling and more following over-
sampling, we also include Overbagging (OvBag) and SMOTE-
Bagging (SmBag) in the comparison. All experiments have
been performed in the same setting as the ones presented in
Section 3.

We tested different sizes of neighbourhood for NBBag: k =

5, 7, 9 and 11. Their best performance depends on data set.
However in general, we have noticed that good performance
can be achieved for small neighborhoods for under-sampling,

Input : LS training set; TS testing set; CLA base classifier
learning algorithm; m number of bootstrap
samples; Nmin, Nma j size of minority and majority
class (respectively); L2

min minority class local
balancing weights;

Output: C∗ ensemble classifier

1 Learning phase;
2 if under-sampling then
3 n = 2 × Nmin ;
4 else
5 n = Nmin + Nma j ;

6 foreach x ∈ LS do
7 if x ∈ minority class then
8 w(x) = pmin = 0.5(L2

min + 1) ;
9 else

10 w(x) = pma j = Nmin
Nma j
× 0.5

11 for i := 1 to m do
12 S i = bootstrap sample of n examples from LS sampled

according to weights w ;
13 Ci := CLA (S i) {generate a base classifier} ;

14 Classification phase;
15 foreach x in TS do
16 C∗(x) := majority vote of Ci(x), where

i = 1, . . . ,m {the suggestion of the classifier for object
x is a combination of suggestions of component
classifiers Ci} ;

Algorithm 1: Neighbourhood Balanced Bagging Algorithm

and for over-sampling, regardless of the amount of amplifica-
tion applied to the weights of minority class examples (i.e.,
value of ψ scaling parameter). Thus, we present results only
for k = 5 - which is also consistent with a discussion from Sec-
tion 4.

We also checked the values of scaling factor ψ responsi-
ble for amplification of weights of minority class examples
in NBBag bootstrap sampling. More precisely, we applied
ψ = 0.5, 1, 1.5, 2, 4. The best value depends on data set. How-
ever, on the average the best results for over-sampling was
achieved for ψ = 2, and the best result for under-sampling was
achieved for, considerably lighter amplification, ψ = 0.5.

This is why due to space limits we present only results of
the best performing over-sampling NBBag: oNBBag2 (k =

5, ψ = 2), and the best performing under-sampling NBBag:
uNBBag0.5 (k = 5, ψ = 0.5).

The results of G-mean, sensitivity, and F-measure are pre-
sented in Tables 4, 5, and 6 respectively. Please note that, as
it was already done in section 3, data sets in the analyzed ta-
bles are ordered from the safest one to the most unsafe one. In
general, RBBag and uNBBag0.5 stand out as the best classifiers
in comparison on each of the presented measures. However,
comparison on F-measure does not show significant difference
between compared classifiers (p-value in Friedman test in this
case is 0.21). On the other hand, comparison on G-mean and
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sensitivity leads to significant differences discovered by Fried-
man test (p-values in both cases smaller than 0.00001). In fur-
ther analysis we focus more on G-mean (as this measure takes
into account classifier performance on both minority and ma-
jority classes, i.e., an increase of recognition of the minority
examples cannot be achieved at cost of a deterioration of the
majority class), and on sensitivity - which, on the other hand,
is the accuracy of minority class. In the following, we present
some more detailed observations from the experimental com-
parison.

Table 4: G-mean [%] of NBBag and other compared bagging ensembles
Dataset RBBag OvBag SmBag oNBBag2 uNBBag0.5

breast-w 96.37 96.23 95.88 96.14 96.32
abdominal-pain 80.35 79.44 80.85 80.82 81.11

acl 89.35 88.35 88.64 88.20 89.37
new-thyroid 96.58 95.36 95.18 97.02 96.49

vehicle 95.44 94.61 94.34 95.91 95.53
car 96.58 95.29 95.26 96.98 96.47

scrotal-pain 75.65 72.01 70.42 71.42 74.26
ionosphere 90.67 90.47 90.30 89.95 90.71

pima 75.64 73.54 72.33 72.30 74.80
credit-g 67.82 64.30 62.48 66.94 67.68

ecoli 88.85 71.75 80.68 86.74 88.44
hepatitis 78.66 72.16 68.47 75.33 79.81

haberman 63.43 58.11 60.02 48.65 64.28
breast-cancer 59.37 56.17 52.57 56.53 59.99

