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Abstract. Problems of using elements of rough sets theory and rule
induction to create efficient classifiers are discussed. In the last decade
many researches attempted to increase a classification accuracy by com-
bining several classifiers into integrated systems. The main aim of this
paper is to summarize the author’s own experience with applying one
of his rule induction algorithm, called MODLEM, in the framework of
different combined classifiers, namely, the bagging, n2–classifier and the
combiner aggregation. We also discuss how rough approximations are
applied in rule induction. The results of carried out experiments have
shown that the MODLEM algorithm can be efficiently used within the
framework of considered combined classifiers.

1 Introduction

Rough sets theory has been introduced by Professor ZdzisÃlaw Pawlak to analyse
granular information [25, 26]. It is based on an observation that given information
about objects described by attributes, a basic relation between objects could be
established. In the original Pawlak’s proposal [25] objects described by the same
attribute values are considered to be indiscernible. Due to limitations of available
information, its natural granulation or vagueness of a representation language
some elementary classes of this relation may be inconsistent, i.e. objects having
the same descriptions are assigned to different categories. As a consequence
of the above inconsistency it is not possible, in general, to precisely specify a
set of objects in terms of elementary sets of indiscernible objects. Therefore,
Professor ZdzisÃlaw Pawlak introduced the concept of the rough set which is a
set characterized by a pair of precise concepts – lower and upper approximations
constructed from elementary sets of objects.

This quite simple, but smart, idea is the essence of the Pawlak’s theory. It
is a starting point to other problems, see e.g. [27, 20, 26, 9]. In particular many
research efforts have concerned classification of objects represented in data ta-
bles. Studying relationships between elementary sets and categories of objects (in
other terms, target concepts or decision classes in the data table) leads to, e.g.,
evaluating dependency between attributes and objects classification, determin-
ing the level of this dependency, calculating importance of attributes for objects



classification, reducing the set of attributes or generating decision rules from
data. It is also said that the aim is to synthesize reduced, approximate models of
concepts from data [20]. The transparency and explainability of such models to
human is an important property. Up to now rough sets based approaches were
applied to many practical problems in different domains – see, e.g., their list
presented in [20].

Besides ”classical” rough sets, based on the indiscernibility relation, several
generalizations have been introduced. Such data properties as, e.g., imprecise
attribute values, incompleteness, preference orders, are handled by means of
tolerance, similarity, fuzzy valued or dominance relations [9, 20, 37].

Looking into the previous research on rough sets theory and its applications,
we could distinguish two main perspectives: descriptive and predictive ones.

The descriptive perspective includes extraction information patterns or reg-
ularities, which characterize some properties hidden in available data. Such pat-
terns could facilitate understanding dependencies between data elements, ex-
plaining circumstances of previous decisions and generally gain insight into the
structure of the acquired knowledge. In this context presentation of results in a
human readable form allowing an interpretation is a crucial issue.

The other perspective concerns predicting unknown values of some attributes
on the basis of an analysis of previous examples. In particular, it is a prediction of
classes for new object. In this context rough sets and rules are used to construct
a classifier that has to classify new objects. So, the main evaluation criterion is
a predictive classification accuracy. Let us remind that the predictive classifica-
tion has been intensively studied since many decades in such fields as machine
learning, statistical learning, pattern recognition. Several efficient methods for
creating classifiers have been introduced; for their review see, e.g., [16, 19, 23].
These classifiers are often constructed with using a search strategy optimizing
criteria strongly related to predictive performance (which is not directly present
in the original rough sets theory formulation). Requirements concerning inter-
pretability are often neglected in favor of producing complex transformations of
input data – an example is an idea of support vector machines.

Although in both perspectives we could use the same knowledge representa-
tion – rules, since motivation and objectives are distinct, algorithmic strategies
as well as criteria for evaluating a set of rules are quite different. For instance,
the prediction perspective directs an interest to classification ability of the com-
plete rules, while in the descriptive perspective each rule is treated individually
as a possible representative of an ‘interesting’ pattern evaluated by measures as
confidence, support or coverage - for a more exhaustive discussion see, e.g., [42].

In my opinion, basic concepts of the rough sets theory have been rather con-
sidered in the way similar to a descriptive analysis of data tables. Nevertheless,
several authors have developed their original approaches to construct decision
rules from rough approximations of decision classes which joined together with
classification strategies led to good classifiers, see e.g. [1, 11, 20, 34, 37]. It seems
to me that many authors moved their interest to this direction in the 90’s be-
cause of at least two reasons: (1) a research interest to verify whether knowledge



derived from ”closed world” of the data table could be efficiently applied to new
objects coming from the ”open world” – not seen in the analysed data table; (2)
as a result of working with real life applications.

Let us also notice that the majority of research has been focused on de-
veloping single classifiers – i.e. based on the single set of rules. However, both
empirical observations and theoretical works confirm that one cannot expect to
find one single approach leading to the best results on overall problems [6]. Each
learning algorithm has its own area of superiority and it may outperform others
for a specific subset of classification problems while being worse for others. In
the last decade many researches attempted to increase classification accuracy by
combining several single classifiers into an integrated system. These are sets of
learned classifiers, whose individual predictions are combined to produce the final
decision. Such systems are known under names: multiple classifiers, ensembles
or committees [6, 45]. Experimental evaluations shown that these classifiers are
quite effective techniques for improving classification accuracy. Such classifiers
can be constructed in many ways, e.g., by changing the distributions of examples
in the learning set, manipulating the input features, using different learning al-
gorithms to the same data, see e.g. reviews [6, 45, 36]. Construction of integrated
classifiers has also attracted the interest of some rough sets researchers, see e.g.
[2, 8, 24]. The author and his co-operators have also carried out research, first
on developing various rule induction algorithms and classification strategies (a
review is given in [37]), and then on multiple classifiers [18, 36, 38, 40, 41].

