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Abstract. Multi-class imbalanced classification is more difficult than its
binary counterpart. Besides typical data difficulty factors, one should also
consider the complexity of relations among classes. This paper introduces
a new method for examining the characteristics of multi-class data. It
is based on analyzing the neighbourhood of the minority class examples
and on additional information about similarities between classes. The
experimental study has shown that this method is able to identify the
difficulty of class distribution and that the estimated minority example
safe levels are related with prediction errors of standard classifiers.
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1 Introduction

Learning from class-imbalanced data has been a topic of intensive research in
recent years. On one hand, several new specialized algorithms as well as data pre-
processing methods have been developed; see their reviews in [3, 5]. On the other
hand, a growing research interest has also been put into better understanding
the imbalanced data characteristics which cause the learning difficulties [11].

Most of these works concentrate on binary imbalanced problems with a sin-
gle minority class and a single majority class. This formulation is justified by
focusing the interest on the most important class. If there are multiple classes,
the original problem is transformed into binary one, e.g., by selecting a minority
class and aggregating the remaining classes into a single one.

Nevertheless, in some situations it may be reasonable to distinguish more
classes with low cardinalities. In such cases the aforementioned binarization be-
comes questionable. Consider for instance the medical problem of diagnosing two
types of asthma (minority classes) and discerning them from healthy patients
(majority class). Selecting one type of asthma as a minority class and aggregat-
ing the other one with the majority class leads to an unacceptable situation of
considering ill patients as healthy. Aggregating all asthmatic patients into one
minority class could be a better choice, but it still leads to the undesired loss of
information about the asthma type.

Handling multiple minority classes makes the learning task more difficult as
relations between classes become more complex [7, 12]. The current approaches



to it are adaptations of the one-against-all or one-against-one decomposition
into several binary subproblems [4]. Although the selected minority classes are
preserved in these approaches, the information about internal data distributions
or decision boundaries is lost, as in the original problem one class influences
several neighboring classes at the same time.

Moreover, these decompositions do not consider the mutual relations between
classes that are different for majority and minority classes. Consider for instance
the aforementioned asthma learning problem. The two asthma classes are more
closely related to each other, while their similarity to the majority class (healthy
patients) is smaller and it should be taken into account while constructing a new
approach to multiple imbalanced classes.

In our opinion, modeling the relations between classes is particularly useful
for studying data difficulty factors in imbalanced data. Previous research on
binary imbalanced data showed that local factors such as small sub-concepts,
overlapping or rare case are more influential than the global imbalance ratio [6,
11]. These aspects have a significant impact on performance of learning methods
[8]. Some classifiers and preprocessing methods are more sensitive to given data
types than the others. Therefore, prior to designing and applying new learning
methods, it is important to analyse the data characteristics. It is even more
important for multi-class problems, where such approaches do not exist yet.

In [8] we have introduced a new approach to model several types of data dif-
ficulty, based on analysing the local neighbourhood of minority examples, which
was successfully used to differentiate types of examples in binary problems [9,
11]. The results of that work are useful for constructing pre-processing methods
or ensembles specialized for imbalanced data [11].

The main aim of this study is to introduce a new method to identify different
types of minority examples in multi-class imbalanced data, which refer to data
difficulty. When analysing the local neighbourhood of the given example to de-
termine its difficulty, we take into account the class of each neighbour as in [8, 9].
However, we also exploit additional information about relations between classes
of the analysed example and its neighbor. It is based on priorly defined similar-
ity between these classes. To the best of our knowledge, this kind of handling
similarity of classes has not been proposed yet for imbalanced data.

Summarizing our contribution, this work introduces a concept of class simi-
larity and uses it to extend the method of identifying types of minority examples
to a multi-class setting. It is then applied to analyze the difficulty of several arti-
ficial and real-world multi-class imbalanced datasets. Finally, the impact of data
difficulty on learning abilities of several classifiers is experimentally studied.

