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Abstract—In this paper we discuss problems of inducing
classifiers from imbalanced data and improving recognition of
minority class using focused resampling techniques. We are
particularly interested in SMOTE over-sampling method that
generates new synthetic examples from the minority class be-
tween the closest neighbours from this class. However, SMOTE
could also overgeneralize the minority class region as it does
not consider distribution of other neighbours from the majority
classes. Therefore, we introduce a new generalization of SMOTE,
called LN-SMOTE, which exploits more precisely information
about the local neighbourhood of the considered examples. In the
experiments we compare this method with original SMOTE and
its two, the most related, other generalizations Borderline and
Safe-Level SMOTE. All these pre-processing methods are applied
together with either decision tree or Naive Bayes classifiers.
The results show that the new LN-SMOTE method improves
evaluation measures for the minority class.

I. INTRODUCTION

Some real-life data mining problems involve learning clas-
sifiers from imbalanced data, which means that one of the
classes (further called a minority class) includes much smaller
number of examples than the others (further referred to as ma-
jority classes). Typical such problems are medical diagnosing
dangerous illness, analysing financial risk, detecting oil spills
in satellite images, predicting technical equipment failures
or information filtering [1], [2]. Class imbalance constitutes
a difficulty for most learning algorithms, which are biased
toward learning and recognition of the majority classes. As a
result, minority examples tend to be misclassified.

Learning from imbalanced data has received growing re-
search interest in the last decade and several specialized
methods have been proposed (see [2], [3] for a review). In
this paper we are interested in pre-processing methods on
the data level. They are classifier-independent and consist
in transforming an original data distribution to change the
balance between classes. The simplest re-sampling techniques
are random over-sampling which replicates examples from
the minority class and random under-sampling which ran-
domly eliminates examples from the majority classes until a
required degree of balance between classes is reached. How-
ever, random under-sampling may potentially remove some
important examples and simple over-sampling may also lead
to overfitting. Thus, focused methods like SMOTE [1], one-
side-sampling [4], NCR [5] or SPIDER [6], which attempt on
taking into account internal characteristics of regions around

minority class examples were introduced and experimentally
verified.

The most popular among them is SMOTE [1], which
considers each example from the minority class and generates
new synthetic examples along the lines between it and some of
randomly selected its 𝑘 nearest neighbours from the minority
class. Although experiments confirmed its usefulness [1], [7],
some of assumptions behind this technique could be still
questioned. In its generalization called Borderline-SMOTE
[8] authors focused their attention on oversampling around
examples located in the borderline between classes. It is also
claimed that SMOTE may overgeneralize the minority class re-
gion without considering a distribution of neighbours from the
majority classes [6], [9]. A new technique, called Safe-Level-
SMOTE, has been just introduced to solve it [9]. However,
we think that both solutions may be still unsatisfactory with
respect to local neigbourhood of examples and therefore we
propose a new generalization called LN-SMOTE.

The main aim of our paper is to introduce and to experi-
mentally evaluate the LN-SMOTE method. Our additional aim
is to carry out an extensive comparative study of the proposed
method and the two most related generalizations: Borderline
and Safe-Level SMOTE, as previously they were studied on
few data sets only [8], [9].

II. RELATED WORKS

We discuss the most related focused methods only; for more
extensive reviews see, e.g, [2], [3].

Several authors showed the simple uninformed random
under-sampling or over-sampling were not sufficiently good
at improving recognition of imbalanced classes. In particular,
random over-sampling simply adds copies of the minority
examples which makes some sub-regions of the minority class
very specific leading to overfitting while learning classifiers.

SMOTE (Synthetis Minority Oversampling TEchnique) was
proposed by Chawla et al. to overcome this problem by a spe-
cial approach to generate new synthetic examples [1]. As the
authors said, this method generates artificial examples based
on the feature space similarities between original examples of
the minority class. Its main idea is to take each example of the
minority class and to introduce synthetic examples along the
lines between it and its selected nearest neighbours also from
the minority class. While looking for these nearest neighbours,
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the distance is calculated with the Euclidean distance metric
for numerical features and the Value Distance Metric [10] for
the qualitative features.

More precisely, let the training set 𝑆 contain examples
from the minority class 𝑃 and other classes 𝑁 . For each
example 𝑝𝑖 ∈ 𝑃 find its 𝑘 nearest neighbours 𝑥 from class 𝑃 .
Depending on the other parameter of this method – the amount
of over-sampling – a given number of examples from these 𝑘
nearest neighbours is randomly selected. Synthetic minority
class examples are generated in the direction of each. For
numerical features the new synthetic example is constructed
as follows: compute the difference between features describing
the example 𝑝𝑖 and 𝑥 – one of the selected 𝑘-nearest neigh-
bours; multiply this feature vector difference by 𝛿 – a random
number between 0 and 1; and add it to the feature vector 𝑝𝑖
creating a new vector 𝑥𝑛𝑒𝑤 = 𝑝𝑖+(𝑥− 𝑝𝑖) ⋅ 𝛿. For qualitative
features create a new example with the most common feature
values among 𝑘 nearest neighbours. This technique of over-
sampling generalizes the decision regions for the minority
class. As a result, larger and less specific regions of this
class are learned without causing overfitting. This should help
learned classifier to better generalize. Experiments carried
out in [1] with C4.5 trees, Ripper rules and Naive Bayes
classifiers showed that SMOTE improved recognition of the
minority class. Moreover, its combination with under-sampling
the majority class can achieve better results than other under-
sampling methods – see e.g. [1], [7].