The main aim of this paper is to summarize the author’s experience with
applying one of his rule induction algorithm, called MODLEM [35], in the frame-
work of different multiple classifiers: the popular bagging approach [4], the n2-
classifier [18] – a specialized approach to solve multiple class learning problems,
and the combiner approach to merge predictions of heterogeneous classifiers in-
cluding also MODLEM [5]. The second aim is to briefly discuss the MODLEM
rule induction algorithm and its experimental evaluation.

This paper is organized as follows. In the next section we shortly discuss
rule induction using the rough sets theory. Section 3 is devoted to the MOD-
LEM algorithm. In section 4 we briefly present different approaches to construct
multiple classifiers. Then, in the successive three sections we summarize the ex-
perience of using rule classifiers induced by MODLEM in the framework of three
different multiple classifiers. Conclusions are grouped in section 8.

2 Rules Generation and Rough Sets

2.1 Notation

Let us assume that objects – learning examples for rule generation – are repre-
sented in decision table DT = (U,A∪{d}), where U is a set of objects, A is a set
of condition attributes describing objects. The set Va is a domain of a. Let fa(x)
denotes the value of attribute a ∈ A taken by x ∈ U ; d /∈ A is a decision attribute
that partitions examples into a set of decision classes {Kj : j = 1, . . . , k}.



The indiscernibility relation is the basis of Pawlak’s concept of the rough set
theory. It is associated with every non-empty subset of attributes C ⊆ A and
∀x, y ∈ U is defined as xICy ⇔ {(x, y) ∈ U × U fa(x) = fa(y) ∀a ∈ C }.

The family of all equivalence classes of relation I(C) is denoted by U/I(C).
These classes are called elementary sets. An elementary equivalence class con-
taining element x is denoted by IC(x).

If C ⊆ A is a subset of attributes and X ⊆ U is a subset of objects then the
sets: {x ∈ U : IC(x) ⊆ X}, {x ∈ U : IC(x) ∩ X 6= ∅} are called C-lower and
C-upper approximations of X, denoted by CX and CX, respectively. The set
BNC(X) = CX − CX is called the C-boundary of X.

A decision rule r describing class Kj is represented in the following form:

if P then Q,

where P = w1 ∧w2 ∧ . . . wp is a condition part of the rule and Q is decision part
of the rule indicating that example satisfying P should be assigned to class Kj .
The elementary condition of the rule r is defined as (ai(x) rel vai

), where rel is
a relational operator from the set {=, <,≤, >,≥} and vai

is a constant being a
value of attribute ai.

Let us present some definitions of basic rule properties. [P ] is a cover of the
condition part of rule r in DT , i.e. it is a set of examples, which description sat-
isfy elementary conditions in P . Let B be a set of examples belonging to decision
concept (class Kj or its appropriate rough approximation in case of inconsisten-
cies). The rule r is discriminant if it distinguishes positive examples of B from
its negative examples, i.e. [P ] =

⋂
[wi] ⊆ B. P should be a minimal conjunction

of elementary conditions satisfying this requirement. The set of decision rules R
completely describes examples of class Kj , if each example is covered by at least
one decision rules.

Discriminant rules are typically considered in the rough sets literature. How-
ever, we can also construct partially discriminant rules that besides positive
examples could cover a limited number of negative ones. Such rules are charac-
terized by the accuracy measure being a ratio covered positive examples to all
examples covered by the rule, i.e. [P ∩B]/[P ].

2.2 Rule generation

If decision tables contain inconsistent examples, decision rules could be gener-
ated from rough approximations of decision classes. This special way of treating
inconsistencies in the input data is the main point where the concept of the
rough sets theory is used in the rules induction phase. As a consequence of using
the approximations, induced decision rules are categorized into certain (discrim-
inant in the sense of the previous definition) and possible ones, depending on the
used lower and upper approximations, respectively.

Moreover, let us mention other rough sets approaches that use information
on class distribution inside boundary and assign to lower approximation these
inconsistent elementary sets where the majority of examples belong to the given



class. This is handled in the Variable Precision Model introduced by Ziarko
[47] or Variable Consistency Model proposed by Greco et al. [10] – both are a
subject of many extensions, see e.g. [31]. Rules induced from such variable lower
approximations are not certain but partly discriminant ones.

A number of various algorithms have been already proposed to induce deci-
sion rules – for some reviews see e.g. [1, 11, 14, 20, 28, 34, 37]. In fact, there is no
unique ”rough set approach” to rule induction as elements of rough sets can be
used on different stages of the process of induction and data pre-processing. In
general, we can distinguish approaches producing minimal set of rules (i.e. cover-
ing input objects using the minimum number of necessary rules) and approaches
generating more extensive rule sets.

A good example for the first category is LEM2, MODLEM and similar al-
gorithms [11, 35]. The second approaches are nicely exemplified by Boolean rea-
soning [28, 29, 1]. There are also specific algorithms inducing the set of decision
rules which satisfy user’s requirements given a priori, e.g. the threshold value for
a minimum number of examples covered by a rule or its accuracy. An example
of such algorithms is Explore described in [42]. Let us comment that this algo-
rithm could be further extended to handle imbalanced data (i.e. data set where
one class – being particularly important – is under-represented comparing to
cardinalities of other classes), see e.g. studies in [15, 43].