2 Related Works

Multi-class imbalanced problems are not so intensively studied as its binary
counterpart. There exist only few approaches; for their recent review see [10]. For
instance, the new re-sampling techniques include static-SMOTE or Mahalanobis
distance-based over-sampling [2]. Nearly all other approaches follow the idea of



the decomposition of the multi-class imbalanced problem to a set of binary sub-
problems. Usually either one-against-all or one-against-one class binarization
is integrated with appropriate balancing of binary samples or with specialized
ensembles, see e.g. [4]. Few other algorithmic modifications are designed for
specific learning algorithms, like SVM or neural networks. However, as it is
pointed out in a review in [7], none of these methods takes into account both
individual properties of classes and their mutual relations.

Research on data characteristics of multi-class imbalanced datasets is limited
to one paper [10] only. The authors considered the categorization of minority
examples into four types (safe, borderline, rare, outlier), proposed for binary
problems in [9]. To adapt it to multi-class problems, they decomposed data
into several binary problems using one-vs-all technique, i.e. all examples from
different classes are treated equally when analysing the local neighbourhood of
the minority examples to determine their difficulty. Again, no notion of mutual
relations between the classes is taken into account.

3 Identification of difficulty degrees in multi-class
imbalanced data

The relations between multiple imbalanced classes are more complex than in
the binary versions. As discussed in [7, 12], a given class can be a minority class
with respect to some classes, and at the same time the majority one to another
subset of classes. When dealing with multiple classes, one may easily lose per-
formance on one minority class while attempting to improve it at another class
[10]. Moreover, the mutual relations between classes show that some minority
classes can be treated as more closely related to each other than to the majority
class. Current decomposition approaches, which treat all pairs of classes equally,
do not reflect well these issues [10, 12]. Thus, new approaches should take into
account the complexity of different relations between multiple classes.

Furthermore, data difficulty factors may appear only in some subsets of
classes. For instance, the degree of class overlapping between different classes
may be different. Analyzing the type of examples present in the given class dis-
tribution also strongly depends on their relations to other classes. For instance,
a given example may be of a borderline type [8, 9] for certain classes and at the
same time a safe example for the remaining classes. Using existing binary class
approaches to estimate imbalanced data difficulty is not straightforward in case
of multiple class imbalance. There is a need for a deeper insight into these com-
plex relations and for a new and more flexible approach to analyse multi-class
data difficulty factors.

3.1 Handling multiple class relations with similarity information

Modeling relations between multiple imbalanced classes can be realized by means
of additional information. In this paper, following the motivations described in
Section 1, we will exploit information about similarity between pairs of classes.



More precisely, given a certain class we need information about similarities of
other classes to it. An intuition behind it is the following: if example x from a
given class has some neighbors from other classes, then neighbors with higher
similarity are more preferred. For instance, consider the asthma learning prob-
lem, in which two asthma classes are defined as more similar to each other than
to the no-asthma class. If an example from asthma-type-1 is not surrounded
only by examples from its class (which is the most preferred situation), then we
would prefer it to have neighbors from asthma-type-2 class rather than from the
no-asthma class. Such neighborhood would let us consider the analysed example
to be safer – easier recognized as a member of its class (as it will be less prone
to suffer from the algorithm bias toward the majority classes).

We assume that for each pair of classes Ci, Cj the degree of their similarity
will be defined as a real valued number µij ∈ [0; 1]. Let us discuss its main
properties. Similarity of a class to itself is defined as µii = 1. The similarity
does not have to be symmetric, i.e. for some classes Ci, Cj it may happen that
µij 6= µji.

Although the values of µij are defined individually for each dataset, we claim
that for the given minority class Ci its similarity to other minority classes should
be relatively higher than to the majority classes.

The information about similarity should be provided by the user.
It can either come from the domain knowledge or be acquired from
a domain expert. If neither is available, we recommend for other minority
classes Cg µig → 1, while similarities to majority classes Ch should be µih ≈ 0 .