Although SMOTE proved to be successful in these ex-
periments it also has some shortcomings, which we further
discuss. Firstly the way of identifying minority examples to
be seeds for over-sampling could be problematic. In SMOTE
all examples from this class are considered. However, they
are not equally important for learning classifiers. In particular,
it concerns examples at the decision border between classes
and the ones located nearby as they are more liable to be
misclassified while examples located inside the class region
may be easier to be learned. For instance, edited approaches
to instance based learning focus on borderline examples while
some safer examples could be discarded. One-side-sampling
[4] also differently processes examples depending on their
type. Moreover, in the selective filtering method SPIDER [6]
borderline examples are over-sampled in larger amount than
the ones located inside the minority class.

Han et al. introduced a method Borderline-SMOTE where
only the borderline examples of the minority class are over-
sampled [8]. These examples are identified in the following
way. For each example 𝑝 ∈ 𝑃 the set of its 𝑘 nearest
neighbours is determined. Among these neighbours a number
of examples from the majority class is calculated (denoted as
𝑆𝑁(𝑝, 𝑘)). Finally, the borderline examples (called DANGER
in [8]) are those 𝑝 that satisfy formula 𝑘/2 ≤ 𝑆𝑁(𝑝, 𝑘) < 𝑘.
Other examples from the minority class are treated as safe
if 0 ≤ 𝑆𝑁(𝑝, 𝑘) < 𝑘/2 or as noise if 𝑆𝑁(𝑝, 𝑘) = 𝑘. It is
assumed that it is not necessary to strengthen regions around
the safe minority examples (as they are already well enough
recognized) and noise examples (all examples around them are

in the majority class). The DANGER examples are only fed
to SMOTE for generating synthetic examples around them.

Two versions of Borderline-SMOTE were proposed in [8].
The first version generates synthetic examples from each
example in the DANGER set and its nearest neighbours be-
longing to the minority class 𝑃 only (as in original SMOTE).
Borderline-SMOTE2 considers also the nearest neighbours
from the majority classes 𝑁 . Then, the difference between
the minority examples and its nearest majority class neighbour
is multiplied by a random number between 0 and 0.5 -
so the synthetic example is located closer to the minority
class. Experiments with four data sets from UCI showed that
Borderline methods used with C4.5 trees improved sensitivity
and F measure for the minority class over the original SMOTE
and simple random over-sampling. The Borderline-SMOTE2
achieved better value of sensitivity than its first version.

Another shortcoming of SMOTE is the overgeneralization
problem as it blindly generalizes the regions of the minority
class without regard to the majority class. This strategy is
particularly problematic in the case of skewed class distri-
bution where the minority class is very sparse with respect
to the majority class. In such a case SMOTE generation of
synthetic examples may increase the occurrence of overlap-
ping between classes. So, some adaptive strategies have been
proposed to overcome this limitation. In [11] Japkowicz and
Wang proposed ASMO method which included testing for data
sparsity, special clustering of the minority class and synthetic
sample generation using both minority and majority classes.
Similar but more general, idea which took into account data
decomposition was presented in [12].

In this paper we focus on the newest proposal called Safe-
Level-SMOTE [9] as it is directly related to our approach. In
this method the presence of the majority examples is taken into
account before generating synthetic examples by calculating a
special coefficient called a safe level. For each minority class
example, it is defined as the number of other minority class
examples among its 𝑘 nearest neighbours. If that value is equal
or close to 0, given example is interpreted as noise. On the
other hand, if it is closer to 𝑘, then this example could be
located in a safe region of the minority class. The key idea is to
direct generation of new synthetic examples closer to the safer
regions. More precisely, let 𝑝 be the minority class example
being a seed for over-sampling, then 𝑘 nearest examples also
belonging to the minority class 𝑃 are determined. As in the
original SMOTE, at least one of these neighbours is selected –
it is denoted as 𝑛. For both examples 𝑝 and 𝑛 their 𝑘 nearest
examples in the full training data 𝑆 are found to calculate
their safe levels denoted as 𝑠𝑙(𝑝) and 𝑠𝑙(𝑛) respectively. Given
them, the safe level ratio coefficient is defined as 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 =
𝑠𝑙(𝑝)/𝑠𝑙(𝑛). The rest of the method goes along the 5 cases:

1) If 𝑠𝑙(𝑝) = 0 and 𝑠𝑙(𝑛) = 0, both examples 𝑝 and 𝑛
are treated as noisy outliers and no synthetic example is
generated.

2) If 𝑠𝑙(𝑝) > 0 and 𝑠𝑙(𝑛) = 0, then 𝑛 is interpreted as
noise. The synthetic example will be generated far from
𝑛 just by duplicating 𝑝.
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3) If 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 = 1, both 𝑝 and 𝑛 have similar nature
of neighbours and the new synthetic example will be
generated along the line joining them in the same way
as in the original SMOTE.