3 Exemplary Rule Classifier

In our study we will use the algorithm, called MODLEM, introduced by Ste-
fanowski in [35]. We have chosen it because of several reasons. First of all, the
union of rules induced by this algorithm with a classification strategy proved
to provide efficient single classifiers, [14, 41, 37]. Next, it is designed to handle
various data properties not included in the classical rough sets approach, as e.g.
numerical attributes without its pre-discretization. Finally, it produces the set
of rules with reasonable computational costs – what is important property for
using it as a component inside combined classifiers.

3.1 MODLEM algorithm

The general schema of the MODLEM algorithm is briefly presented below. More
detailed description could be found in [14, 35, 37]. This algorithm is based on the
idea of a sequential covering and it generates a minimal set of decision rules
for every decision concept (decision class or its rough approximation in case
of inconsistent examples). Such a minimal set of rules (also called local covering
[11]) attempts to cover all positive examples of the given decision concept, further
denoted as B, and not to cover any negative examples (i.e. U \ B). The main
procedure for rule induction scheme starts from creating a first rule by choosing
sequentially the ‘best’ elementary conditions according to chosen criteria (see
the function Find best condition). When the rule is stored, all learning positive
examples that match this rule are removed from consideration. The process



is repeated while some positive examples of the decision concept remain still
uncovered. Then, the procedure is sequentially repeated for each set of examples
from a succeeding decision concept.

In the MODLEM algorithm numerical attributes are handled during rule
induction while elementary conditions of rules are created. These conditions are
represented as either (a < va) or (a ≥ va), where a denotes an attribute and va

is its value. If the same attribute is chosen twice while building a single rule, one
may also obtain the condition (a = [v1, v2)) that results from an intersection of
two conditions (a < v2) and (a ≥ v1) such that v1 < v2. For nominal attributes,
these conditions are (a = va) or could be extended to the set of values.

Procedure MODLEM
(input B - a set of positive examples from a given decision concept;

criterion - an evaluation measure;
output T – single local covering of B, treated here as rule condition parts)
begin

G := B; {A temporary set of rules covered by generated rules}
T := ∅;
while G 6= ∅ do {look for rules until some examples remain uncovered}
begin

T := ∅; {a candidate for a rule condition part}
S := U ; {a set of objects currently covered by T}
while (T = ∅) or (not([T ] ⊆ B)) do {stop condition for accepting a rule}
begin

t := ∅; {a candidate for an elementary condition}
for each attribute q ∈ C do {looking for the best elementary condition}
begin

new t :=Find best condition(q, S);
if Better(new t, t, criterion) then t := new t;
{evaluate if a new condition is better than previous one
according to the chosen evaluation measure}

end;
T := T ∪ {t}; {add the best condition to the candidate rule}
S := S ∩ [t]; {focus on examples covered by the candidate}

end; { while not([T ] ⊆ B }
for each elementary condition t ∈ T do

if [T − t] ⊆ B then T := T − {t}; {test a rule minimality}
T := T ∪ {T}; {store a rule}
G := B −⋃

T∈T [T ] ; {remove already covered examples}
end; { while G 6= ∅ }
for each T ∈ T do

if
⋃

T ′∈T −T
[T ′] = B then T := T − T {test minimality of the rule set}

end {procedure}

function Find best condition
(input c - given attribute; S - set of examples; output best t - bestcondition)
begin

best t := ∅;
if c is a numerical attribute then



begin
H:=list of sorted values for attribute c and objects from S;
{ H(i) - ith unique value in the list }
for i:=1 to length(H)-1 do
if object class assignments for H(i) and H(i + 1) are different then
begin

v := (H(i) + H(i + 1))/2;
create a new t as either (c < v) or (c ≥ v);
if Better(new t, best t, criterion) then best t := new t ;

end
end
else { attribute is nominal }
begin

for each value v of attribute c do
if Better((c = v), best t, criterion) then best t := (c = v) ;

end
end {function}.

For the evaluation measure (i.e. a function Better) indicating the best condi-
tion, one can use either class entropy measure or Laplacian accuracy. For their
definitions see [14] or [23]. It is also possible to consider a lexicographic order of
two criteria measuring the rule positive cover and, then, its conditional probabil-
ity (originally considered by Grzymala in his LEM2 algorithm or its last, quite
interesting modification called MLEM). In all experiments, presented further in
this paper, we will use the entropy as an evaluation measure. Having the best
cut-point we choose a condition (a < v) or (a ≥ v) that covers more positive
examples from the concept B.

In a case of nominal attributes it is also possible to use another option of
Find best condition function, where a single attribute value in the elementary
condition (a = vi) is extended to a multi-valued set (a ∈ Wa), where Wa is a
subset of values from the attribute domain. This set is constructed in the similar
way as in techniques for inducing binary classification trees. Moreover, the author
created MODLEM version with another version of rule stop condition. Let us
notice that in the above schema the candidate T is accepted to become a rule if
[T ] ⊆ B, i.e. a rule should cover learning examples belonging to an appropriate
approximation of the given class Kj . For some data sets – in particular noisy
ones – using this stop condition may produce too specific rules (i.e. containing
many elementary conditions and covering too few examples). In such situations
the user may accept partially discriminating rules with high enough accuracy
– this could be done by applying another stop condition ([T ∩ B]/[T ] ≥ α. An
alternative is to induce all, even too specific rules and to post-process them –
which is somehow similar to pruning of decision trees.

Finally we can illustrate the use of MODLEM by a simple example. The
data table contains examples of 17 decision concerning classification of some
customers into three classes coded as d, p, r. All examples are described by 5
qualitative and numerical attributes.