cmc 65.27 59.95 57.74 64.33 65.54
cleveland 71.02 22.77 25.03 65.75 74.29

hsv 35.74 2.84 5.37 30.43 43.62
abalone 79.32 61.95 63.67 76.25 79.59

postoperative 34.03 15.01 1.57 41.43 40.22
solar-flare 83.21 58.07 55.04 71.13 83.32
transfusion 67.32 64.83 63.96 39.56 66.60

yeast 84.68 59.70 59.41 74.86 84.57
balance-scale 54.23 1.40 0.00 61.07 32.76
average rank 1.87 4.00 4.39 3.09 1.65

For G-mean, uNBBag0.5 is the best classifier according to
average ranks (see Table 4). It is also significantly better than
all other classifiers except RBBag according to Nemenyi post-
hoc test (CD = 1.33). This result is confirmed by Wilcoxon
test (with p-values smaller than 0.01 in each case except com-
parison between uNBBag0.5 and RBBag). RBBag is better
than OvBag and SmBag according to Nemenyi, and better
than OvBag, SmBag and oNBBag2 in paired Wilcoxon test
(p-values smaller than 0.001 in this case). OvBag, SmBag,
and oNBBag2 are not significantly different with respect to
Nemenyi test but Wilcoxon test shows significant difference
in pairs between oNBBag2 and OvBag, as well as, SmBag.
The worst classifier is SmBag, which is consistent with con-
clusions from experiments in section 3. Some of the results on
G-mean require distinguishing since they are much better than
the results achieved by the other compared classifiers. These
are: oNBBag2 on postoperative, and balance-scale, and
uNBBag0.5 on cleveland, and hsv. It is also worth noting
that higher differences between classifiers are more visible for
more difficult (unsafe) data sets. This effect is observable as
one moves from the top of the tables to the bottom, since, as it
was mentioned earlier, data sets are ordered according to their
difficulty (which is explained in more detail in section 6.2).

Analyzing the recognition of the minority examples, i.e., the

Table 5: Sensitivity [%] of NBBag and other compared bagging ensembles
Dataset RBBag OvBag SmBag oNBBag2 uNBBag0.5

breast-w 96.68 95.98 95.02 96.35 96.72
abdominal-pain 79.16 74.22 71.57 80.99 82.08

acl 89.00 85.00 85.00 89.00 90.25
new-thyroid 95.71 93.06 92.22 96.00 95.43

vehicle 97.04 93.46 92.14 96.48 97.29
car 100.00 92.62 92.54 95.80 100.00

scrotal-pain 75.59 65.89 58.56 71.86 76.10
ionosphere 85.24 84.70 83.70 87.94 86.03

pima 78.54 67.38 65.13 85.07 81.53
credit-g 68.13 52.89 45.89 73.93 72.67

ecoli 91.14 60.83 71.67 84.29 91.71
hepatitis 76.56 62.78 54.44 69.38 79.06

haberman 55.68 49.86 49.81 87.28 62.22
breast-cancer 57.41 44.91 34.35 66.71 65.53

cmc 64.50 46.47 40.05 66.61 68.35
cleveland 69.43 16.11 17.22 54.57 76.29

hsv 23.48 3.33 5.00 13.57 39.29
abalone 77.58 40.51 42.98 65.70 79.76

postoperative 22.08 11.67 1.11 42.92 35.83
solar-flare 85.12 42.17 37.33 58.84 86.51
transfusion 66.69 56.54 51.53 92.08 74.33

yeast 87.65 39.11 39.11 59.22 88.63
balance-scale 60.00 0.67 0.00 72.45 98.78
average rank 2.43 4.22 4.78 2.15 1.41

sensitivity measure in Table 5, the best performing with respect
to the average ranks is again uNBBag0.5. Post-hoc Nemenyi
test divides classifiers in two groups: RBBag, oNBBag2, and
uNBBag0.5 are better than OvBag and SmBag. uNBBag0.5 is
significantly better than all classifiers except oNBBag2 in paired
Wilcoxon test (p-values lower than 0.001). It is also worth not-
ing that all the best results on sensitivity are achieved by either
oNBBag2 or uNBBag0.5 (with one shared best result between
RBBag and uNBBag0.5 for car).

