
Ensemble learning for data stream analysis: a survey

Bartosz Krawczyka,∗, Leandro L. Minkub, João Gamad, Jerzy Stefanowskid,
Micha l Woźniake

aDepartment of Computer Science, Virginia Commonwealth University, Richmond, VA
23284, USA

bDepartment of Computer Science, University of Leicester, Leicester, UK
cLaboratory of Artificial Intelligence and Decision Support, University of Porto, Porto,

Portugal
dInstitute of Computing Science, Poznań University of Technology,

60-965 Poznań, Poland
eDepartment of Systems and Computer Networks, Wroc law University of Science and

Technology, Wyb. Wyspiańskiego 27, 50-370 Wroc law, Poland

Abstract

In many applications of information systems learning algorithms have to
act in dynamic environments where data are collected in the form of transient
data streams. Compared to static data mining, processing streams imposes
new computational requirements for algorithms to incrementally process in-
coming examples while using limited memory and time. Furthermore, due to
the non-stationary characteristics of streaming data, prediction models are
often also required to adapt to concept drifts. Out of several new proposed
stream algorithms, ensembles play an important role, in particular for non-
stationary environments. This paper surveys research on ensembles for data
stream classification as well as regression tasks. Besides presenting a compre-
hensive spectrum of ensemble approaches for data streams, we also discuss
advanced learning concepts such as imbalanced data streams, novelty detec-
tion, active and semi-supervised learning, complex data representations and
structured outputs. The paper concludes with a discussion of open research
problems and lines of future research.

∗Corresponding author
Email addresses: bkrawczyk@vcu.edu (Bartosz Krawczyk),

leandro.minku@leicester.ac.uk (Leandro L. Minku), jgama@fep.up.pt (João
Gama), jerzy.stefanowski@cs.put.poznan.pl (Jerzy Stefanowski),
michal.wozniak@pwr.edu.pl (Micha l Woźniak)

Preprint submitted to Information Fusion January 31, 2017

Keywords: Ensemble learning, Data streams, Concept drift, Online
learning, Non-Stationary Environments

1. Introduction

The analysis of huge volumes of data is recently the focus of intense re-
search, because such methods could give a competitive advantage for a given
company. For contemporary enterprises, the possibility of making appropri-
ate business decisions on the basis of knowledge hidden in stored data is one
of the critical success factors. Similar interests in exploring new types of data
are present in many other areas of human activity.

In many of these applications, one should also take into consideration that
data usually comes continuously in the form of data streams. Representative
examples include network analysis, financial data prediction, traffic control,
sensor measurement processing, ubiquitous computing, GPS and mobile de-
vice tracking, user’s click log mining, sentiment analysis, and many others
[12, 62, 60, 203, 208].

Data streams pose new challenges for machine learning and data mining
as the traditional methods have been designed for static datasets and are not
capable of efficiently analyzing fast growing amounts of data and taking into
consideration characteristics such as:

• Limited computational resources as memory and time, as well as tight
needs to make predictions in reasonable time.

• The phenomenon called concept drift, i.e., changes in distribution of
data which occur in the stream over time. This could dramatically
deteriorate performance of the used model.

• Data may come so quickly in some applications that labeling all items
may be delayed or sometimes even impossible.

Out of several tasks studied in data streams [62], supervised classification
has received the most research attention. It is often applied to solve many
real life problems such as discovering client preference changes, spam filter-
ing, fraud detection, and medical diagnosis to enumerate only a few. The
aforementioned speed, size and evolving nature of data streams pose the need
for developing new algorithmic solutions. In particular, classifiers dedicated
to data streams have to present adaptation abilities, because the distribution

2

of the data in motion can change. To tackle these challenges, several new
algorithms, such as VFDT [46], specialized sliding windows, sampling meth-
ods, drift detectors and adaptive ensembles have been introduced in the last
decade.

In our opinion, ensemble methods are one of the most promising research
directions [189]. An ensemble, also called a multiple classifier or committee,
is a set of individual component classifiers whose predictions are combined
to predict new incoming instances. Ensembles have been shown to be an ef-
ficient way of improving predictive accuracy or/and decomposing a complex,
difficult learning problem into easier sub-problems.

The main motivation for using classifier ensembles is the no free lunch
theorem formulated by Wolpert [186]. According to it, there is not a single
classifier that is appropriate for all the tasks, since each algorithm has its own
domain of competence. Usually, we have a pool of classifiers at our disposal
to solve a given problem. Turner [177] showed that averaging outputs of
an infinite number of unbiased and independent classifiers may lead to the
same response as the optimal Bayes classifier [50]. Ho [76] underlined that
a decision combination function must receive useful representation of each
individual decision. Specifically, they considered several methods based on
decision ranks, such as Borda count.

We also have to mention another of Ho’s work [75], who distinguished
two main approaches to design a classifier ensemble:

• Coverage optimization focuses on the generation of a set of mutually
complementary classifiers, which may be combined to achieve optimal
accuracy using a fixed decision combination function.

• Decision optimization concentrates on designing and training an appro-
priate decision combination function, while a set of individual models
is given in advance [153].

Other important issues that have be taken into consideration when build-
ing classifier ensembles are the following:

• Proposing interconnections among individual classifiers in the ensem-
ble.

• Selecting a pool of diverse and complementary individual classifiers for
the ensemble.

3

classifier #1

classifier #2

classifier #n

.

.

.

combination

rule
decision

object

Figure 1: A diagram of the classifier ensemble.

• Proposing a combination rule, responsible for the final decision of the
ensemble, which should exploit the strengths of the component classi-
fiers.

The general diagram of a classifier ensemble is depicted in Figure 1.
The selection of classifiers for the ensemble is a key factor. An ideal

ensemble includes mutually complementary individual classifiers which are
characterized by high diversity and accuracy [108]. It is generally agreed
that not only the accuracy, but also the diversity of the classifiers is a key
ingredient for increasing the ensemble’s accuracy [195]. Classifiers must be
selected to obtain positive results from their combination. Sharkley et al.
[161] proposed four levels of diversity based on the majority vote rule, coin-
cident error, and the possibility of at least one correct answer of ensemble
members. Brown et al. [25] reflected that it is inappropriate for the case
where diversity of an ensemble is different in various subspaces of the feature
space. For comprehensive reviews on ensemble methods developed for static
datasets see, e.g., [110].