Table 1. A data table containing examples of customer classification

Age Job Period Income Purpose Decision

m u 0 500 K r
sr p 2 1400 S r
m p 4 2600 M d
st p 16 2300 D d
sr p 14 1600 M p
m u 0 700 W r
sr b 0 600 D r
m p 3 1400 D p
sr p 11 1600 W d
st e 0 1100 D p
m u 0 1500 D p
m b 0 1000 M r
sr p 17 2500 S p
m b 0 700 D r
st p 21 5000 S d
m p 5 3700 M d
m b 0 800 K r

This data table is consistent, so lower and upper approximations are the
same. The use of MODLEM results in the following set of certain rules (square
brackets contain the number of learning examples covered by the rule):

rule 1. if (Income < 1050) then (Dec = r) [6]
rule 2. if (Age = sr) ∧ (Period < 2.5) then (Dec = r) [2]
rule 3. if (Period ∈ [3.5, 12.5)) then (Dec = d) [2]
rule 4. if (Age = st) ∧ (Job = p) then (Dec = d) [3]
rule 5. if (Age = m) ∧ (Income ∈ [1050, 2550) then (Dec = p) [2]
rule 6. if (Job = e) then (Dec = p) [1]
rule 7. if (Age = sr) ∧ (Period ≥ 12.5) then (Dec = p) [2]
Due to the purpose and page limits of this paper we do not show details of

MODLEM working steps while looking for a single rule - the reader is referred
to the earlier author’s papers devoted to this topic only.

3.2 Classification Strategies

Using rule sets to predict class assignment for an unseen object is based on
matching the object description to condition parts of decision rules. This may
result in unique matching to rules from the single class. However two other
ambiguous cases are possible: matching to more rules indicating different classes
or the object description does not match any of the rules. In these cases, it
is necessary to apply proper strategies to solve these conflict cases. Review of
different strategies is given in [37]

In this paper we employ two classification strategies. The first was introduced
by Grzymala in LERS [12]. The decision to which class an object belongs to is



made on the basis of the following factors: strength and support. The Strength
is the total number of learning examples correctly classified by the rule during
training. The support is defined as the sum of scores of all matching rules from
the class. The class Kj for which the support, i.e., the following expression

∑

matching rules R describing Ki

Strength factor(R)

is the largest is the winner and the object is assigned to Kj .
If complete matching is impossible, all partially matching rules are identified.

These are rules with at least one elementary condition matching the correspond-
ing object description. For any partially matching rule R, the factor, called
Matching factor (R), defined as a ratio of matching conditions to all conditions
in the rule, is computed. In partial matching, the concept Kj for which the
following expression is the largest

∑

partially matching rules R

Matching factor(R) ∗ Strength factor(R)

is the winner and the object is classified as being a member of Kj .
The other strategy was introduced in [32]. The main difference is in solving

no matching case. It is proposed to consider, so called, nearest rules instead of
partially matched ones. These are rules nearest to the object description in the
sense of chosen distance measure. In [32] a weighted heterogeneous metric DR
is used which aggregates a normalized distance measure for numerical attributes
and {0;1} differences for nominal attributes. Let r be a nearest matched rule, e
denotes a classified object. Then DR(r, e) is defined as:

Dr(r, e) =
1
m

(
∑

a∈P

dp
a)1/p

where p is a coefficient equal to 1 or 2, m is the number of elementary conditions
in P – a condition part of rule r. A distance da for numerical attributes is equal
to |a(e)− vai|/|va−max − va−min|, where vai is the threshold value occurring in
this elementary condition and va−max, va−min are maximal and minimal values
in the domain of this attribute. For nominal attributes present in the elementary
condition, distance da is equal to 0 if the description of the classified object e
satisfies this condition or 1 otherwise. The coefficient expressing rule similarity
(complement of the calculated distance, i.e. 1 − DR(r, e)) is used instead of
matching factor in the above formula and again the strongest decision Kj wins.
While computing this formula we can use also heuristic of choosing the first k
nearest rules only. More details on this strategy the reader can find in papers
[32, 33, 37].

Let us consider a simple example of classifying two objects e1 = {(Age =
m), (Job = p), (Period = 6), (Income = 3000), (Purpose = K)} and e2 =
{(Age = m), (Job = p), (Period = 2), (Income = 2600), (Purpose = M)}. The
first object is completely matched by to one rule no. 3. So, this object is be



assigned to class d. The other object does not satisfy condition part of any rules.
If we use the first strategy for solving no matching case, we can notice that
object e2 is partially matched to rules no. 2, 4 and 5. The support for class r is
equal to 0.5·2 = 1. The support for class d is equal to 0.5·2 + 0.5·2 = 2. So, the
object is assigned to class d.

3.3 Summarizing Experience with Single MODLEM Classifiers

Let us shortly summarize the results of studies, where we evaluated the classi-
fication performance of the single rule classifier induced by MODLEM. There
are some options of using this algorithm. First of all one can choose as decision
concepts either lower or upper approximations. We have carried out several ex-
perimental studies on benchmark data sets from ML Irvine repository [3]. Due
to the limited size of this paper, we do not give precise tables but conclude that
generally none of approximations was better. The differences of classification ac-
curacies were usually not significant or depended on the particular data at hand.
This observation is consistent with previous experiments on using certain or pos-
sible rules in the framework of LEM2 algorithm [13]. We also noticed that using
classification strategies while solving ambiguous matching was necessary for all
data sets. Again the difference of applied strategies in case of non-matching (ei-
ther Grzymala’s proposal or nearest rules) were not significant. Moreover, in [14]
we performed a comparative study of using MODLEM and LEM2 algorithms
on numerical data. LEM2 was used with preprocessing phase with the good
discretization algorithm. The results showed that MODLEM can achieved good
classification accuracy comparable to best pre-discretization and LEM2 rules.