Table 6: F-measure [%] of NBBag and other compared bagging ensembles
Dataset RBBag OvBag SmBag oNBBag2 uNBBag0.5

breast-w 94.72 94.83 94.56 94.43 94.60
abdominal-pain 69.83 70.20 74.23 70.16 70.38

acl 82.92 84.04 84.62 80.75 82.45
new-thyroid 91.70 92.03 92.71 93.26 91.82

vehicle 89.44 90.38 90.84 91.19 89.49
car 55.32 80.60 81.28 79.91 54.58

scrotal-pain 64.64 62.16 62.68 59.49 62.83
ionosphere 89.00 88.84 88.95 86.99 88.79

pima 68.54 66.24 64.75 66.21 67.93
credit-g 55.87 52.07 51.06 55.62 56.14

ecoli 59.56 56.64 64.70 60.96 57.64
hepatitis 61.24 59.19 56.52 57.98 62.33

haberman 47.86 42.51 44.95 44.82 48.72
breast-cancer 46.17 43.75 41.54 46.02 48.17

cmc 45.96 41.90 41.05 44.97 46.25
cleveland 36.66 15.21 17.35 34.79 39.33

hsv 11.13 1.33 3.89 7.61 14.70
abalone 39.34 42.34 43.55 44.15 38.37

postoperative 17.49 10.96 1.11 27.81 24.92
solar-flare 27.10 21.34 20.68 23.89 26.37
transfusion 49.54 47.81 47.89 40.24 48.99

yeast 25.08 38.70 37.06 38.24 24.25
balance-scale 15.80 0.51 0.00 19.52 15.86

average 2.61 3.43 3.30 3.09 2.57

For F-measure results, we can observe that also in this case,
the best average rank is achieved by uNBBag0.5. However, we
need to take into account that the observed differences in av-
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erage ranks between classifiers are not significant according to
Friedman test. We also failed to find significant differences be-
tween pairs of classifiers with respect to Wilcoxon test.

Looking more precisely at results in Tables 4 and 5, one
can notice that some classifiers showing high improvements
of the sensitivity also show strong deterioration on G-mean
(it means that the recognition of the majority class is much
worse). Such effect is visible for oNBBag2 on pima, haberman,
breast-cancer, and transfusion. Similar effect, but less
evident, is visible in case of yeast for uNBBag0.5. Perfor-
mance on balance-scale, which is the most difficult data
set in our comparison, illustrates perfectly the effect of to high
sensitivity on G-mean. In this case, the second best result on
sensitivity achieved by oNBBag2 leads to the best result on G-
mean. At the same time, the best result on sensitivity achieved
by uNBBag0.5 leads to a result on G-mean which is not only
worse than oNBBag2 but also worse than RBBag. On the other
hand, we can also show data sets, for which the best result on
sensitivity translates into the best result on G-mean. These are:
postoperative for oNBBag2, and cleveland, as well as hsv
for uNBBag0.5.

Finally, we can observe that simple use of the imbalance ra-
tio in global balancing of classes in bootstraps is not sufficient.
It is apparent when we consider results of OvBag. Taking into
account information about the neighbourhood of minority ex-
amples improves classification performance with respect to G-
mean, and sensitivity evaluation measures. This hypothesis is
supported by results of both oNBBag2, and uNBBag0.5. To con-
clude, the introduction of local modifications of sampling prob-
abilities inside the combination rule of NBBag may be the cru-
cial element leading to the significantly better performance than
all over-sampling variants as well as for making it competitive
to RBBag.

When we analyze which parameters lead to the best G-
mean, we have noticed that, in most of the cases, neighbour-
hood composed of k = 5 examples is sufficient. Larger neigh-
bourhood may lead to slightly better results in under-sampling
NBBag for only small fraction of the data sets, which are aver-
agely difficult to more difficult: credit-g, ecoli, haberman,
breast-cancer, and solar-flare. This is an important
observation from the effectiveness of learning point of view.
Larger neighborhoods may lead to more computational effort
during learning. When we look for the best values of ψ, the
choice clearly depends on whether over-sampling NBBag or
under-sampling NBBag is applied. For over-sampling higher
ψ = 2 is often the best choice for unsafe data sets but also lower
values are desirable for more safe data sets. In under-sampling
NBBag the best value of ψ is almost always 0.5, higher value 1
leads to small improvement for safe data sets. In both cases,
over-sampling and under-sampling NBBag, ψ higher than 2
may lead to slightly better result on the safest data sets (only
breast-w in our comparison) it is, however, followed with high
deterioration of results on other types of data sets.