4) If 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 > 1, then 𝑝 is located in safer minority region
than 𝑛 and the new synthetic example will be generated
closer to 𝑝, i.e. 𝛿 parameter in SMOTE will be generated
in the range [0, 1/𝑠𝑙-𝑟𝑎𝑡𝑖𝑜].

5) If 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 < 1, then it is contrary to above point and
the new example will be generated in the range [1 −
𝑠𝑙-𝑟𝑎𝑡𝑖𝑜, 1].

As in case (1) no synthetic example is generated, it is
possible that overall oversampling ratio might be slightly less
than the required level. However, it is justified as it happens
for two noisy examples only – between them no new examples
should be added.

Experiments with C4.5 and Naive Bayes on two UCI
data shown that this method outperformed both SMOTE and
Borderline-SMOTE [9].

Finally, we notice other interesting extensions of SMOTE
as SMOTEBoost, combinations with data cleaning techniques,
LLE-based SMOTE or Surrounding-SMOTE. However, as
they are not strictly related to our approach we skip their
presentation; see, e.g. [2] for more details.

III. ANALYSING LOCAL NEIGHBOURHOOD IN EXTENDED

SMOTE

In section II we notice that the original SMOTE did not take
into account the distribution of examples from the majority
class. Although the Safe-Level SMOTE uses such information,
it may be still insufficient to overcome this problem. In
particular, if the minority class is decomposed into several
sub-regions of rather small cardinalities. This situation refers
to problem of small disjuncts and is claimed to be a more
important source of difficulty for learning classifiers from
imbalanced data than the imbalance ratio itself [13].

For example, let us consider the situation where two rather
rare subgroups of the minority class are surrounded by ma-
jority class examples – see Figure 1. They are distant enough
from other examples from the minority class. Let the seed
be an example in the lower subgroup. If the parameter 𝑘
of the method is greater than the number of other minority
class examples inside this subgroup (e.g 𝑘 = 5), then the
next minority class neighbours will be examples from the
other subgroup. If the safe level ratios of examples from both
subgroups could be similar, the new synthetic examples could
be generated along the line joining the examples from these
groups. So, it could be still located inside the area occupied by
examples from the majority class (see the star mark in Figure
1). Thus, this strategy may still lead to overlapping between
classes. In our opinion, similar increasing of overlapping may
also occur for seed minority examples located in wider borders
areas between classes [14].

The above undesirable situation results from the SMOTE
strategy for looking 𝑘 nearest neighbours that belong to the
minority class only. If the seed example is not located in

Fig. 1. Problem of overgeneralization when the minority class is decomposed

the dense area of this class, then some of these neighbours
could be rather distant with respect to other majority class
examples also surrounding this seed. We think that considering
more local neighbourhood of the seed minority example
could give better approximation of presence majority class
examples. So, looking for too distant examples should be
avoided. By the local neighbourhood we understand the typical
𝑘-𝑁𝑁 paradigm, i.e. determining 𝑘 really nearest neighbours
in the training set, including also the majority class ones.
As a consequence the synthetic example could be generated
between examples belonging to two different classes. We call
our generalization LN-SMOTE emphasizing this consideration
of the local neighbourhood.

We also want to use and adapt the idea of local safe levels
to consider presence of other majority neighbours. However,
staying with the original Safe-Level strategy is not sufficient
if the other example 𝑛 belongs to the majority class. For
example, let us assume that seed example 𝑝 is an outlier and
its selected majority class neighbour 𝑛 does not have any other
neighbours from the minority class. Safe level 𝑠𝑙(𝑝) = 0,
however 𝑠𝑙(𝑛) = 1 due to presence of this example 𝑝 in
the local neighbourhood of 𝑛. The safe level ratio is 0 and
following case (5) the synthetic example is generated exactly
in the position of 𝑛, which introduces inconsistency in data.

Therefore, we decided to modify the way of calculating safe
levels for the majority class neighbours. If the seed example 𝑝
is identified within 𝑘 nearest neighbours of 𝑛, it is not included
into the 𝑠𝑙(𝑛) but we look for the next 𝑘 + 1 neighbour (see
the pseudocode of LN-SMOTE).

Yet another problem with generating synthetic example
between the minority seed 𝑝 and its majority neighbour 𝑛 is
to direct its position rather closer to the minority class than
to the majority class represented by 𝑛. Similarly to solutions
from Borderline-SMOTE2 and SPIDER methods we want to
restrict the range of interval where the new example could
be randomly located. So, in some cases of safe levels we
do not consider right boundary of the interval as 1 but as
threshold 𝜏 < 1 (see function RANDOMGAP). However,
unlike in the above methods the threshold value is not fixed
but it is determined dynamically depending on the safe level
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of considered majority example. If 𝑠𝑙(𝑛) is relatively low,
it means that 𝑛 is surrounded by many examples from the
majority class. So, a new example should be placed rather
closer to the 𝑝. If 𝑛 is surrounded by reasonable amount of
minority examples, so the value of 𝑠𝑙(𝑛) is higher, a new
example could be located closer to 𝑛. It allows us to control the
level of minority class expansion in a dynamic way, taking into
account local distribution of examples. LN-SMOTE pseudo-
code is given below.