Classifier ensembles are an attractive approach to construct data stream
classifiers, because they facilitate adaptation to changes in the data distribu-
tion. Their adaptation could be done by changing the line-up of the ensemble,
e.g., by adding components classifiers trained on the most recent data and/or
removing the outdated classifiers, or by retraining the ensemble components.

There are several interesting books or surveys on the data stream analysis
and classification, but most of them focus on general methods of data stream
analysis, not dedicating too much space to ensemble approaches [62, 133,

4

45, 65, 116], and some have been written several years ago [109, 111, 60].
Therefore, there is still a gap in this literature with respect to present the
development in learning ensembles from data streams. This survey aims to
fill this gap.

It is also worth mentioning the work [107, 207], where data stream mining
challenges have been discussed. We will discuss open research problems and
lines of future research in the specific area of ensemble approaches for data
streams.

We will pay the most attention to classifier ensembles, given that most
existing literature is in this area. However, we will also discuss research on re-
gression (or prediction model) ensembles. Furthermore, we will review recent
ensemble approaches dedicated to various more complex data representations
in streams.

This survey is organized as follows. Section 2 focuses on the main charac-
teristics of data streams and methods dedicated to their analysis, as well as
on the type of data streams and drift detection methods. Section 3 presents
methods for evaluating classifiers over streaming data. In section 4, a com-
prehensive survey on ensemble techniques for classification and regression
problems is presented. Section 5 enumerates advanced problems for data
stream mining, such as imbalanced data, novelty detection, one-class classi-
fication, and active learning, as well as focuses on non-standard and complex
data representations or class structures. The final section draws open chal-
lenges in this field for future research.

2. Data Stream Characteristics

In this section we will provide a general overview of the data stream
domain, discussing different types of streaming data, learning frameworks
used for its analysis, and the issue of changes in the data stream distribution,
known as concept drift.

2.1. General Issues

A data stream is a potentially unbounded, ordered sequence of data items
which arrive over time. The time intervals between the arrival of each data
item may vary. These data items can be simple attribute-value pairs like
relational database tuples, or more complex structures such as graphs.

The main differences between data streams and conventional static datasets
include [62, 13, 171]:

5

• data items in the stream appear sequentially over time,

• there is no control over the order in which data items arrive and the
processing system should be ready to react at any time,

• the size of the data may be huge (streams are possibly of infinite
length); it is usually impossible to store all the data from the data
stream in memory,

• usually only one scan of items from a data stream is possible; when
the item is processed it is discarded or sometimes stored if necessary,
or aggregated statistics or synopses are calculated,

• the data items arrival rate is rapid (relatively high with respect to the
processing power of the system),

• data streams are susceptible to change (data distributions generating
examples may change on the fly),

• the data labeling may be very costly (or even impossible in some cases),
and may not be immediate.

These data stream characteristics pose the need for other algorithms than
ones previously developed for batch learning, where data are stored in finite,
persistent data repositories. Typical batch learning algorithms are not ca-
pable of fulfilling all of the data stream requirements such as constraints of
memory usage, restricted processing time, and one scan of incoming examples
[26]. Note that some algorithms, like Näıve Bayes, instance based learning or
neural networks are naturally incremental ones. However, simple incremen-
tal learning is typically insufficient, as it does not meet tight computational
demands and does not tackle evolving nature of data sources [62].

Constraints on memory and time have resulted in the development of
different kinds of windowing techniques, sampling (e.g. reservoir sampling)
and other summarization approaches. However, the distribution in the data
source generating the stream data items may change over time. Thus, in case
of non-stationary data streams, data from the past can become irrelevant
or even harmful for the current situation, deteriorating predictions of the
classifiers. Data management approaches can play the role of a forgetting
mechanism where old data instances are discarded.

6

2.2. Types of Data Streams and Learning Frameworks

If a completely supervised learning framework is considered, it is assumed
that after some time the true target output value yt of the example is avail-
able. Thus, data stream S is a sequence of labeled examples zt = (xt, yt) for
t = 1, 2, . . . , T . Usually, x is a vector of attribute values, and y is either a
discrete class label (y ∈ {K1, . . . , Kl}) for classification problems or numeric
output (independent) values for regression problems. The general task is to
learn from the past data (a training set of examples) the relationship between
the set of attributes and the target output. In the case of classification, this
relationship corresponds to discovered classification knowledge and it is often
used as classifier C to determine the class label for the new coming example
xt

′
. In the case of regression, the learned model is used to predict a numeric

value. Note that the classifier or the regression model is supposed to provide
its prediction at any time based on what it has learned from the data items
{z1, z2, . . . , zt} seen so far. This prediction ŷt and true target value yt can
be used by the learning algorithm as additional learning information.

As most of the current research on data stream ensembles concerns classi-
fication, we will present the remaining of this section using the classification
terminology. However, nearly all of these issues are also valid for regression
cases.

The majority of proposed algorithms for learning stream classifiers follow
the supervised framework (i.e. with a complete and immediate access to
class labels for all processed examples). However, in some applications the
assumption of a complete labeling of learning examples may be unrealistic
or impractical, as the class labels of newly coming examples in data streams
are not immediately available. For instance, in the financial fraud detection,
information on fraud transactions is usually known after a long delay (e.g.
when an account holder receives the monthly report [54]), while for a credit
approval problem the true label is often available after 2-3 years. Moreover,
the acquiring of labels from experts is costly and needs substantial efforts
[204]. Therefore some researchers consider other frameworks such as:

• learning with delayed labeling when an access to true class labels is
available much later than it is expected; the classifier may adapt to the
stream earlier without knowing it [106],

• semi-supervised learning where labels are not available for all incoming
examples; They are provided in limited portions from time to time;

7

n n-1 n-m n-m-1 k+m+1 k+m k+1 k.........

n n-1 n-m n-m-1 k+m+1 k+m k+1 k.........

block #kblock #k+l

update model using

example #k
classifier

update model block

of data #k
classifier

Figure 2: Difference between incremental and block base classifier updating.

alternatively, the system employs an active learning technique, which
selects unlabeled examples for acquiring their labels [204, 54, 99, 112],

• unsupervised framework or learning from initially labeled examples;
An initial classifier is learned from a limited number of labeled train-
ing examples, and then it processes the upcoming stream of unlabeled
examples without any access to their labels [51].