6.2. Analyzing Data Characteristics and Bootstrap Samples
The aim of this part of experiments is to learn more about

the nature of the best bagging extensions. First, we want to

to identify proportion of different types of examples in the mi-
nority class of considered data sets (recall their distinction in
section 3). Following the method introduced in [33], we pro-
pose to assign types of examples using information about class
labels in their k-nearest local neighbourhood.

In this analysis we will again use k = 5 mainly because
k = 3 may poorly distinguish the nature of examples, and in
earlier experiments [35], as well as in the current ones, examin-
ing higher values as k = 7 has led to quite similar decisions as
to identification of types examples in the data sets. This choice
is also similar to the size of neighbourhood used in NBBag and
in main pre-processing methods as SMOTE or SPIDER.

For the considered example x and k = 5, the proportion of the
number of neighbours from the same class as x against neigh-
bours from the opposite class can range from 5:0 (all neigh-
bours are from the same class as the analyzed example x) to
0:5 (all neighbours belong to the opposite class). Depending on
this proportion, we assign the type labels to the example x in
the following way [33]: Proportions 5:0 or 4:1 inside the neigh-
bourhood – the example x is labeled as a safe example (as it is
surrounded mainly by examples from the same class); 3:2 or 2:3
– it is a borderline example (the explanation is that the number
of neighbours from both classes is approximately the same, so
it refers to class overlapping near the decision boundary. Notice
that within this interpretation the examples with the proportion
3:2 although still correctly classified by its neighbours, this ex-
ample could be located close to the decision boundary between
the classes); 1:4 – it is interpreted as a rare case (as explained
in section 4); 0:5 – it is an outlier. For higher values of k such
proportions could be interpreted in a similar way - see their def-
initions in [35].

Although this categorization could be seen as based on intu-
itive thresholding, its results are consistent with a more prob-
abilistic analysis of the neighbourhood, modeled with kernel
functions, as it is shown in [35]. Knowing also that higher val-
ues k have led to identification of similar distributions of mi-
nority class examples in considered UCI data sets we will stay
with presenting results for k = 5.

The results of such labeling of the minority class examples
are presented in Table 7. The first observation is that many
data sets contain rather a small number of safe minority ex-
amples. The exceptions are three data sets composed of al-
most only safe examples: breast-w, car. On the other hand,
there are data sets such as cleveland, balance-scale or
solar-flare, which do not contain any safe examples. We
carried out the similar neighbourhood analysis for the majority
classes and make a contrary observation – nearly all data sets
contain mainly safe majority examples (e.g. yeast: 98.5%,
ecoli: 91.7%) and sometimes a limited number of borderline
examples (e.g. balance-scale: 84.5% safe and 15.6% bor-
derline examples). What is even more important, nearly all data
sets do not contain any majority outliers and at most 2% of rare
examples. Thus, we can repeat similar conclusions to [33], say-
ing that in most data sets the minority class includes mainly
difficult unsafe examples.

Then, one can observe that for safe data sets nearly all bag-
ging extensions achieve similar high performance (see Tables 4,
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Table 7: Labeling minority class examples expressed as a percentage of each
type of examples occurring in this class

Data set Safe [%] Border [%] Rare [%] Outlier [%]
breast-w 91.29 7.88 0.00 0.83

abdominal-pain 61.39 23.76 6.93 7.92
acl 67.5 30.00 0.00 2.5

new-thyroid 68.57 31.43 0.00 0.00
vehicle 74.37 24.62 0.00 1.01

car 47.83 47.83 0.00 4.35
scrotal-pain 50.85 33.90 10.17 5.08
ionosphere 44.44 30.95 11.90 12.70

pima 29.85 56.34 5.22 8.58
credit-g 15.67 61.33 12.33 10.67

ecoli 28.57 54.29 2.86 14.29
hepatitis 18.75 62.50 6.25 12.50

haberman 4.94 61.73 18.52 14.81
breast-cancer 21.18 38.82 27.06 12.94

cmc 13.81 53.15 14.41 18.62
cleveland 0.00 45.71 8.57 45.71

hsv 0.00 0.00 28.57 71.43
abalone 8.36 20.6 20.6 50.45

postoperative 0.00 41.67 29.17 29.17
solar-flare 2.33 41.86 16.28 39.53
transfusion 18.54 47.19 11.24 23.03