3.2 Data difficulty with respect to a safe level of minority examples

In our earlier research [8, 9, 11] we claimed that (1) imbalanced data difficulty
factors correspond to local data characteristics, occurring in some sub-regions of
the minority class distribution and (2) the mutual position of an example with
respect to examples from other classes of both minority and majority classes
influences learning classifiers. We linked these difficulty factors to different types
of examples – safe and unsafe (difficult) for recognizing the minority class. Safe
examples are located in the homogeneous sub-regions belonging to one class while
unsafe examples are categorized into borderline, rare cases or outliers. In [8] we
introduced the method of assessing the type of example by analyzing class labels
of its surrounding examples. The neighborhood was constructed based either on
k–nearest neighbors or on kernel functions.

In this study we consider the k–nearest neighbors variant1. Determining the
number of examples from the majority class in the neighborhood of the minority
example allows to assess how safe the example is, and then establish its type.
Below we adapt this idea for the multiple imbalanced class framework.

1 Refer to [9] for details of the neighborhood construction, recommended distance
functions and neighborhood size tuning.



Considering a given example x belonging to the minority class Ci we define
its safe level with respect to l classes of examples in its neighborhood as:

safe(xCi
) =

∑l
j=1 nCj

µij

n

where µij is a degree of similarity, nCj is a number of examples from class Cj

inside the considered neighborhood of x and n is a total number of neighbors.
Given the safe levels calculated for all learning examples, one can analyse

this information in two ways: either analyze numeric distribution of safe levels
in the learning set for each class, or transform the continuous safe levels into
discrete intervals corresponding to types of example (as done in [8, 9]). In the
next section we follow the first option and then aggregate the distributions for
each class, e.g., by the average. They should be interpreted in the following way:
the lower the average value, the more unsafe (difficult) is the minority class. The
statistics for each minority class can be analysed independently or can be further
aggregated into a single criterion describing the difficulty of the whole learning
set. Alternatively, the histograms of safe levels in each class can be presented to
the user.

4 Experimental evaluation

In the experiments we want to examine three aims: (1) verify whether the new
approach to evaluate the safe level (see Section 3.2) sufficiently reflects the diffi-
culty of multi-class dataset; (2) compare this approach against its binary prede-
cessor; (3) check whether values of safe levels relate to classification performance
of standard algorithms. In order to check these aims, we will use several synthetic
and real-world multi-class imbalanced datasets.

The artificial datasets were constructed to control their level of difficulty [13].
They are two-dimensional with two minority classes, having elliptic shapes, sur-
rounded by the examples from the majority class. Each data set contains 1200
examples with the class ratio 1:2:7. In the first dataset (A1), two minority classes
are well separated from each other and also from the majority class (see Fig. 1).
Then, it is modified to (A1b) version by introducing an overlapping border with
the majority class. In the third dataset (A2) minority class ellipses are addi-
tionally overlapping (see Fig. 1). The most difficult dataset (A3) additionally
contains rare cases, outliers and more borderline examples.

Following similar motivations and analysis of the previous research on diffi-
culty of binary imbalanced data [9] we chose three UCI datasets: new thyroid

(NT) is a safe (easy) dataset, ecoli (EC) is a borderline dataset, and cleveland

(CL) is a rare/outlier dataset. Characteristics of these datasets are presented in
Table 1 and their visualisations after the reduction to two dimensions using the
MDS method are presented on Fig. 1. If some of these datasets contain more
majority classes, we aggregated them to be consistent with the artificial data
setup.



Dataset Abbrev. Size Min1
name

Min1
size

Min2
name

Min2
size

Min3
name

Min3
size

new-thyroid NT 215 2 35 3 30
ecoli EC 336 imU 35 om 20 pp 52
cleveland CL 303 2 36 3 35 4 13

Table 1. Characteristics of real-world datasets

We chose three different configurations of similarity values µij - see Table 2.
In the version called Safety1, we set the similarity between minority classes to a
high value (0.8), following the recommendation from Section 3.1. In Safety2 we
also assume high similarity between minority classes (0.7), but we assign a small
similarity between majority and minority classes as 0.2. The last configuration
Safety3, models the situation when there is no prior information about classes
relation (quite small similarity between minority classes and no similarity with
the majority class). The column called Safety refers to the previous binary class
version [9].