Here, we could comment that elements of rough sets are mainly used in MOD-
LEM as a kind of preprocessing, i.e. approximations are decision concepts. Then,
the main procedure of this algorithm follows rather the general inductive prin-
ciple which is common aspect with many machine learning algorithms – see e.g.
a discussion of rule induction presented in [23]. Moreover, the idea of handling
numerical attributes is somehow consistent with solutions also already present
in classification tree generation. In this sense, other rule generation algorithms
popular in rough sets community, as e.g. based on Boolean reasoning, are more
connected with rough sets theory.

It is natural to compare performance of MODLEM induced rules against
standard machine learning systems. Such a comparative study was carried out
in [37, 41] and showed that generally the results obtained by MODLEM (with
nearest rules strategies) were very similar to ones obtained by C4.5 decision tree.

4 Combined Classifiers – General Issues

In the next sections we will study the use of MOLDEM in the framework of
the combined classifiers. Previous theoretical research (see, e.g., their summary
in [6, 45]) indicated that combining several classifiers is effective only if there is



a substantial level of disagreement among them, i.e. if they make errors inde-
pendently with respect to one another. In other words, if they make errors for
a given object they should indicate different class assignments. Diversified base
classifiers can be generated in many ways, for some review see, e.g. [6, 36, 45]. In
general, either homogeneous or heterogeneous classifiers are constructed.

In the first category, the same learning algorithm is used over different sam-
ples of the data set. The best-known examples are either bagging and boosting
techniques which manipulate set of examples by including or weighting particular
examples, or methods that manipulate set of attributes, e.g. randomly choosing
several attribute subsets. Moreover, multiple classifiers could be trained over
different samples or partitions of data sets.

In the second category, different learning algorithms are applied to the same
data set, and the diversity of results comes from heterogeneous knowledge rep-
resentations or different evaluation criteria used to construct them. The stacked
generalization or meta-learning belong to this category. In section 7 we study
the combiner as one of these methods.

Combining classification predictions from single classifiers is usually done
by group or specialized decision making. In the first method all base classifiers
are consulted to classify a new object while the other method chooses only
these classifiers whose are expertised for this object. Voting is the most common
method used to combine single classifiers. The vote of each classifier may be
weighted, e.g., by an evaluation of its classification performance.

Moreover, looking into the rough sets literature one can notice a growing
research interest in constructing more complex classification system. First works
concerned rather an intelligent integration of different algorithms into hybrid sys-
tem. For instance, some researchers tried to refine rule classifiers by analysing
relationships with neural networks [44]. More related works included an inte-
gration of k - nearest neighbor with rough sets rule generation, see e.g. RIONA
system, which offered good classification performance [8]. Yet another approach
comprises two level knowledge representation: rules induced by Explore rep-
resenting general patterns in data and case base representing exceptions [36],
which worked quite well for the difficult task of credit risk prediction [43]. Re-
cently Skowron and his co-operators have been developing hierarchical classifiers
which attempt at approximating more complex concepts [2]. Classifiers on dif-
ferent hierarchy level correspond to different levels of pattern generalization and
seems to be a specific combination of multiple models, which could be obtained
in various ways, e.g. using a special lattice theory [46] or leveled rule generation.
Nguyen et al. described in [24] an application concerning detecting sunspots
where hierarchical classifier is constructed with a domain knowledge containing
an ontology of considered concepts.

5 Using MODLEM Inside the Bagging

Firstly, we consider the use of MODLEM induced classifier inside the most pop-
ular homogeneous multiple classifiers [38].



This approach was originally introduced by Breiman [4]. It aggregates clas-
sifiers generated from different bootstrap samples. The bootstrap sample is ob-
tained by uniformly sampling with replacement objects from the training set.
Each sample has the same size as the original set, however, some examples do
not appear in it, while others may appear more than once. For a training set
with m examples, the probability of an example being selected at least once is
1−(1−1/m)m. For a large m, this is about 1 - 1/e. Given the parameter R which
is the number of repetitions, R bootstrap samples S1, S2, . . . , SR are generated.
From each sample Si a classifier Ci is induced by the same learning algorithm
and the final classifier C∗ is formed by aggregating these R classifiers. A final
classification of object x is built by a uniform voting scheme on C1, C2, . . . , CR,
i.e. is assigned to the class predicted most often by these sub-classifiers, with ties
broken arbitrarily. For more details and theoretical justification see e.g. [4].

Table 2. Comparison of classification accuracies [%] obtained by the single MOD-
LEM based classifier and the bagging approach; R denotes the number of component
classifiers inside bagging

Name of Single Bagging R
data set classifier

bank 93.81 ± 0.94 95.22 ± 1.02 7
buses 97.20 ± 0.94 99.54 ± 1.09 5
zoo 94.64 ± 0.67 93.89* ± 0.71 7
hepatitis 78.62 ± 0.93 84.05 ± 1.1 5
hsv 54.52 ± 1.05 64.78 ± 0.57 7
iris 94.93 ± 0.5 95.06* ± 0.53 5
automobile 85.23 ± 1.1 83.00 ±0.99 5
segmentation 85.71 ± 0.71 87.62 ± 0.55 7
glass 72.41 ± 1.23 76.09 ± 0.68 10
bricks 90.32* ± 0.82 91.21* ± 0.48 7
vote 92.67 ± 0.38 96.01 ± 0.29 10
bupa 65.77 ± 0.6 76.28 ± 0.44 5
election 88.96± 0.54 91.66 ± 0.34 7
urology 63.80 ± 0.73 67.40 ± 0.46 7
german 72.16 ± 0.27 76.2 ± 0.34 5
crx 84.64 ± 0.35 89.42 ± 0.44 10
pima 73.57 ± 0.67 77.87 ± 0.39 7

In this paper we shortly summarize main results obtained in the extensive
computational study [38]. The MODLEM algorithm was applied to generate base
classifiers in the bagging combined classifier. In table 2 we present the comparison
of the classification accuracy obtained for the best variant of the bagging against
the single rule classifier (also induced by MODLEM). The experiments were
carried out on several data sets coming mainly from ML Irvine repository [3]. For
each data set, we show the classification accuracy obtained by a single classifier



over the 10 cross-validation loops. A standard deviation is also given. An asterisk
indicates that the difference for these compared classifiers and a given data
set is not statistically significant (according to two-paired t-Student test with
α=0.05). The last column presents the number of R component classifiers inside
the bagging - more details on tuning this value are described in [38].