We will come to these issues in Section 5.3.
Examples from the data stream are provided either online, i.e., instance

by instance, or in the form of data chunks (portions, blocks). In the first
approach, algorithms process single examples appearing one by one in consec-
utive moments in time, while in the other approach, examples are available
only in larger sets called data blocks (or data chunks) S = B1∪B2∪ . . .∪Bn.
Blocks are usually of equal size and the construction, evaluation, or updating
of classifiers is done when all examples from a new block are available. This
distinction may be connected with supervised or semi-supervised frameworks.
For instance, in some problems data items are more naturally accumulated
for some time and labeled in blocks while an access to class labels in an online
setup is more demanding. Moreover, these types of processing examples also
influence the evaluation of classifiers. Both discussed modes are depicted in
Figure 2.

2.3. Stationary and Non-Stationary (Drifting) Data Streams

Two basic models of data streams are considered: stationary, where ex-
amples are drawn from a fixed, albeit unknown, probability distribution, and
non-stationary, where data can evolve over time. In the second case, target
concepts (classes of examples) and / or attribute distributions change. In

8

other words, the concept from which the data stream is generated shifts af-
ter a minimum stability period [62]. This phenomenon is called concept drift,
a.k.a, covariant shift. Concept drifts are reflected in the incoming instances
and deteriorate the accuracy of classifiers / regression models learned from
past training instances. Typical real life streams affected by concept drift
could include [200]:

• computer or telecommunication systems, where attackers look for new
ways of overcoming security systems,

• traffic monitoring, where traffic patterns may change over time,

• Weather predictions, where climate changes and natural anomalies may
influence the forecast,

• system following personal interests, like personal advertisement, where
users may change their preferences, and

• medical decision aiding, where disease progression may be influenced
and changed in response to applied drugs or natural resistance of the
patients.

Other examples of real life concept drifts include spam categorization, ob-
ject positioning, industrial monitoring systems, financial fraud detection, and
robotics; and they are reviewed in the recent survey [208].

Concept drift can be defined from the perspective of hidden data con-
texts, which are unknown to the learning algorithm. Zliobaite also calls it an
unforeseen change as the change is unexpected with respect to the current
domain knowledge or previous learning examples [200]. However, a more
probabilistic view on this matter is usually presented, e.g. [62, 184].

In each point in time t, every example is generated by a source with a joint
probability distribution P t(x, y). Concepts in data are stable or stationary
if all examples are generated by the same distribution. If, for two distinct
points in time t and t + ∆, there exits x such that P t(x, y) 6= P t+∆(x, y),
then concept drift has occurred.

Different components of P t(x, y) may change [62]. In particular, when
concept drift occurs, either one or both of the following changes:

• prior probabilities of classes P (y),

• class conditional probabilities P (x|y).

9

As a result, posterior probabilities of the classes P (y|x) may (or may not)
change.

Based on the cause and effect of these changes, two types of drift are
distinguished: real drift and virtual drift.

A real drift is defined as a change in P (y|x). It is worth noting that such
changes can occur with or without changes in P (x). Therefore, they may
or may not be visible from the data distribution without knowing the true
class labels. Such a distinction is crucial, as some methods attempt to detect
concept drifts using solely input attribute values. Real drift has also been
referred to as concept shift and conditional change [65].

A virtual drift is usually defined as a change in the attribute-value P (x),
or class distributions P (y) that does not affect decision boundaries. In some
work virtual drift is defined as a change that does not affect the posterior
probabilities, but it is hard to imagine that P (x) is changed without changing

P (y|x) = P (y)P (x|y)
P (x)

in real world applications. However, the source and
therefore the interpretation of such changes differs among authors. Widmer
and Kubat [185] attributed virtual drift to incomplete data representation
rather than to true changes in concepts. Tsymbal [176] on the other hand
defined virtual drift as changes in the data distribution that do not modify
the decision boundary, while Delany [42] described it as a drift that does not
affect the target concept. Furthermore, virtual drifts have also been called
temporary drifts, sampling shifts or feature changes [26].

Most current research on learning classifiers from evolving streams con-
centrates on real drifts. However, it is worth mentioning that even if the true
class boundaries do not change in virtual drifts, this type of drift may still
result in the learnt class boundaries to become inadequate. Therefore, tech-
niques for handling real drifts may still work for certain types of virtual drifts.
If posterior probabilities do not change, it is worthless to rebuild the model,
because the decision boundaries are still the same. Virtual drift detection is
also important, because even though it does not effect the decision bound-
aries of the classifier, its wrong interpretation (i.e., detecting and classifying
as real drift) could provide wrong decision about classifier retraining.

Apart from differences in the cause and effect of concept changes, re-
searchers distinguish between several ways of how such changes occur. Con-
cept drifts can be further characterized, for example, by their permanence,
severity, predictability, and frequency. The reader is also referred to the
recent paper by Hyde et al. [184], which is the first attempt to provide

10

incremental

sudden

gradual

reccouring

Figure 3: Type of drifts.

the more formal framework for comparing different types of drifts and their
main properties. These authors also proposed a new, quite comprehensive
taxonomy of concept drift types.

The most popular categorizations include sudden (abrupt) and gradual
drifts [176]. The first type of drift occurs when, at a moment in time t, the
source distribution in St is suddenly replaced by a different distribution in
St+1. Gradual drifts are not so radical and are connected with a slower rate
of changes, which can be noticed while observing a data stream for a longer
period of time. Additionally, some authors distinguish two types of gradual
drift [128]. The first type of gradual drift refers to the transition phase where
the probability of sampling from the first distribution P j decreases while the
probability of getting examples from the next distribution P j+1 increases.
The other type, called incremental (stepwise) drift, consists of a sequence of
small (i.e., not severe) changes. As each change is small, the drift may be
noticed only after a long period of time, even if each small change occurs
suddenly.