Safety Safety1 Safety2 Safety3

µmin1 min2 0 0.8 0.7 0.5
µmin maj 0 0 0.2 0

Table 2. Different sets of similarity values

All experiments were performed in scikit-learn or WEKA frameworks. Classi-
fication performance was evaluated in 5-fold cross validation. Following earlier
related studies, we selected CART decision tree, PART rules, Naive
Bayes and 3-nearest neighbors classifier for the experiment. All clasi-
fiers were used with default parameter values. Values of average safe
levels are presented in Table 3, while sensitivity (true-positive-rate2) of minority
classes is given in Table 4. It is important to note that sensitivity is re-
ported for each class separately and no aggregation through multiple
classes was used.3

4.1 Analysis of artificial datasets

Let us consider the results for each dataset in the order of their increasing
difficulty (from A1 to A3).

In dataset A1, classes are easily separable, so the average safe level of both
minority classes is close to 1 (Table 3). It is diminished by the safe level of some

2 The true positive rate of a class is the number of correctly identified class
examples divided by the total number of this class examples.

3 Artificial datasets and detailed results are available at
www.cs.put.poznan.pl/mlango/publications/multi-typology.html



Safety Safety1 Safety2 Safety3
Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3

NT 0.77 0.78 0.77 0.78 0.82 0.82 0.77 0.78
EC 0.57 0.74 0.82 0.57 0.91 0.86 0.66 0.90 0.88 0.57 0.85 0.84
CL 0.14 0.13 0.08 0.29 0.32 0.34 0.41 0.42 0.42 0.23 0.25 0.24
A1 0.91 0.96 0.91 0.96 0.93 0.97 0.91 0.96
A1b 0.68 0.80 0.68 0.80 0.75 0.84 0.68 0.80
A2 0.53 0.70 0.71 0.79 0.74 0.82 0.64 0.76
A3 0.32 0.47 0.55 0.59 0.60 0.65 0.46 0.54

Table 3. Average safe levels for real and artificial datasets.

CART NB 3NN PART
Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3 Min1 Min2 Min3

NT 0.94 0.83 0.94 0.86 0.71 0.80 0.94 0.83
EC 0.60 0.85 0.78 0.68 0.30 0.90 0.48 0.75 0.84 0.46 0.80 0.79
CL 0.28 0.11 0.07 0.14 0.25 0.15 0.08 0.00 0.00 0.20 0.11 0.08
A1 0.93 0.93 0.47 0.84 0.94 0.97 0.88 0.97
A1b 0.74 0.82 0.60 0.78 0.77 0.84 0.67 0.70
A2 0.56 0.73 0.32 0.56 0.54 0.79 0.50 0.73
A3 0.25 0.42 0.00 0.02 0.20 0.39 0.14 0.57

Table 4. Sensitivity of minority classes for studied classifiers.

minority examples on the border of the class, which are surrounded by majority
neighbors. As in Safety2 the degree of similarity µmin maj is higher (0.2) than
for the remaining configurations, the average safety for this configuration is also
slightly increased.

A1b is similar to A1, but has higher overlapping with the majority class.
Therefore, its average safe level is smaller than for A1. Similarly to A1, values
for Safety2 are higher than for other configurations (where µmin maj = 0).

Dataset A2 is a more difficult modification of A1b dataset, with additional
overlapping between minority classes. It is reflected in the lower values of the
average safe level compared to A1 and A1b. Let us observe, however, that in case
of Safety1, where we defined a very high similarity between minority classes
(0.8), this additional overlapping is mostly neglected, which reduces the dataset
A2 to dataset A1b. It can be noticed by almost identical average safe levels of
both datasets for Safety1.

Finally, dataset A3 is the most difficult, with additional rare cases and out-
liers. It has also the lowest average safe levels from all datasets, independent of
the similarity degrees configuration.

For all artificial datasets, class Min1 has lower safe levels than Min2 because
it is smaller, so fewer examples are placed in homogeneous safe regions.

Looking at classification performance, one can notice that the values of safe
levels are related to the sensitivity of minority classes (Table 4) – dataset A1
is best recognized by all classifiers, while dataset A3 is the most difficult. Class



Min1 is always recognized worse than Min2. Majority class recognition was
always at approximately 0.9.