We conclude that results of this experiment showed that the bagging signif-
icantly outperformed the single classifier on 14 data sets out of total 18 ones.
The difference between classifiers were non-significant on 3 data sets (those which
were rather easy to learn as, e.g. iris and bricks - which were characterized by a
linear separation between classes). Moreover, we noticed the slightly worse per-
formance of the bagging for quite small data (e.g. buses, zoo - which seemed
to be too small for sampling), and significantly better for data sets containing
a higher number of examples. For some of these data sets we observed an sub-
stantial increase of predictive accuracy, e.g. for hsv – over 10%, bupa – around
10% and hepatitis – 5.43%.

However, we should admit that this good performance was expected as we
know that there are many previous reports on successful use of decision trees in
bagging or boosting.

6 On Solving Multiclass Problems with the n2-classifier

One can say the bagging experiment has been just a variant of a standard ap-
proach. Now we will move to more original approach, called the n2-classifier,
which was introduced by Jelonek and author in [18, 36]. This kind of a multiple
classifier is a specialized approach to solve multiple class learning problems.

The n2-classifier is composed of (n2 − n)/2 base binary classifiers (where n
is a number of decision classes; n > 2). The main idea is to discriminate each
pair of the classes: (i, j), i, j ∈ [1..n], i 6= j , by an independent binary classifier
Cij . Each base binary classifier Cij corresponds to a pair of two classes i and j
only. Therefore, the specificity of the training of each base classifier Cij consists
in presenting to it a subset of the entire learning set that contains only examples
coming from classes i and j. The classifier Cij yields a binary classification
indicating whether a new example x belongs to class i or to class j. Let us
denote by Cij(x) the classification of an example x by the base classifier Cij .

The complementary classifiers: Cij and Cji (where i, j ∈ < 1 . . . n >; i 6= j)
solve the same classification problem – a discrimination between class i-th and
j-th. So, they are equivalent (Cij ≡ Cji) and it is sufficient to use only (n2 -
n)/2 classifiers Cij(i < j), which correspond to all combinations of pairs of n
classes.

An algorithm providing the final classification assumes that a new exam-
ple x is applied to all base classifiers Cij . As a result, their binary predictions
Cij(x) are computed. The final classification is obtained by an aggregation rule,
which is based on finding a class that wins the most pairwise comparisons. The
more sophisticated approach includes a weighted majority voting rules, where



the vote of each classifier is modified by its credibility, which is calculated as its
classification performance during learning phase; more details in [18].

We have to remark that the similar approach was independently studied by
Friedman [7] and by Hastie and Tibshirani [17] – they called it classification by
pairwise coupling. The experimental studies, e.g. [7, 17, 18], have shown that such
multiple classifiers performed usually better than the standard classifiers. Pre-
viously the author and J.Jelonek have also examined the influence of a learning
algorithm on the classification performance of the n2-classifier.

Table 3. Comparison of classification accuracies [%] and computation times [s] for
the single MODLEM based classifier and the n2-classifier also based on decision rules
induced by MODLEM algorithm

Accuracy of Accuracy of Time of Time of
Name of single n2

MODLEM comput. comput.
data set MODLEM (%) (%) MODLEM n2

MODLEM

automobile 85.25 ± 1.3 87.96 ± 1.5 15.88 ± 0.4 5.22 ± 0.3

cooc 55.57 ± 2.0 59.30 ± 1.4 4148,7 ± 48.8 431.51 ± 1.6

ecoli 79.63 ± 0.8 81.34 ± 1.7 27.53 ± 0.5 11.25 ± 0.7

glass 72.07 ± 1.2 74.82 ± 1.4 45.29 ± 1.1 13.88 ± 0.4

hist 69.36 ± 1.1 73.10 ± 1.4 3563.79 ± 116.1 333.96 ± 0.8

meta-data 47.2 ± 1.3 49.83 ± 1.9 252.59 ± 78.9 276.71 ± 5.21

iris 94.2 ± 0.6 95.53* ± 1.2 0.71 ± 0.04 0.39 ± 0.04

soybean-large 91.09 ± 0.9 91.99* ± 0.8 26.38 ± 0.3 107.5 ± 5.7

vowel 81.81 ± 0.5 83.79 ± 1.2 3750.57 ± 30.4 250.63 ± 0.7

yeast 54.12 ± 0.7 55.74 ± 0.9 1544.3 ± 13.2 673.82 ± 9.4

zoo 94.64 ± 0.5 94.46* ± 0.8 0.30 ± 0.02 0.34 ± 0.12

Here, we summarize these of our previous results, where the MODLEM was
applied to generate base classifiers inside the n2-classifier [38]. In table 3 we
present classification accuracies obtained by the n2-classifier and compare them
against the single rule classifier induced by MODLEM on 11 data sets, all con-
cerning multiple-class learning problems, with a number of classes varied from
3 up to 14. The second and third columns are presented in a similar way as in
Table 2. These results showed that the n2-classifier significantly (again in the
sense of paired t test with a significance level α = 0.05) outperformed the single
classifier on 7 out of 11 problems, e.g. for hist – over 3.7%, glass – around 2.7%,
automobile – 2.5% and meta-data – 2.6%. These improvements were not so high
as in the bagging but still they occurred for many difficult multi-class problems.
Again, the multiple classifier was not useful for easier problems (e.g. iris). More-
over, we noticed that its performance was better for data sets with a higher
number of examples. Coming back to our previous results for the n2-classifier
[18] we can again remark that the comparable classification improvements were
observed for the case of using decision trees.