In some domains, situations when previous concepts reappear after some
time are separately treated and analyzed as recurrent drifts. This re-occurrence
of drifts could be cyclic (concepts reoccur in a specific order) or not [176].
Moreover, data streams may contain blips (rare events/outliers) and noise,
but these are not considered as concept drifts and data stream classifiers
should be robust to them. The differences among the drifts are depicted in
Figure 3.

Some other drift characteristics are also considered in the literature. Typ-
ically, real concept drift concerns changes for all examples but it could be
also a sub-concept change where drift is limited to a subspace of a domain –
see discussions on the drift severity in [128]. Moreover, in real life situations,

11

performance

time

drift

apperance

restoration time

m
a
x

.
p

e
rf

o
rm

a
n

ce
 d

e
te

ri
o

ra
ti

o
n

Figure 4: The idea of the model restoration time.

concept drifts may be a complex combination of many types of basic drifts.
For more information on these and other changes in underlying data dis-

tributions, the reader is referred to [62, 65, 116, 184, 176]. These studies,
and more application oriented papers, such as [208], demonstrate that the
problem of concept drift has also been recognized and addressed in multiple
application areas. This shows the strong requirement for streaming classifiers
to be capable of predicting, detecting, and adapting to concept drifts.

2.4. Drift Detection Methods

Concept drift detectors are methods, which on the basis of information
about classifier’s performance or the incoming data items themselves, can
signal that data stream distributions are changing. Such signals usually trig-
ger updating / retraining of the model, or substituting the outdated model
by the new one. Our aim is on the one hand to reduce the maximum perfor-
mance deterioration and on the other hand to minimize so-called restoration
time (see Figure 4).

The detectors may return not only signals about drift detection, but also
warning signals, which are usually treated as a moment when a change is
suspected and a new training set representing the new concept should start
being gathered. The idea of drift detection is presented in Figure 5.

Drift detection is not a trivial task, because on the one hand we require
sufficiently fast drift detection to quickly replace outdated model and to

12

Figure 5: The idea of drift detection based on tracking classifier errors.

reduce the restoration time. On the other hand we do not want too many
false alarms [70]. Therefore, to assess a concept drift detector’s performance,
the following metrics are usually considered:

• number of true positive drift detections,

• number of false alarms, i.e., false positive drift detections,

• drift detection delay, i.e., time between real drift appearance and its
detection.

One difficulty arises because there is typically a trade-off between different
metrics. For instance, a drift detector can typically be tuned to decrease
the detection delay, but this may lead to a higher number of false alarms.
In view of that, Alippi et al.[6] have recently used the following procedure
to evaluate their drift detection method when using artificial data streams.
They generates a stream that contains enough instances after a drift so that
drifts are always detected by all drift detection methods being evaluated.
They then plotted the number of false alarms versus the drift detection delay
for all drift detectors, using several different parameter configurations. This
lead to a curve that resembles the Receiver Operating Characteristics curve,
but used to evaluate drift detection methods rather than classifiers.

In a few papers aggregated measures, which take into consideration the
aforementioned metrics, are also proposed. It is worth mentioning the work

13

of Pesaranghader and Victor [143], where the acceptable delay length was
defined to determine how far the detected drift could be from the true loca-
tion of drift, for being considered as a true positive. A recent experimental
framework for the drift detection evaluation can be found in [91].

The authors of [65] propose to categorize the drift detectors into the
following four main groups:

1. Detectors based on Statistical Process Control.

2. Detectors based on the sequential analysis.

3. Methods monitoring distributions of two different time windows.

4. Contextual approaches.

In the next paragraphs, we briefly describe a few drift detection methods.
DDM (Drift Detection Method) [61] is the most well known representative

of the first category. It estimates classifier error (and its standard deviation),
which (assuming the convergence of the classifier training method) has to de-
crease as more training examples are received [149]. If the classifier error is
increasing with the number of training examples, then this suggests a concept
drift, and the current model should be rebuilt. More technically, DDM gen-
erates a warning signal if the estimated error plus twice its deviation reaches
a warning level. If the warning level is reached, new incoming examples
are remembered in a special window. If afterwards the error falls below the
warning threshold, this warning is treated as a false alarm and this special
window is dropped. However, it the error increases with time and reaches the
drift level, the current classifier is discarded and a new one is learned from
the recent labeled examples stored in the window. Note that this detection
idea may be also used to estimate time interval between the warning and
drift detection, where shorter times indicate a higher rate of changes.

EDDM (Early Drift Detection Method) is a modification of DDM to im-
prove the detection of gradual drifts [11]. The same idea of warning and drift
levels is realized with a new proposal of comparing distances of error rates.
Yet another detector ECDD employs the idea of observing changes in the
exponentially weighted moving average [154].

The sequential probability ratio tests, such as the Wald test, are the basis
for detectors belonging to the second category. The cumulative sum approach
(CUSUM) [140] detects a change of a given parameter value of a probability
distribution and indicates when the change is significant. As the parameter
the expected value of the classification error could be considered, which may
be estimated on the basis of labels of incoming examples from data stream.

14

A comprehensive analysis of the relationship between CUSUM’s parameters
and its performance was presented in [65].

PageHinkley is modification of the CUSUM algorithm, where the cumu-
lative difference between observed classifier error and its average is taken into
consideration [158].

Yet other drift detectors based on non-parametric estimation of classifier
error employing Hoeffding’s and McDiarmid’s inequalities were proposed in
[23].

ADWIN is the best known representative of methods comparing two slid-
ing windows. In this algorithm [16] a window of incoming examples grows
until identifying a change in the average value inside the window. When the
algorithm succeeds at finding two distinct sub-windows, their split point is
considered as an indication of concept drift.

Besides the use of parametric tests for concept drift detection, some non-
parametric tests have also been investigated, such as the computational in-
telligence cumulative sum test [8] and the intersection of confidence intervals-
based change detection test [5].