yeast 5.88 47.06 7.84 39.22
balance-scale 0.00 0.00 8.16 91.84

and 5 for breast-w, new-thyroid). A quite similar observa-
tion concerns data sets with still high number of safe exam-
ples, limited borderline ones and no / or nearly no rare cases
or outliers - see, e.g., vehicle. One the other hand, the strong
differences between classifiers occur for the most difficult data
distributions with a limited number of safe minority examples.
Furthermore, the best improvements of all evaluation measures
for RBBag and NBBag are observed for the unsafe data sets.
For instance, consider cleveland (no safe examples, nearly
50% of outliers) where uNBBag0.5 has 74.3% G-mean com-
pared to OvBag with 22.7%. Similar highest improvements
occur for balance-scale (containing the highest number of
outliers among all data sets) where oNBBag2 gets 61.07%
while OvBag 1.4%, and SmBag 0%. Analogous situations also
occur for yeast, solar-flare, postoperative, hsv, and
cleveland. We can conclude that RBBag and NBBag strongly
outperform other bagging extensions for the most difficult data
sets with large numbers of outliers or rare cases – sometimes
occurring with borderline examples.

In order to better understand the improvements achieved by
RBBag and NBBag, we perform a similar, but more detailed,
neighbourhood analysis of minority examples inside their boot-
straps. For each bootstrap sample constructed by standard bag-
ging, NBBag and RBBag, we calculate distribution of N′ma j,
which are numbers of examples from majority class belonging
to k-nearest neighborhood of minority class example present in
the sample. More precisely, we take an average of proportion of
a number of examples having a specific N′ma j to the number of
all minority examples in the original data set (not the number of
minority class examples in the bootstrap sample). We consider
standard bagging bootstrap samples, as well as, RBBag sam-
ples and samples obtained by oNBBag2, and uNBBag0.5. The
results of the averaging are presented in Figure 2. The results

Figure 2: Average distribution of N′ma j in bootstraps: standard bagging, RBBag,
over-sampling NBBag with ψ = 2, and under-sampling NBBag with ψ = 0.5.
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for standard bootstrap sampling reflect the distribution of labels
presented in Table 7.

In our opinion these results reveal very interesting proper-
ties of RBBag and NBBag ensembles. Both ensembles strongly
change types of the minority class distributions into much safer
ones inside their bootstraps. This result is visible by relatively
more examples with lower N′ma j than in standard bootstrap sam-
ples. For many data sets, which originally contain high numbers
of rare cases or outliers, the transformed bootstrap samples con-
tain now more safe examples. For instance, consider very diffi-
cult balance-scale data set (containing 91.8% of outliers in
the whole data set, and a significant amount of examples with
high value of N′ma j in standard bootstrap), where oNBBag2 cre-
ates bootstrap samples with majority of safe examples charac-
terized by low value of N′ma j. Similar example type shift can
be observed for: yeast (only 5% safe examples in the whole
data set), abalone, hsv, cleveland, and ecoli. The distri-
bution of weights produced by NBBag shows that increase of
ψ affects strongly the amount of safe examples in samples. The
result is that oNBBag2 classifier is, in most cases, trained on
bootstraps composed of safe examples. Please also note that,
oNBBag2 is producing bootstraps with monotonic distribution
of N′ma j, which results from choosing the formula L2

min. An-
other aspect of oNBBag2 sampling is decrease of diversity of
samples. When we compare the sums of average proportions
of examples having different N′ma j it is apparent that in some
cases almost all of examples from minority class are present in
each constructed sample (abdominal-pain, balance-scale,
car, ecoli, new-thyroid, vehicle, yeast). This is not
the case for uNBBag0.5 classifier, whose distributions are af-
fected by lighter amplification by ψ parameter, as well as,
by the under-sampling effect. The resulting distributions
produced by uNBBag0.5 are often characterized by smaller
representation of minority class examples than in oNBBag2,
and RBBag. It is especially true for unsafe data sets with
high IR (balance-scale, yeast, solar-flare, abalone,
cleveland). The same effect can be, however, also noticed
for large, safe data sets having high IR (car).