Then, let us focus our attention on interesting phenomena concerning compu-
tation costs of using the MODLEM in a construction of the n2-classifier. Table 3
(two last columns) contains computation times (in seconds calculated as average
values over 10 folds with standard deviations). We can notice that generally con-
structing a combined classifiers does not increase the computation time. What is
even more astonishing, for some data sets constructing the n2-classifier requires
even less time than training the standard single classifier. Here, we have to stress
that in our previous works [18, 37] we noticed that the increase of classification
accuracy (for other learning algorithms as e.g. decision trees, k-nearest neigh-
bor or neural networks) was burden with increasing the computational costs
(sometimes quite high). In [38] we attempted to explain the good performance
of MODLEM inside the n2-classifier. Shortly speaking, the n2-classifier should
be rather applied to solving difficult (”complex”) classification tasks, where ex-
amples of decision classes are separated by non-linear decision borders – these
are often difficult concepts to be learned by standard classifiers, while pairwise
decision boundaries between each pair of classes may be simpler and easier to be
learned with using a smaller number of attributes. Here, MODLEM could gain
its performance thanks to his sequential covering and greedy heuristic search.
It generates rules distinguishing smaller number of learning examples (from two
classes only) than in the multiple class case and, above all, testing a smaller
number of elementary conditions. To verify hypothesis we inspect syntax of rule
sets induced by the single classifier and the n2-classifier. Rules for binary clas-
sifiers were using less attributes and covered more learning example on average
than rules from the single set generated in the standard way [38].

7 Combining Predictions of Heterogeneous Classifiers

In two previous sections we described the use of MODLEM based classifiers
inside the architecture of homogeneous classifiers. In these solutions, the MOD-
LEM was the only algorithm applied to create base classifiers inside multiple
classifiers and could directly influence their final performance. Diversification of
base classifiers is one of the conditions for improving classification performance
of the final system. Let us repeat that in previously considered solutions it was
achieved by changing the distribution of examples in the input data.

Another method to obtain component classifier diversity is constructing, so
called, heterogeneous classifiers. They are generated from the same input data
by different learning algorithms which use different representation language and
search strategies. These base classifiers could be put inside a layered architec-
ture. At the first level base classifiers receive the original data as input. Their
predictions are then aggregated at the second level into the final prediction of
the system. This could be done in various ways. In one of our studies we used a
solution coming from Chan & Stolfo [5], called a combiner.

The combiner is based on an idea of merging predictions of base classifiers
by an additional classifier, called meta-classifier. This is constructed in an extra
meta-learning step, i.e. first base classifiers are learned, then their predictions



made on a set of extra validation examples, together with correct decision labels,
form a meta-level training set. An extra learning algorithm is applied to this set
to discover how to merge base classifier predictions into a final decision.

Table 4. Classification accuracies [%] for different multiple classifiers

Data set Bagging n2-classifier Combiner

Automobile 83.00 87.90 84.90
Bank 95.22 – 95.45
Bupa 76.28 – 69.12
Ecoli 85.70 81.34 85.42
Glass 74.82 74.82 71.50
HSV 64.75 – 59.02
Meta-data 48.11 49.80 51.33
Pima 75.78 – 74.78
Voting 93.33 – 94.67
Yeast 58.18 55.74 58.36
Zoo 93.89 94.46 95.05

In [41] we performed a comparative study of using a combiner approach
against the single classifiers learned by these algorithms which were applied to
create its component classifiers. In this study base classifiers were induced by
k-NN, C4.5 and MODLEM. The meta-classifier was a Naive Bayes. This com-
parative study was performed on 15 data sets. However, the obtained results
showed that the combiner did not improve classification accuracy in so many
cases as previously studied homogeneous classifiers. Only in 33% data we ob-
served a significant improvement comparing against single classifiers. In table
4 we present only some of these results concerning the final evaluation of the
combiner compared also against the previous multiple classifiers. However, while
comparing these classifiers we should be cautious as the number of the results
on common data sets was limited. Moreover, MODLEM is only one of three
component classifiers inside the combiner that influences the final result.

We could also ask a question about other elements of the architecture of
heterogeneous classifier, e.g. number of component classifiers or the aggregation
techniques. In recent experiments we focus our interest on testing two other
techniques instead of the meta-combiner:

– a simple aggregation performed by means of a majority voting rule (denoted
as MV in table 4),

– using a quite sophisticated approach – SCANN; It was introduced by Merz
[22] and uses a mechanism of the correspondence analysis to discover hidden
relationships between the learning examples and the classification done by
the component classifiers.

Results from ongoing experiments are given in Table 5. There is also a dif-
ference to previous architecture, i.e. adding an additional, forth component clas-



Table 5. Comparison of different methods producing the final decision inside the
heterogeneous classifiers - classification accuracies [%]

Data set MV SCANN Combiner

credit-a 86.2 ± 0.6 87 ± 0.7 86.6 ± 0.4

glass 68.5 ± 0.3 70.1 ± 0.2 70.5 ± 0.6

ecoli 86.1 ± 0.9 81.5 ± 0.8 84.5 ± 0.5

zoo 95 ± 0.9 92.2 ± 0.7 95.1 ± 0.4

sifiers Naive Bayesian at the first level. We can remark that the more advanced
aggregation technique could slightly increase the classification accuracy compar-
ing to simpler one. On the other hand they are much time consuming.