Alippi presents an interesting comparison of different triggering mecha-
nisms for concept drift detection [7]. It is worth noting that drift detectors
frequently rely on continuous access to class labels, which usually cannot be
granted from the practical point of view. Therefore, during constructing the
concept drift detectors we have to take into consideration the cost of data
labeling, which is usually passed over. A very interesting way to design de-
tectors is to employ the active learning paradigm [69] or unlabeled examples
only.

Unsupervised detection of virtual concept drift is most often performed
with statistical tests [122], which check whether a current data portion comes
from the same distribution as the reference data. Obviously, not all statistical
tests are suited for this task, e.g., two-sample parametric tests such as a T2
statistic [80] assume a specific distribution, which might not be a correct
approach in the real data case. Also, the distributions may not be similar
to any standard distribution, what moreover suggests non-parametric tests
for the task of unsupervised concept drift detection. Examples of such tests
include [166]:

• CNF Density Estimation test introduced in [47], describes the data
by vectors of binary features, assigned by discretizing attributes into
sets of bins. Then, it creates a set of Boolean attributes, which covers

15

all of the examples in the reference dataset, meaning that each true
feature in attribute set is the same as in at least one of the vectors
describing the data points in the reference set. Next, another set of
data is drawn from the same distribution as the data in the reference
set, represented as binary vectors, and compared to the attribute set by
applying a Matt-Whitney test. If the difference is insignificant, all data
is considered to come from the same distribution, otherwise a difference
in distributions is detected.

• The multivariate version of the Wald-Wolfowitz test [58] constructs
a complete graph, with examples as vertices and distances between
them as edges. This graph is then transformed into a forest and a test
statistic is computed basing on the amount of trees.

Furthermore, non-parametric univariate statistical tests are often used
for detecting concept drift in data distribution [162]:

• Two-sample Kolmogorov-Smirnov test,

• Wilcoxon rank sum test,

• Two-sample t-test.

Unfortunately, it is easy to show that without access to class labels the
real drift could be undetected [165] if they are not associated to changes in
P (x).

As yet not so many papers deal with combined drift detectors. Bifet et
al. [22] proposed the simple combination rules based on the appearance of
drift once ignoring signals about warning level.

It is worth mentioning Drift Detection Ensemble [121], where a small
ensemble of detectors is used to make a decision about the drift and Selective
Detector Ensemble [48] based on a selective detector ensemble to detect both
abrupt and gradual drifts. Some experimental studies showed that simple
detector ensembles do not perform better than simple drift detection methods
[192].

3. Evaluation in Data Stream Analysis

Proper evaluation of classifiers or regression models is a key issue in ma-
chine learning. Many evaluation measures, techniques for their experimental

16

estimation and approaches to compare algorithms have already been pro-
posed for static data scenarios. A comprehensive review is presented in [90].

In the context of data stream mining, especially in non-stationary en-
vironments, new solutions are needed. While evaluating predictive ability,
it is necessary to consider both incremental processing as well as evolving
data characteristics and the classifier reactions to changes. New classes may
appear, feature space changes and decision rules lose relevance over time.
Moreover, one should take into account computational aspects such as pro-
cessing time, recovery of the model after the change, and memory usage.
Fast updating of a learning model and gradual recovery is often more rea-
sonable than gathering data for a longer period of time and trying to rebuild
the model in a single time consuming step. Instead of examining point or
average prediction measures of the classifier, one is usually more interested
in tracking its working characteristics over the course of stream progression.

The authors of several papers often present graphical plots for a given
dataset presenting the algorithms’ functioning in terms of the chosen evalu-
ation measure, such as e.g. training time, testing time, memory usage, and
classification accuracy over time. By presenting the measures calculated after
each data chunk or single example on the y-axis and the number of processed
training examples on the x-axis, one can examine the dynamics of a given
classifier, in particular, its reactions to concept drift. Such plots also nicely
support a comparative analysis of several algorithms.

Additionally, one must also consider the availability of information re-
garding the true target values of incoming examples. The majority of cur-
rent measures and evaluation techniques assume immediate or not too much
delayed access to these labels. However, in some real life problems, this
assumption is unrealistic.

It is also worth mentioning that a thorough evaluation of predictive mod-
els in non-stationary environments typically requires the use of not only real
world data streams, but also data streams with artificially generated concept
drifts. Real world data streams enable us to evaluate how helpful a predic-
tive model is in real world situations. However, they usually do not allow
us to know when exactly a drift occurs, or even if there are really drifts.
This makes it difficult to provide an in depth understanding of the behaviour
of predictive models or drift detection methods. Data streams with artifi-
cially induced drifts enable a more detailed analysis. Therefore, both real
world data streams and data streams with artificially induced drifts are im-
portant when evaluating predictive models and concept drift detectors in

17

non-stationary environments.
The comparison of algorithms proposed in the literature is not an easy

task, as authors do not always follow the same recommendations, experi-
mental evaluation procedures and / or datasets. Below, we discuss the most
popular evaluation measures and then their experimental estimation proce-
dures.

3.1. Evaluation Measures

The predictive ability of classifiers or regression models is usually evalu-
ated with the same measure as proposed for static, non-online learning which
are also the least computationally demanding ones. Below we list the most
popular ones:

• Accuracy : the proportion of all correct predictions to the total num-
ber of examples, or its corresponding measure classification error,
are the most commonly used for classification.

• Mean square error or absolute error is a typical measure for regres-
sion.

• Sensitivity of the class of interest (also called Recall or True Positive
Rate) is accuracy of a given class.

• G-Mean : the geometric mean of sensitivity and specificity is often
applied on class-imbalanced data streams to avoid the bias of the overall
accuracy.

• Kappa Statistic : K = p0−pc
1−pc , where p0 is accuracy of the classifier and

pc is the probability of a random classifier making a correct prediction.

• Generalized Kappa Statistics such as Kappa M proposed in [21],
which should be more appropriate than the standard Kappa Statistics
for dealing with imbalanced data streams.