function LN-SMOTE
𝑆𝐸𝐸𝐷𝑆 ← {𝑥 : 𝑥 ∈ 𝑆 ∧ CLASS(𝑥) = 𝑃}
𝑂𝑈𝑇 ← 𝑆 ⊳ copy input dataset to results
for 𝑖← 1 . . . ∣𝑆𝐸𝐸𝐷𝑆∣ do

𝑝← 𝑥𝑖 ∈ 𝑆𝐸𝐸𝐷𝑆 ⊳ choose the seed
𝑁𝑁 ← 𝑘 nearest neighbours of 𝑝
for 𝑗 ← 1 . . . 𝑜 do ⊳ oversampling ratio

𝑠← CREATESYNTHETIC(𝑝,𝑁𝑁,𝑂𝑈𝑇 )
end for

end for
return 𝑂𝑈𝑇

end function

function CREATESYNTHETIC(𝑝,𝑁𝑁,𝑂𝑈𝑇 )
𝑛← randomly selected nearest neighbour from 𝑁𝑁
if CANCREATE(𝑝, 𝑛) then

𝑥𝑛𝑒𝑤 ← CLONE(𝑝)
for all 𝑎 ∈ ATTRIBUTES(𝑆) do

if ISQUANTITATIVE(𝑎) then
𝛿 ← RANDOMGAP(𝑝, 𝑛)
𝑑𝑖𝑓𝑓 ← 𝑛(𝑎)− 𝑝(𝑎)
𝑥𝑛𝑒𝑤 (𝑎)← 𝑝 (𝑎) + 𝛿 ⋅ 𝑑𝑖𝑓𝑓

else if ISQUALITATIVE(𝑎) then
𝑥𝑛𝑒𝑤 (𝑎)← MOSTFREQUENT(𝑝 ∪𝑁𝑁, 𝑎)

end if
end for
add 𝑥𝑛𝑒𝑤 to 𝑂𝑈𝑇 set

end if
end function

function CANCREATE(𝑝, 𝑛) ⊳ checks if 𝑝 and 𝑛 can be
used to create new example between them

𝑠𝑙𝑝← SAFELEVEL(𝑝)
𝑠𝑙𝑛← SAFELEVEL(𝑛, 𝑝)
return 𝑠𝑙𝑝 ∕= 0 or 𝑠𝑙𝑛 ∕= 0

end function

function SAFELEVEL(𝑝)
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠← 𝑘 nearest neighbours of 𝑝
return ∣𝑥 : 𝑥 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ∧ CLASS(𝑥) = 𝑃 ∣

end function

function SAFELEVEL(𝑛, 𝑝)
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠← 𝑘 nearest neighbours of 𝑛
if CLASS(𝑛) ∕= 𝑃 and 𝑝 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 then

replace 𝑝 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 by 𝑘 + 1 neighbour of 𝑛

end if
return ∣𝑥 : 𝑥 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ∧ CLASS(𝑥) = 𝑃 ∣

end function

function RANDOMGAP(𝑝, 𝑛) ⊳ returns 𝛿 based on safe
level of 𝑝 and 𝑛

𝑠𝑙𝑝← SAFELEVEL(𝑝)
𝑠𝑙𝑛← SAFELEVEL(𝑛, 𝑝)
𝛿 ← 0
if 𝑠𝑙𝑛 = 0 and 𝑠𝑙𝑝 > 0 then

return 𝛿
else

𝑠𝑙-𝑟𝑎𝑡𝑖𝑜← 𝑠𝑙𝑝
𝑠𝑙𝑛

if 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 = 1 then
𝛿 = RANDOM(1)

else if 𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 > 1 then
𝛿 = RANDOM( 1

𝑠𝑙-𝑟𝑎𝑡𝑖𝑜 )
else

𝛿 = 1− RANDOM(𝑠𝑙-𝑟𝑎𝑡𝑖𝑜)
end if

end if
if CLASS(𝑛) ∕= 𝑃 then

𝛿 = 𝛿 ⋅ 𝑠𝑙𝑛𝑘
end if
return 𝛿

end function

Moreover, we consider yet another version of our method,
called LN-SMOTE-2. Following good experiences with com-
bination of over-sampling with under-sampling (see e.g. [7],
[1], [6]) we remove difficult noisy examples from the majority
class in the first step before applying LN-SMOTE to the
modified data. These examples are ones having only minority
examples within their local 3 nearest neighbours.

We checked also other strategies of undersampling of the
majority class, i.e. ENN and Tomek links [7], but the strategy
described above gave the best results.

IV. EXPERIMENTS

The aim of experiments is to compare the new proposed
LN-SMOTE with related methods: the original version of
SMOTE, Borderline-SMOTE and Safe-Level-SMOTE. We
prepared our own implementation of these methods in Java
using classes from the WEKA environment1. All these pre-
processing methods are combined with two algorithms for
inducing classifiers: the decision trees following Quinlan’s
C4.5 (Java implementation available in WEKA under the
name J4.8) and Naive Bayes (also coming from WEKA).
We chose them as decision trees are known to be sensitive
to class imbalance and they were often used in studies of
SMOTE and their extensions [7], [9], [1], [8]. Naive Bayes
was also considered in many of above studies as another
classifier. It is said to be less sensitive to imbalance. We also
considered a basic approach with classifiers induced directly

1WEKA is available at http://www.cs.waikato.ac.nz/ml/weka
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TABLE I
CHARACTERISTICS OF EVALUATED DATA SETS (ATT - NUMBER OF