To sum up, we have shown that the proposed approach is related to data
difficulty – by rating the datasets from the safest (A1) to the most difficult
(A3). The difficulty is also strongly related to the recognition of the minority
classes by different classifiers. Moreover, it has been shown that analyzing our
enhanced safeness (related to similarity degree) allows the user to differentiate
overlapping of different classes, giving a better insight into the structure of the
imbalanced dataset.

4.2 Analysis of real-world datasets

Looking at the MDS visualisation of NT dataset (Fig. 1), notice that all the
classes are clearly separated. It is also reflected in average safe levels (Table 3).
Its values of Safety, Safety1, and Safety3 are similar, while its Safety2 is
slightly higher. This suggests that analogously to datasets A1 and A1b, the
overlapping occurs only between minority and majority classes (minority classes
do not overlap each other) – it is confirmed by the MDS visualisation. The results
of classifiers on this dataset also show that it is of a safe type.

EC dataset is more difficult. On MDS visualisation, class Min2 partially over-
laps with Min3, then Min3 overlaps with Min2 and Maj, while Min1 overlaps
with Maj. It could be devised also from values of the safe levels. For Min1 the
safe level is stable for Safety, Safety1 and Safety3 configurations and increases
slightly for Safety2 – which confirms that it overlaps only with majority class.
The safe level of Min2, on the other hand, is the smallest for Safety (µmin1 min2

= 0) and the highest for Safety3 (µmin1 min2 = 0.8) which suggests that the
overlapping is mostly between minority classes. From the classification point of
view, this dataset is more difficult than NT, and Min1 is the most difficult class
for all classifiers (except NB). It is due to a fact that this class is surrounded by
the majority class, towards which standard classifiers have a strong bias. The lat-
ter observation supports our intuition expressed in Section 3.1, that the minority
neighborhood should be considered as safer (easier) than majority neighborhood,
and that it should be taken into account when estimating the difficulty of the
multi-class imbalanced dataset.

CL dataset is the most difficult. The MDS visualisation clearly shows that
this dataset consists mostly of mixed rare and outlier examples for all classes.
Its average safe level is also very low, and the classes are hardly recognized by
any of the classifiers.

To sum up, the analysis on real-world datasets also shows that the proposed
approach can sufficiently well estimate the difficulty of the dataset, which is
consistent with both MDS visualisations and with performance of classifiers.

5 Concluding remarks

The problem of learning from imbalanced multi-class data is particularly chal-
lenging and requires more extensive research on its nature and sources of its



Fig. 1. MDS visualisation of studied imbalanced datasets. In the first column from
the top: CL, EC, NT; second column: A1, A2, A3.



difficulty. In our opinion, it is necessary to analyze types of examples (safe vs.
unsafe) in the distribution of the minority class. As such research is still not well-
developed, we have introduced a new method. It is based both on analyzing the
neighborhood of the minority class example and on the additional information
about similarity of neighboring classes to the class of this example. To the best
of our knowledge, similar approaches to handle complex relations among classes
have not been considered yet – they were put in the main open research points
of [7].

The results of experiments show that this method sufficiently identifies diffi-
culties of minority class distributions in various artificial and real-world datasets
– which is expressed by values of safe levels for appropriate minority examples.
Furthermore, these values are well related to predictions of standard classifiers.

Although our method requires defining values of similarities among classes,
we claim that by using them we were able to identify data difficulty factors, e.g.
we could evaluate which classes overlap. Note that considering various sets of
class similarities has led us to observe that the class surrounded by the majority
examples is more difficult to recognize than overlapped minority classes (see an
analysis of ecoli in Section 4.2). Experiments have also demonstrated that data
difficulty factors are more influential than the global imbalance ratio.

Our proposal could also be used to construct new preprocessing methods,
e.g. by exploiting safe levels to adaptively tune re-sampling. Furthermore, they
could be used inside new algorithms, similarly to earlier attempts of using the
local neighborhood in generalizations of under-bagging [1].
Acknowledgment. The research was funded by the the Polish National Science
Center, grant no. DEC-2013/11/B/ST6/00963.
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