Furthermore, in the case of static data the area under the Receiver Oper-
ating Characteristics curve, or simply AUC, is a popular measure for eval-
uating classifiers both on balanced and imbalanced class distributions [55].
However, in order to calculate AUC one needs to sort scores of the clas-
sifiers on a given dataset and iterate through each example. This means
that the traditional version of AUC cannot be directly computed on large

18

data streams. The current use of AUC for data streams has been limited
only to estimations on periodical holdout sets [77] or entire streams of a lim-
ited length [44]. A quite recent study [31] introduces an efficient algorithm
for calculating Prequential AUC, suitable for assessing classifiers on evolving
data streams. Its statistical properties and comparison against simpler point
measures, such as G-mean or Kappa statistics, has been examined in [34].

When analyzing the performance of classifiers dedicated to drifted data,
we should also take into consideration their adaptation abilities, i.e., evalu-
ating the maximum performance deterioration and restoration time, as men-
tioned in Section 2.4.

Apart from the predictive accuracy or error, the following performance
metrics should be monitored and taken into account during properly executed
evaluation of streaming algorithms:

• Memory consumption: it is necessary to monitor not only the aver-
age memory requirements of each algorithm, but also their change over
time with respect to actions being taken.

• Update time: here one is interested in the amount of time that an
algorithm requires to update its structure and accommodate new data
from the stream. In an ideal situation, the update time should be lower
than the arrival time of a new example (or chunk of data).

• Decision time: amount of time that a model needs to make a decision
regarding new instances from the stream. This phase usually comes be-
fore the updating procedure takes place. So, any decision latency may
result in creating a bottleneck in the stream processing. This is espe-
cially crucial for algorithms that cannot update and make predictions
regarding new instances at the same time.

Nevertheless, in order to calculate reaction times and other adaptability
measures, usually a human expert needs to determine moments when a drift
starts and when a classifier recovers from it. Alternately, such evaluations
are carried out with synthetic data generators.

More complex measures have also been proposed to evaluate other proper-
ties of algorithms. Shaker and Hüllermeier [160] proposed a complete frame-
work for evaluating the recovery rate of the algorithm once a change has
occurred in the stream. They consider not only how well the model reduced
its error in the new decision space, but also what was the time necessary

19

to achieve this. Zliobaite et al. [207] introduced the notion of cost-sensitive
update in order to evaluate the potential gain from the cost (understood as
time and computational resources) put into adapting the model to the cur-
rent change. The authors argue that this allows to check if the actual update
of the model was a worthwhile investment. Hassani et al. [72] proposed a
new measure for evaluating clustering algorithms for drifting data streams,
with special attention being paid to the behavior of micro-clusters.

3.2. Estimation Techniques

In the context of static and batch learning the most often used scenario for
estimating prediction measures is cross validation. However, in the context of
online learning with computationally strict requirements and concept drifts,
it is not directly applicable. Other techniques are considered. Two main
approaches are used depending whether the stream is stationary or not, as
shown below.

• Holdout evaluation: In this case two sub-sets of data are need: the
training dataset (to learn the model) and the independent holdout set
to test it. It is arranged that, at any given moment of time when we
want to conduct model evaluation, we have at our disposal a holdout
set not previously used by our model. By testing the learning model on
such a continuously updated set (it must be changed after each usage
to ensure that it represents the current concept well), we obtain an
unbiased estimator of the model error. When conducted in a given
time or instance interval, it allows us to monitor the progress of the
model.

• Prequential evaluation is a sequential analysis [178] where the sam-
ple size is not fixed in advance. Instead, data are evaluated as they
are collected. Predictive sequential evaluation, or prequential, also re-
ferred to as interleave train and test, follows the online learning pro-
tocol. Whenever an example is observed, the current model makes a
prediction; when the system receives feedback from the environment,
we can compute the loss function.

Prequential measures can be calculated only for selected instances, thus
allowing to accommodate the assumption of limited label availability.
On the other hand, simply calculating a cumulative measure over the

20

entire stream may lead to strongly biased results. One may easily imag-
ine a situation in which the overall cumulative evaluation is strongly
influenced by a certain time period, when, e.g., access to training data
was limited, the decision problem was much more simple, or drift was
not present. Thus, to make the error estimation more robust to such
cases, a proper forgetting mechanism must be implemented – sliding
windows or fading factors. With this, an emphasis is put on error
calculation from the most recent examples. Indeed the term prequen-
tial (combination of words predictive and sequential) stems from online
learning and is used in the literature to denote algorithms that base
their functioning only on the most recent data. Prequential accuracy
[64] is popularly used with supervised learning, but also a prequential
version of AUC metric was proposed by Brzezinski and Stefanowski
[31], being suitable for streams with skewed distributions. This issue
was also addressed by Bifet and Frank [14], who also proposed a pre-
quential modification of kappa statistic suitable for streams.

A more elaborated approach to evaluate and compare algorithms in stream-
ing scenarios have been introduced recently. Shaker and Hüllermeier [160]
proposed an approach, called recovery analysis, which uses synthetic datasets
to calculate classifier reaction times. The authors proposed to divide a
dataset with a single drift into two sets without drifts. Afterwards, they
propose to plot the accuracy of the tested classifier on each of these datasets
separately. The combination of these two plots is called the optimal per-
formance curve and serves as a reference that can be compared with the
accuracy plot of the classifier on the original dataset. Zliobaite proposed
to use modify a real stream by controlled permutations to better study the
reaction of classifiers to drifts [201]. Recently Bifet at al. considered a pre-
quential and parallel evaluation strategy inspired by cross-validation, which
switches new incoming examples between copies of classifiers – some of them
use it for updating while others for testing [14].

Statistical tests have gained a significant popularity in the machine learn-
ing community [67]. In the area of data streams there were few a approaches
to using these tools [21]. However, they usually concentrated on applying
standard tests over the averaged results or by using sliding window technique.
One may be critical to such approaches, as they either try to transform a
dynamic problem into a static one, or take under consideration only local
characteristics. So far, there has been no unified statistical testing frame-

21

work proposed for data streams that would seem fully appropriate.