ATTRIBUTES, CLASS - IDENTIFIER OF THE MINORITY CLASS, MIN AND

MAJ NUMBER OF EXAMPLES IN CLASSES)

Dataset ATT CLASS MIN MAJ IMB(%)

Balance scale 4 B 49 576 7.84

Breast cancer 9 recurrence 85 201 29.72

Cleveland 13 3 35 268 11.55

CMC 9 long term 333 1140 22.61

Ecoli 7 imU 35 301 10.42

Flags 28 white 17 177 8.76

German credit 20 bad 300 700 30.00

Haberman 3 die 81 225 26.47

Hepatitis 19 die 32 123 20.65

Pima 8 positive 268 500 34.90

Postoperative 8 home 24 66 26.67

Solar flare 12 F 43 1023 4.03

Transfusion 4 donated 178 570 23.80

Yeast 8 ME2 51 1433 3.44

TABLE II
CONFUSION MATRIX FOR PERFORMANCE EVALUATION

Predicted Positive Predicted Negative

True Positive 𝑇𝑃 𝐹𝑁

True Negative 𝐹𝑃 𝑇𝑁

from imbalanced data without any pre-processing to obtain a
kind of baseline for comparing various SMOTE versions.

Our experiments were carried out on 14 data sets coming
from UCI repository. Their basic characteristics is listed in
Table I. The imbalance ratio (IMB in Table I) is calculated
as a ratio of the number of minority examples to the total
number of examples in a data set. We chose these data
as they are characterized by varying degree of imbalance
and they were often used in related experimental studies.
Data sets with higher imbalanced ratio, as Slovenia breast
cancer, were also chosen as they contained many noisy or
borderline minority class examples. Some of these data sets
originally included more than two classes, however, to focus
more on minority vs majority characteristics and to simplify
calculations we decided to aggregate all majority classes into
one. In our opinion this aggregation does not influence the
work of compared algorithms.

Another issue is choosing evaluation measures. As the
overall classification accuracy is biased towards the major-
ity classes [2], in most of the studies on imbalanced data,
measures defined for two-class classification are considered,
where typically the class label of the minority class is called
positive and the class label of the majority class is negative.
The performance of the classifiers is presented in a confusion
matrix as in Table II.

Following the literature, we choose two kinds of measures.
Firstly, we will consider:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 )

TABLE III
PRESENCE OF danger AND noisy EXAMPLES.

Dataset MIN D3 D5 D7 N3 N5 N7

Balance scale 49 0 4 18 49 45 31

Breast cancer 85 50 56 63 23 11 6

Cleveland 35 13 19 25 22 16 10

CMC 333 207 225 232 94 60 43

Ecoli 35 20 20 21 7 5 3

Flags 17 10 11 11 7 5 5

German credit 300 191 221 228 71 32 14

Haberman 81 51 53 57 20 14 8

Hepatitis 32 21 22 20 6 4 4

Pima 268 169 165 161 42 23 14

Post-operative 24 13 19 22 11 5 2

Solar flare 43 25 28 31 18 14 12

Transfusion 178 97 100 103 41 27 20

Yeast 51 25 28 32 24 20 18

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

These measures are aggregated to 𝐹 measure:

𝐹 = ((1+𝛽)2 ⋅𝑅𝑒𝑐𝑎𝑙𝑙 ⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝛽2 ⋅𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

In our experiments we set 𝛽 = 1 given equal importance to
both precision and recall. Another type of measure often used
is the 𝐺-𝑀𝑒𝑎𝑛 defined as a geometric mean:

𝐺-𝑀𝑒𝑎𝑛 =
√

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ⋅ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,
where Sensitivity is defined in the same way as recall and the
specificity characterizes recognition of the negative class as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃 )

We also remark that ROC technique with calculating Area Un-
der Curve (AUC) could be also applied to evaluate classifiers
on imbalanced data. However, we stayed with 𝐹 measure and
G-mean as we focused our experiments mainly on the tree-
based classifier which is deterministic one. All these measures
were estimated by stratified 10-fold cross validation repeated
3 times. Each time examples in data sets were reordered
using different seeds. As a result, each compared method
was evaluated in 30 repetitions of train and test folds. In
further tables we present mean values of evaluation measures
calculated over these repetitions.

Finally, let us discuss tuning parameters of methods. As
to tree classifiers we used standard options with choosing
unpruned version to strengthen the minority class. For SMOTE
methods we have two parameters: 𝑘 – number of neighbours
and 𝑜 – amount of oversampling (expressing how many times
the minority class should be increased by oversampling)2. In
related papers on SMOTE and its extensions 𝑘 was set to 5
and 𝑜 was usually stepwise changed to 5. In our experiments
we decided to study wider range of these parameters. In case

2In the paper introducing original version of SMOTE [3] it was expressed
in percentage, e.g. 500%
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TABLE IV
F-MEASURE FOR THE MINORITY CLASS FOR ALL COMPARED METHODS