RBBag and uNBBag0.5 are less aggressive than oNBBag2 in
converting outliers to safe examples. In fact, we haven’t no-
ticed a situation where RBBag or uNBBag0.5 are able to con-
struct completely safe bootstraps from unsafe data set. Distri-
bution of weights in RBBag bootstraps is not monotonic, since
the change of this distribution results from random omission of
majority examples regardless of their type.

Recall that extensions of bagging known from the literature
are based on the simple idea of balancing distributions in boot-
strap samples. Our results indicate that transforming distribu-
tions of examples into safer ones can be more influential. In
case of RBBag it could be connected with strong filtering ma-
jority class examples in each bootstrap sample. Notice that
many data sets contain nearly 1000 examples with around 50
minority ones. For instance, the number of all examples in
solar-flare is 1066 while the minority class contains 43 ex-
amples only. The new created bootstrap samples include only
43 safe majority examples and as a result most of the majority

class examples (also reflecting their original distribution) dis-
appear. It can be interpreted as a kind of cleaning around the
minority class examples, so they become safer in their local
neighbourhood. Having such a transformed distribution in each
sample can help construct base classifiers, which are more bi-
ased toward the minority class. On the other hand, the size of
the learning set can be dramatically reduced. As a result, some
bootstrap samples may lead to weak classifiers, and this type
of ensemble may need more component classifiers than over-
sampling NBBag, which uses larger bootstrap samples.

Now, when we compare the change in distribution of exam-
ples in bootstrap samples produced by different parameters of
NBBag to the classification performance resulting from learn-
ing on these samples it is quite apparent that the favorable type
of change is dependent on the data set. This allows to draw a
conclusion that one should look for the best parameters with
respect to a particular data set.

7. Discussion and Final Remarks

Our paper is devoted to various extensions of bagging en-
sembles dedicated to improve classification of imbalanced data.
We have focused our attention on the most studied approaches,
which integrate pre-processing methods specialized for class
imbalance within bootstrap construction. The first contribution
of our paper is a comprehensive experimental comparison of
the well known bagging extensions over a large collection of
diversified imbalanced data sets. Results of these experiments
have clearly shown that all under-sampling extensions of bag-
ging have achieved much better classification performance than
all over-sampling variants. Definitely, for all considered eval-
uation measures both Exactly Balanced Bagging (EBBag) and
Roughly Balanced Bagging (RBBag) produce the best results.
Still, the difference between them and the best over-sampling
bagging is much higher than we have expected and what has
been previously shown in [13]. The superiority of using under-
bagging is also consistent with some of opinions from [19, 24],
although these experiments were done in other frameworks.

What is also worth noting is that, according to our results,
SMOTEBagging is not as accurate as it has been postulated by
its authors in [39]. Quite often it is the worst classifier and it
is also worse than much simpler random over-sampling. More-
over, a new over-sampling bagging variant, where SMOTE is
applied with the same oversampling ratio, works better than this
previously promoted more diversified SMOTEBagging.

Although EBBag and RBBag performs similarly to each
other with respect to the sensitivity and G-mean, RBBag seems
to be slightly better than EBBag for F-measure, in particular
when sampling is done with replacement. Similar performance
of these both classifiers was also observed in [24], however their
experiments were carried out in another framework with artifi-
cially modified noisy data. However, authors of RBBag have
already shown its slightly better performance over EBBag [19]
but over 9 data sets only (4 of them was also used in our ex-
periments). Yet another novel observation is that sampling with
replacement may be profitable for RBBag unlike EBBag, where
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our results show no differences between sampling with or with-
out replacement. If one expects a single strong recommendation
from these part of experiments, we will suggest to use Roughly
Balanced Bagging as the most efficient, simplest to use (tune
only the number of component classifiers) and the most consis-
tent with the original Breiman’s idea of bootstrap aggregation.

Analyzing known extensions of bagging one can also notice
that they usually use the simplest random re-sampling since
more complex SMOTE inside overbagging does not work. This
a contradictory situation to single classifiers, where SMOTE
usually is one of the best options see, e.g., [4]. However,
considering future research, one could still ask a question
how BorderlineSMOTE, LN-SMOTE and other SMOTE exten-
sions [31] work in this setting. Yet another future issue could
be studying diversity in a more advanced way than presented
in [39]. We would also consider looking for new diversity mea-
sures more specialized for class imbalance than the previous
ones, which are oriented at total accuracy [26].