8 Discussion of results and final remarks

As Professor ZdzisÃlaw Pawlak wrote in the introductory chapter of his book on
rough sets [26] knowledge of human beings and other species is strictly connected
with their ability to classify objects. Finding classification patterns of sensor
signals or data form fundamental mechanisms for very living being. In his point
of view it was then connected with a partition (classification) operation leading to
basic blocks for constructing knowledge. Many researchers followed the Pawlak’s
idea. One of the main research directions includes constructing approximations of
knowledge from tables containing examples of decisions on object classification.
Rules were often induced as the most popular knowledge representation. They
could be used either to describe the characteristics of available data or as the
basis for supporting classification decisions concerning new objects. Up to now
several efficient rule classifiers have been introduced.

In this study we have attempted to briefly describe the current experience
with using the author’s rule induction algorithm MODLEM, which induces either
certain or possible rules from appropriate rough approximations. This is the main
point where elements of the rough sets theory is applied in this algorithm. Given
as an input learning examples from approximations, the rule generation phase
follows the general idea of sequential covering, which is somehow in common
with machine learning paradigms. The MODLEM produces a minimal set of
rules covering examples from rough approximations. This rule sets should be
joined with classification strategies for solving ambiguous matching of the new
object description to condition parts of rules. An extra property of this algorithm
is it ability to handle directly numerical attributes without prior discretization.
The current experience with comparative studies on benchmark data sets and
real life applications showed that the classification performance of this approach
was comparable to other symbolic classifiers, in particular to decision trees.

Although the MODLEM classifier and other machine learning approaches
are efficient for many classification problems, they do not always lead to satis-
factory classification accuracy for more complex and difficult problems. This is



our motivation to consider new approaches for increasing classification accuracy
by combining several classifiers into an integrated system. Several proposals of
constructing such multiple classifiers are already proposed. Most of them are
general approaches, where many different algorithms could be applied to induce
the component classifiers.

Thus, our main research interest in this study is to summarize our exper-
iments with using MODLEM induced rule classifiers inside the framework of
three different multiple classifiers, namely the bagging, the n2-classifier and the
combiner. A classification accuracy for the multiple classifier has been compared
against the standard classifiers – also induced by MODLEM. These results and
their detailed discussion has been given in the previous sections.

Firstly we could notice that using MODLEM inside the bagging was quite
effective. However, it was a kind of standard approach and we could expect such
good performance as MODLEM performs similarly to decision trees (which have
been extensively studied in the bagging) and could be seen as unstable learn-
ing algorithm - i.e. an algorithm whose output classifier undergoes changes in
response to small changes in the training data. This kind of algorithm may pro-
duce base classifiers diversified enough (but not too much, see e.g. discussion
of experimental study by Kuncheva and Whitaker [21]) which is a necessary
condition for their effective aggregation. Following the same arguments we also
suspect that MODLEM should nicely work inside the boosting classifier. Further
on, we could hypothesize that slightly worse improvements of the classification
accuracy in the combiner approach may result from insufficient diversification
of component heterogeneous classifiers. This has been verified by analysing dis-
tributions of wrong decisions for base classifiers, presented in [41]. It showed
the correlation of errors for some data sets, where finally we did not notice the
improvement of the classification accuracy.

The most original methodological approach is Jelonek and author’s proposal
of the n2-classifier which is in fact a specialized approach to learning multiple
class problems. The n2-classifier is particularly well suited for multiple class
data where exist ”simpler” pairwise decision boundaries between pair of classes.
MODLEM seems to be a good choice to be used inside this framework as it
leads to an improvement of classification performance and does not increase
computational costs - reasons for this have been discussed in section 7. Let us
notice that using other learning algorithms inside the n2-classifier and applying
MODLEM in two other multiple classifier requires an extra computation efforts
comparing to learning the single, standard classifier [38].

Comparing results of all together multiple classifiers ”head to head” we
should be cautious as we had a limited number of common data sets. It seems
that the n2-classifier is slightly better for these data. While the standard mul-
tiple classifiers, as bagging or combiner, are quite efficient for simpler data and
are easier to be implemented.

To sum up, the results of our experiments have shown that the MODLEM
algorithm can be efficiently used within the framework of three multiple classi-
fiers for data sets concerning more ”complex” decision concepts. However, the



relative merits of these new approaches depends on the specifies of particular
problems and a training sample size.

Let us notice that there is a disadvantage of the multiple classifiers - loosing
a simple and easy interpretable structure of knowledge represented in a form de-
cision rules. These are ensembles of diversified rule sets specialized for predictive
aims not one set of rules in a form for a human inspection.

As to future research directions we could consider yet another way of obtain-
ing diversified data – i.e. selecting different subsets of attributes for each compo-
nent classifiers. The author has already started research on extending bootstrap
samples inside the bagging by applying additionally attribute selection [39, 40].
In this way each bootstrap is replicated few times, each of them using different
subset of attributes. We have considered the use of different selection techniques
and observed that besides random choice or wrapper model, techniques which
use either entropy based measures or correlation merits are quite useful. The
results of comparative experiments carried out in [40] have showed that the clas-
sification accuracy of such a new extended bagging is higher than for standard
one. In this context one could come back to the classical rough sets topic of
reducts, which relates to finding an ensemble of few attribute subsets covering
different data properties and constructing in this way a set of diversified exam-
ples for an integrated system. However, we are not limited to ”classical” meaning
of pure rough sets reducts but rather to approximate ones, where the entropy
measure is also considered [30].
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8. Góra G., Wojna A.: RIONA: a new classification system combining rule induction
and instance based learning. Fundamenta Informaticae 51 (4), 2002, 369-390.
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