4. Ensemble Learning from Data Streams

This section discusses supervised data stream ensemble learning approaches
for classification and regression problems. To organize the subjects discussed
in this survey and to offer a navigation tool for the reader, we summarize
the proposed taxonomy of ensemble learning approaches for data streams in
Figure 6. Content presented there will be discussed in detail in Sections 4
and 5, with in-depth presentation of advances in the respective areas. Here,
we would like to explain a disproportion in the subcategories between su-
pervised learning in classification and regression problems. Theoretically,
the same taxonomy used for the classification ensembles could be used for
the regression ones. However, as there are still very few methods developed
in this area, we have opted for not proposing a separate taxonomy for the
streaming regression ensembles yet.

4.1. Supervised Learning for Classification Problems

Ensembles are the most often studied new classifiers in the data stream
community, see e.g. lists of methods in [62, 45]. The proposed stream clas-
sifiers can be categorized with respect to different points of view. The most
common categorizations are the following:

• stationary vs. non-stationary stream classifiers,

• active vs. passive approaches,

• chunk based vs. on-line learning modes,

• distinguishing different techniques for updating component classifiers
and aggregating their predictions.

Approaches for stationary environments do not contain any mechanism
to accelerate adaptation when concept drift occurs. Approaches for non-
stationary environments are approaches specifically designed to tackle po-
tential concept drifts.

When studying approaches to tackle concept drift, researchers usually
distinguish between active vs. passive (also called trigger vs. adaptive) ap-
proaches, see e.g. a discussion in [200, 45, 171]. Active algorithms use special
techniques to detect concept drift which trigger changes or adaptations in

22

Ensemble learning from data streams

Supervised learning
for classification

Chunk-based ensembles
for stationary streams

Online ensembles
for stationary streams

Chunk-based ensembles
for non-stationary streams
1. typical
2. alternative

Online ensembles
for non-stationary streams
1. active
2. passive

Supervised learning
for regression

Advanced issues

Imbalanced classification

Novelty detection and
one-class classification

Active and
semi-supervised
learning

Complex data and
structured outputs

taxonomy

Figure 6: The taxonomy of ensemble learning methods for data streams discussed thorough
this survey.

23

classifiers (e.g., rebuilding it from the recent examples) – see the discussion
in earlier Section 2.4. Passive approaches do not contain any drift detector
and continuously update the classifier every time that a new data item is
presented (regardless whether real drift is present in the data stream or not).
The majority of current ensembles follow a passive schema of adaptation,
while triggers are usually used mainly with single online classifiers. A few
rare cases of integrating them with ensembles, such as ACE [135], BWE [40]
or DDD [127], will be further discussed.

Then, with respect to the way of processing examples, the classifiers can
be categorized into chunk-based approaches and online learning approaches.
Chunk-based approaches process incoming data in chunks, where each chunk
contains a fixed number of training examples. The learning algorithm may
iterate over the training examples in each chunk several times. It allows to
exploit batch algorithms to learn component classifiers. Online learning ap-
proaches, on the other hand, process each training examples separately, upon
arrival. This type of approach is intended for applications with strict time
and memory constraints, or applications where we cannot afford processing
each training example more than once, e.g., applications where the amount
of incoming data is very large.

It is worth noting that the above categorization does not mean that chunk-
based approaches must be used only for situations where new training exam-
ples arrive in chunks. They can also be used to learn training examples that
arrive separately, because each new training example can be stored in a buffer
until the size of this buffer reaches the size of the chunk. Then, chunk-based
approaches may process all these examples stored in the buffer. Similarly,
this categorization does not mean that online learning approaches must be
used only for situations where new training examples arrive separately, one-
by-one. Online learning approaches can process each training example of a
chunk separately. They can be used for applications where training examples
arrive in chunks.

Finally, considering different strategies for re-constructing ensemble com-
ponent classifiers and aggregating their predictions, one can recall Kuncheva’s
categorization [109], where she has distinguished the following four basic
strategies:

• Dynamic combiners – component classifiers are learnt in advance and
are not further updated; the ensemble adapts by changing the combi-
nation phase (usually by tuning the classifier weights inside the voting

24

rule, e.g., the level of contribution to the final decision is directly pro-
portional to the relevance [119, 88]). The drawback of this approach
is that all contexts must be available in advance; emergence of new
unknown contexts may result in a lack of experts.

• Updating training data – recent training examples are used to online-
update component classifiers (e.g. in on-line bagging [139] or its further
generalizations [18, 181]).

• Updating ensemble members – updating online or retraining in batch
mode (using chunks) [56, 138, 101, 17, 152].

• Structural changes of the ensemble – replacing the worst performing
classifiers in the ensemble and adding a new component, e.g., individual
classifiers are evaluated dynamically and the worst one is replaced by
a new one trained on the most recent data [86, 102]

In this paper, the main criterion used to categorize classification ensem-
ble approaches is the data processing method, i.e., whether examples are
processed in chunks or one-by-one. Then, as the second criterion we use in-
formation on whether the approaches are designed to deal with stationary or
non-stationary data streams. We consider these two criteria first because ap-
proaches within each of these categories tackle different types of data stream
applications. Within each of these categories, we will then use further criteria
to distinguish among existing approaches.

Section 4.1.1 presents chunk-based ensemble approaches for stationary
environments, section 4.1.2 presents online learning approaches for station-
ary environments, section 4.1.3 presents chunk-based ensemble approaches
for non-stationary environments, and section 4.1.4 presents online learning
approaches for non-stationary environments.

4.1.1. Chunk-Based Ensembles for Stationary Streams

Chunk-based ensembles for stationary data streams are not so well devel-
oped as online versions and did not receive so significant attention from the
research community. They are also related to the issue of batch processing
of larger sets of data, and often do not explicitly refer to this as stream min-
ing. This section reviews the most popular methods in this area. They are
summarized in Table 1.

Learn++ is one of the most well recognized approaches to stationary
streams [145]. This ensemble constructs new neural network models on each

25

Table 1: Chunk-based ensembles for stationary data streams.

Algorithm Description

Learn++ [145] Incremental neural network ensemble
Ada.Boost RAN-LTM [94] Combination of AdaBoost.M1 and RAN-LTM classifier
Growing NCL [126] Incremental version of the Negative Correlation Learning
Bagging++ [197] Training classifiers with Bagging from incoming chunks of data

incoming chunk of data, and then combines their outputs using majority
voting. This allows to accommodate new incoming instances into the en-
semble. This approach however retains all previously learned classifiers, thus
being inefficient for handling massive datasets as the size of the ensemble
continuously grows.