USED TOGETHER WITH C4.5 TREE CLASSIFIER

None SMO BS1 BS2 SLS LN1 LN2

BS 0.00 9.29 8.40 11.33 8.58 16.54 16.08

BC 39.83 43.83 43.02 44.37 45.15 43.83 45.64

CL 19.29 26.71 25.27 28.33 26.03 29.27 29.70

CM 40.81 41.64 42.05 44.16 41.64 44.95 45.94

EC 58.86 64.31 62.38 64.02 63.98 62.01 66.96

FL 30.89 44.51 41.35 42.68 43.15 39.46 42.03

GC 45.51 50.30 49.98 51.01 50.02 50.91 50.46

HA 30.36 43.70 41.84 43.58 40.08 44.56 42.59

HE 49.20 52.10 53.94 53.00 57.10 58.57 57.86

PI 62.05 65.51 65.68 65.61 65.02 65.13 65.06

PO 5.84 22.03 22.86 19.06 20.56 20.42 19.44

SF 28.79 27.84 28.85 29.93 28.68 31.60 33.08

TR 47.27 48.80 50.05 51.12 48.94 49.19 50.30

YE 35.02 39.64 42.23 42.02 40.07 41.39 42.58

of 𝑘 we tested the following values 3, 5 and 7. However,
for 𝑜 we decided to check more values of oversampling
depending on data characteristics – for data with imbalanced
ratio larger than 15% we tested following 𝑜 values 1, 2, 3,
4, 5 and 6 while in case of data with the smaller imbalance
ratio we additionally considered 𝑜 values equal to 10, 15,
20 and 25. Moreover, we found an additional value which
led to balancing cardinalities of both minority and majority
classes. We prepared a batch procedure for testing all these
combinations of 𝑘 and 𝑜 parameters for a given method and
data. Among these results we chose this combination which
led to the best value of 𝐹 measure for the minority class (as it
was also the main criterion in [9], [8]). For this combination of
parameters we also calculated the remaining measures. As for
each method this best configuration was found separately on
each data set, the chosen values for 𝑜 and 𝑘 may vary between
methods and data sets.

Before these experiments we performed a simpler analysis
of data sets. For each of them we used 𝑘−𝑁𝑁 analysis of each
minority class example and considered is as noisy or danger
(borderline) as defined in Borderline SMOTE (see section II).
Results are presented in Table III, where Dk denotes number
of examples identified as danger with 𝑘 neighbours and Nk
corresponds to the number of noisy examples.

First of all, one can notice that all studied data sets are
rather difficult with respect to classifier ability for recognizing
the minority class. In particular, in balance scale data all
minority class examples are noisy with 𝑘 = 3 and nearly all
for larger neighbourhood. Some other data sets, e.g. cleveland
or yeast, contain more noisy examples than dangerous ones.
The number of noisy examples is quite high comparing to the
size of the minority class. Another interesting observation is
that for the typical neighbourhood (𝑘 = 3 or partly 5) most of
the data sets do not contain any safe example or their number
is relatively small comparing to noisy or danger examples,
see e.g. flags data where 17 examples are divided between 10

TABLE V
G-MEAN FOR ALL COMPARED METHODS WITH THE TREE CLASSIFIER

None SMO BS1 BS2 SLS LN1 LN2

BS 0.00 23.36 23.93 27.58 21.10 43.93 41.21

BC 53.27 57.17 55.77 57.93 58.10 57.18 58.73

CL 31.46 45.89 38.84 45.86 41.41 46.25 50.04

CM 57.33 60.33 60.25 62.92 60.29 63.23 64.71

EC 73.28 83.77 76.89 84.26 80.71 80.67 82.88

FL 41.61 61.46 58.53 56.31 59.14 53.80 58.06

GC 58.83 63.00 62.70 63.55 62.81 63.57 63.11

HA 44.53 59.00 57.15 59.20 55.78 59.94 58.13

HE 63.17 66.43 66.21 67.75 69.81 70.05 69.97

PI 69.84 72.73 72.80 72.60 72.47 72.33 72.56

PO 8.23 26.44 26.25 26.47 25.86 27.52 26.67

SF 39.28 45.71 46.77 47.03 45.78 50.85 57.33

TR 60.79 63.18 65.53 65.53 63.71 63.95 63.67

YE 50.17 66.23 67.08 70.64 61.04 64.70 66.03

in borderline zone and 7 noisy ones – so there are no safe
examples. Quite similar distribution occurs for solar flare with
43 examples from the minority class distributed as 25 danger
and 19 noisy ones. In our opinion these values confirm that
imbalance ratio is not the only source of difficulty but ’the
nature’ of examples makes the learning problems very difficult.

Then, in Table IV we present results of F value for all
compared methods used with the tree classifier. We use the
following notation: None - baseline without any pre-processing
of input data, SMO – original SMOTE, BS – two versions
of Borderline-SMOTE, SLS – Safe-Level SMOTE and LN
denotes our proposed method, where LN1 is the basic over-
sampling with local neighbourhood and LN2 is its combination
with undersampling . Moreover, here and in further tables we
will use abbreviations of the full names of the data sets to
keep the width of tables in formatting requirements. Values of
sensitivity of the minority class and G-means are presented in
Tables VI V, respectively3.

In case of F measure the new introduced method LN-
SMOTE achieved very good results. Results of the basic
version of LN-SMOTE were the best among all compared
methods for 3 of all 14 data sets (and 3 times it is the second
in the order) and results of LN-SMOTE2 were the best for the
next 7 data sets. One can also notice that Borderline SMOTE
2 was the next method with respect to the high F-values.