Our next methodological contributions result from the hy-
pothesis saying that the difficulty of learning classifiers from
imbalanced data comes from complex distributions of the mi-
nority class [33]. Besides the unequal class cardinalities, the
minority class is decomposed into smaller sub-parts, affected
by strong over-lapping, rare cases and/or outliers. In our study
we attempt to capture these data characteristics by analyzing
the neighbourhood of minority class examples. The main mes-
sage of our study is that such a kind of local information can
be useful both for proposing a new direction of generalizing
bagging, and for analyzing more deeply data conditions which
may provide explanation why some ensembles work better than
others.

We have proposed a new type of bagging, called Neighbour-
hood Balanced Bagging (NBBag), which is based on a different
principle than all known bagging extensions for class imbal-
ance. First, instead of integrating bagging with pre-processing,
we keep the standard bagging idea but we change, sometimes
radically, probabilities of sampling examples to bootstraps by
increasing the chance of drawing minority examples. Further-
more, we amplify the role of difficult minority examples with
respect to the type of their neighbourhood. The strength of am-
plification can be parameterized in our setting. We have given
some indications how the choice of values of this parameter af-
fects learning. We have also identified the values of the param-
eter that work the best on the average. The experiments have
proven that the choice of parameter values that lead to satisfac-
tory results is rather limited.

We have shown that our proposition can be applied in both
types of bagging generalizations: over-sampling and under-
sampling. In first type of generalization, our proposition is sim-
ilar to over-sampling minority class examples into bootstraps,
however, at the same time, the probabilities of drawing ma-
jority class examples are decreased. The size of bootstrap is
kept the same as the size of the original learning set. The sec-
ond type is inspired by under-sampling generalizations, which
are proven to work better than over-sampling generalizations.
We construct bootstraps of double size of the minority class.
The probabilities of drawing minority class examples are in-

creased, while probabilities of drawing majority class exam-
ples are decreased. The experimental results show that under-
sampling Neighbourhood Balanced Bagging is at least compet-
itive to Roughly Balanced Bagging, which is considered as the
best known bagging generalization. They also show that our
proposal is significantly better than existing over-sampling ex-
tensions of bagging regardless whether over-sampling variant
or under-sampling one is considered. The strongest differences
between classifiers performance have been noticed for data sets
containing the most unsafe minority examples. Indeed, both
NBBag, and RBBag ensembles have strongly outperformed all
over-sampling bagging variants for such data.

We have also shown that the source of this difference in per-
formance can be linked to the change of distribution of unsafe
(difficult to learn) minority class examples into safe ones intro-
duced directly by NBBag and indirectly by RBBag. The analy-
sis of types of minority examples inside bootstrap samples has
clearly shown that NBBag and RBBag strongly changed data
characteristics comparing to the original data sets. This anal-
ysis follows the earlier research by Stefanowski and Napier-
ala [33], however, its application in the context of ensembles
uncovers new interesting characteristics of studied ensembles.
Many examples from the minority class labeled as unsafe in
the original learning set (in particular as rare cases or outliers)
have been transformed to more safe ones. We have demon-
strated that over-sampling NBBag, in the best performing vari-
ant, learns, in most of the cases, from almost safe type boot-
strap samples. Under-sampling NBBag, in the best performing
variant, is relatively less altering the distribution in this direc-
tion. RBBag is closer to the under-sampling variant of NBBag
but it is less adapting to the type of distribution of minority
class examples in the data set. This change of the local charac-
teristics of learning examples may be more influential for im-
proving the classification performance than the simple global
class balancing, which has previously been considered in the
literature and applied in many of known approaches to extend
bagging. It introduces additional computational cost associated
with detection of how safe (or unsafe) learning examples are.
This cost is, however, introduced only for minority class exam-
ples. Moreover, our experimental evaluation shows that rela-
tively small neighborhoods are sufficient to achieve satisfactory
performance. This is confirmed by our observation that even
though under-sampling Neighbourhood Balanced Bagging is
computationally more costly than Roughly Balanced Bagging,
the differences in cost of learning are not significant.
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