In order to globally compare performance of a pair of
methods on all data sets we used the Wilcoxon Signed Ranks
Test – a nonparametric test for significant differences between
paired observations – see details of its calculations described in
[15]. We considered all pairs of methods and for each of them
we present in Tables VII and VIII 𝑝 value for the calculated
Wilcoxon statistics. If this value is smaller than the confidence
level 𝛼 = 0.05, the method from the column is superior to the
method in the corresponding row.

Results of Wilcoxon test for F value clearly show that the

3All these values are presented in a range between 0 and 100
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TABLE VI
SENSITIVITY OF THE MINORITY CLASS FOR ALL COMPARED METHODS

WITH TREE CLASSIFIER

None SMO BS1 BS2 SLS LN1 LN2

BS 0 15.33 13.33 17.5 12.5 34.83 35.83

BC 37.5 44.72 42.82 47.18 45.83 47.31 50.69

CL 21.67 34.5 27.78 34.44 30 34.72 38.06

CM 39.76 49.58 47.67 54.67 48.86 53.8 59.21

EC 61.11 77.5 69.44 75.17 71.39 66.39 74.17

FL 38.33 55 55 48.33 53.33 46.67 51.67

GC 45 54.33 52.89 56.33 53.22 55.44 55.78

HA 26.76 48.89 45.28 51.44 43.24 53.89 47.96

HE 51.67 56.94 53.61 60.39 62.5 59.17 58.89

PI 60.8 74.87 76.48 77.49 72.88 75.38 72.62

PO 6.11 23.11 22.78 22.78 22.22 23.33 22.22

SF 21.67 29 29.5 29.83 29 33.67 39.5

TR 42.3 47.35 53.73 50.46 49.42 49.4 46.59

YE 31.89 52.33 51.67 53.67 42.33 46.56 48.44

TABLE VII
F-MEASURE WILCOXON TEST – 𝑝 VALUES

None SMO BS1 BS2 SLS LN1 LN2

None − 0.00 0.00 0.00 0.00 0.00 0.00

SMO 1.00 − 0.64 0.06 0.78 0.07 0.02

BS1 1.00 0.38 − 0.02 0.50 0.06 0.00

BS2 1.00 0.95 0.98 − 0.95 0.29 0.03

SLS 1.00 0.24 0.52 0.06 − 0.06 0.01

LN1 1.00 0.94 0.95 0.73 0.95 − 0.10

LN2 1.00 0.99 1.00 0.97 1.00 0.91 −

new proposed LN-SMOTE2 outperforms all other method.
Then, the basic version LN-SMOTE1 is also very good,
although its superiority is smaller with respect to this test.
However, one can notice that difference between LN-SMOTE1
and the next method Borderline2 is not sufficiently significant.
Finally, according to this test Borderline1 and SafeLevel
(which are the next in an order with respect to F value) are
not significantly better than the original SMOTE.

Looking at the sensitivity alone (Table VI) we can say that
LN-SMOTE still gives good results, however, other methods
also lead to high values. Even SMOTE achieved the good value
of sensitivity for some data sets. However we can interpret
it that the SMOTE and Borderline1 methods are focused on
recognizing the minority class without paying enough attention
to majority classes (as these methods also received worse
G-means or F-values for these data). Wilcoxon test for G-
means still shows that LN-SMOTE (in particular version 2)
outperforms the many of other methods, however now there
is no significant difference with Borderline2.

Summary of experiments with Naive Bayes are presented in
Tables IX and X. Firstly, we should stress that this classifier
performed better than the tree classifies as evaluation values
are usually higher than in the previous tables. Moreover, differ-
ences between compared methods are smaller. LN-SMOTE is

TABLE VIII
G-MEAN WILCOXON TEST – 𝑝 VALUES

None SMO BS1 BS2 SLS LN1 LN2

None − 0.00 0.00 0.00 0.00 0.00 0.00

SMO 1.00 − 0.43 0.06 0.23 0.07 0.04

BS1 1.00 0.60 − 0.03 0.23 0.20 0.03

BS2 1.00 0.95 0.98 − 0.97 0.89 0.50

SLS 1.00 0.79 0.79 0.04 − 0.12 0.07

LN1 1.00 0.85 0.87 0.25 0.87 − 0.47

LN2 1.00 0.97 0.98 0.52 0.89 0.56 −

TABLE IX
F-MEASURE FOR THE MINORITY CLASS FOR ALL COMPARED METHODS

USED TOGETHER WITH NAIVE BAYES CLASSIFIER

None SMO BS1 BS2 SLS LN1 LN2

BS 0.00 14.07 13.07 13.35 14.12 14.26 14.15

BC 47.72 53.13 51.36 51.26 52.74 52.53 52.52

CL 35.58 43.24 42.24 42.33 42.65 44.54 44.01

CM 42.25 47.73 47.73 47.48 47.68 47.57 47.61

EC 62.23 61.96 63.59 64.80 63.91 61.08 60.91

FL 35.84 28.72 31.58 34.84 32.84 33.44 33.57

GC 54.46 61.47 61.93 61.91 61.74 62.07 61.85

HA 30.10 44.02 43.45 44.44 43.36 43.61 43.95

HE 63.69 68.74 69.15 69.87 69.50 66.73 68.66

PI 63.48 66.68 66.24 66.05 66.59 66.58 66.36

PO 4.44 21.82 20.25 26.45 21.48 25.89 22.57

SF 37.83 37.01 38.24 37.60 37.76 38.77 38.47

TR 27.44 48.32 48.73 48.83 48.53 48.75 48.72

YE 29.65 32.52 34.87 34.91 34.97 34.35 34.24

still a winner for many data set (but now rather its version LN1
is winning more times), however the Wilcoxon test showed
that some of these differences were not significant (due to
the page limit we have to skip presentation detailed tables).
In particular, we noticed that Borderline2 gave very similar
results and it was also a winner for some of remaining data.
On the other hand, this generalization is also exploiting the
closest majority neighbours similarly to our concept of the
local neighbourhood, so we could say that this aspect led
to better results than other methods. Considering SMOTE,
Borderline1 and Safe-Level (which performed worse than local
neighbourhood based methods) the Wilcoxon test showed no
difference between their performance.

V. CONCLUSIONS

In this paper we studied SMOTE based oversampling meth-
ods. Following a critical discussion on shortcoming of the
original version of SMOTE and its generalizations Borderline
and Safe-Level we introduced a new method LN-SMOTE. We
paid a particular attention to studying the local neighbours of
the seed minority example. Moreover, in this method we adapt
and modify the idea of calculating safe-levels describing the
distribution of other examples in the nearest neighbourhood.

The LN-SMOTE was compared with original SMOTE and
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TABLE X
G-MEAN FOR ALL COMPARED METHODS WITH THE NAIVE BAYES

CLASSIFIER

None SMO BS1 BS2 SLS LN1 LN2

BS 0.00 0.83 3.45 2.43 2.78 0.39 0.28

BC 59.68 65.36 63.65 63.75 64.99 64.89 64.75

CL 59.07 75.03 70.69 72.69 71.06 72.87 77.08

CM 59.38 66.39 66.36 66.18 66.32 66.47 66.30

EC 86.34 87.50 88.00 89.92 87.55 87.65 87.59

FL 56.23 54.03 57.10 62.41 59.35 60.84 60.75

GC 65.10 72.27 72.37 72.62 72.09 72.67 72.67

HA 42.24 59.50 58.87 59.55 59.01 59.16 59.44

HE 75.65 78.81 78.69 80.70 78.85 78.03 80.60

PI 71.01 73.10 72.85 72.94 73.24 73.05 73.12

PO 4.71 29.52 27.68 33.85 29.69 33.68 29.60

SF 73.50 77.49 77.72 77.29 77.63 77.78 77.75

TR 42.15 64.21 65.46 65.45 65.51 65.43 65.32

YE 61.82 71.87 74.44 74.47 73.27 73.03 79.46

Borderline and Safe-Level, on several imbalanced data sets.
The results, discussed in the previous section, show that
the new method outperformed the compared methods with
respect to F measure and G-means. The difference was higher
for the tree classifier than for Naive Bayes. However, the
Bayesian classifier generally better recognized the minority
classes. Then, the Borderline2 was always the next well
performing method. We can remark that Borderline2 also
considers majority class examples inside 𝑘 nearest neighbours,
so this observation confirm the use of local neighbourhood
instead of the typical oversampling SMOTE strategy.

Analysing results of two currently known SMOTE exten-
sions, Borderline and Safe-Level, we can say that Safe-Level
is not performing so well as it was reported in [9] – but this
previous study was done on few data sets only. What is also
surprising the differences between Borderline1 or Safe-Level
methods and original SMOTE were not so high, as we could
expect reading the literature. Indeed these differences were
not significant with respect to the Wilcoxon test. Both these
methods achived better results with Naive Bayes classifier, but
performed worse with J48.

Another interesting observation is the level of applied over-
sampling in all these methods. For some data sets the best
F values were obtained when the oversampling ratio 𝑜 was
greater than 𝑘 (see balance scale with 𝑘 = 5 and 𝑜 = 20,
or Ecoli with 𝑘 = 3 and 𝑜 = 10). Let us remind that it was
recommended in [1] to tune 𝑜 no higher than 𝑘. However,
in our experiments for data sets with very high imbalance
ratio, we noticed that the best results were obtained while the
oversampling ratio was sometimes 4–5 times higher than the
number of analyzed neighbours.

We also inform that we carried out additional experiments,
where we looked in a different way for the best combinations
of 𝑜 and 𝑘. We chose 𝑜 parameter leading to the best F value
for the original SMOTE only (run with 𝑘 = 5). Then, this
combination was used for the other compared methods (all of

them were run together with tree classifiers). The results of
𝐹 value in these experiments still confirmed that LN-SMOTE
performed better than other methods.

Yet another observation is that nearly all of studied data
sets are highly noisy and contain many borderline examples
without too many safe regions of the minority class. In future
research we want to carry out experiments with artificial data
where we could change and explore the impact of noisy,
borderline or safe examples from the minority class on the
classifier performance (see similar recent experiments with
other re-sampling methods [14]).

Another future research could concern studying the new
distance measure more specific for handling nominal attributes
and trying to more automatically adapt oversampling amount
depending on the distribution of examples around the seed
minority class example.
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