Kidera et al. [94] proposed a combination of AdaBoost.M1 and Resource
Allocating Network with Long-Term Memory, a stable neural network clas-
sifier for incremental learning. They used a predetermined number of base
classifiers for the entire stream processing and incrementally updated them
with new chunks. They suppressed the forgetting factor in these classifiers
in order to allow an efficient weight approximation for weighted voting com-
bination. This however limits the usability of this approach for potentially
unbounded streams.

Minku et al. [126] introduced an incremental version of Negative Corre-
lation Learning that aimed at co-training an ensemble of mutually diverse
and individually accurate neural networks. At the same time their proposed
learning scheme allowed to maintain a trade-off between the forgetting rate
and adapting to new incoming data. Two models were discussed: fixed size
and growing size, differing in their approach to maintaining the ensemble
set-up. Experimental results showed that the fixed size approach has better
generalization ability, while the growing size may easily overcome the impact
of too strong forgetting.

Bagging++ [197] was developed as an improvement over Learn++ by
utilizing Bagging to construct new models from incoming chunks of data.
Additionally, the ensemble consisted of heterogeneous classifiers selected from
a set of four different base classifiers. Authors showed that their approach
gives comparable results to Learn++ and Negative Correlation Learning,
while being significantly faster.

26

4.1.2. Online Ensembles for Stationary Streams

Online ensembles for stationary data streams have gained significantly
more attention than their chunk-based counterparts. This was caused by
a general popularity of online learning and its application to various real-
life scenarios, not only limited to streaming data. Let us review the most
representative proposals in this area. They are summarized in Table 2.

Table 2: Online ensembles for stationary data streams.

Algorithm Description

Bagging-based
OzaBag [139] Online Bagging
ASHT [20] Ensemble of adaptive-size Hoeffding trees
LevBag [18] Leveraging Bagging with increased resampling and output detection codes
ORF [155, 43] Online Random Forest
MF [113] Online Mondrian Forest

Boosting-based
OzaBoost [139] Online Boosting

Others
UFFT [63] Ultra fast forest of binary trees
HOT [62] Hoeffding Option Trees
EOS-ELM [114] Ensemble of online extreme learning machines

Oza and Russel [139] introduced Online Bagging, which alleviates the
limitations of standard Bagging of requiring the entire training set available
beforehand for learning. They assumed that, in online learning, each new in-
coming instance may be replicated zero, one or many times during the update
process of each base classifier. Thus each classifier in the ensemble is updated
with k copies of the newly arrived instance. The value of k is selected on the
basis of Poisson distribution, where k ∼ Poisson(1). This comes from the
fact that for potentially unbounded data streams the binominal distribution
of k in standard Bagging tends to this specific Poisson distribution. Theoret-
ical foundations of this approach were further developed by Lee and Clyde
[115]. They proposed a Bayesian Online Bagging that was equivalent to the
batch Bayesian version. By combining it with a lossless learning algorithm,
they obtained a lossless online bagging approach.

Bifet et al. introduced two modifications of Oza’s algorithm called Adaptive-
Size Hoeffding Trees (ASHT) [20] and Leveraging Bagging [18], which aim
at adding more randomization to the input and output of the base classi-

27

fiers. ASHT synchronously grows trees of different sizes, whereas Leveraging
Bagging increases resampling from Poisson(1) to Poisson(λ) (where λ is a
user-defined parameter) and uses output detection codes [18].

Another online ensemble developed by Oza and Russel is Online Boost-
ing [139]. This ensemble maintains a fixed size set of classifiers trained on
the examples received so far. Each new example is used to update each of
the classifiers in a sequential manner. Examples misclassified by the former
classifiers in the sequence have their weights updated so as to be emphasized
by the latter classifiers. This is done in the following way. For each new in-
coming example, one initially assigns the highest possible weight λ = 1 to it.
The first classifier in the pool is updated with this example k = Poisson(λ)
times. After the update, this classifier is used to predict this example, and
the weighted overall fraction ε of examples that it misclassified is updated.
If the example is correctly classifies the example, the example’s weight λ is
multiplied by 1

2(1−ε) . If this classifier misclassified the example, we multiply

the weight associated to this example by 1
2ε

. This procedure is then repeated
for the next classifier in the pool, but using the new weight λ.

Several researchers developed ensembles based on a combination of de-
cision trees. Hoeffding Option Trees (HOT) can be seen as an extension of
Kirkby’s Option Tree [144]. It allows each training example to update a set
of option nodes rather than just a single leaf. It provides a compact structure
that works like a set of weighted classifiers, and just like regular Hoeffding
Trees, they are built in an incremental way – for a more detailed algorithm
refer to its description in [26, 62].

Ultra Fast Forest of Trees, developed by Gama and Medas [63], uses an
ensemble of Hoeffding trees for online learning. Their split criterion is ap-
plicable only to binary classification tasks. To handle multi-class problems,
a binary decomposition is applied. A binary tree is constructed for each
possible pair of classes. When a new instance arrives, each classifier is up-
dated only if the true class label for this instance is used by the binary base
classifier.

Ensemble of Online Extreme Learning Machines [114] was developed by
Lan et al. It is a simple combination of online randomized neural networks,
where initial diversity of the pool is achieved by a randomized training pro-
cedure. Base models are combined using averaging of individual outputs.
Each base model is updated with the incoming instances, but no discussion
of verification of how the diversity in the ensemble is maintained during the

28

course of stream processing was given.
Some other researchers focused their work on proposing online versions

of the popular Random Forest algorithm [155, 43]. They introduced online
Random Trees that generate test functions and thresholds at random and
select the best one according to a quality measure. Their online update
methodology is based on the idea of generating a new tree having only one
root node with a set of randomly selected tests. Two statistics are calculated
online: minimum number of instances before split and minimum gain to be
achieved. When a split occurs statistics regarding the instances that will
fall into left and right node splits are propagated into children nodes, thus
they start already with the knowledge of their parent node. Although the
authors acknowledge the existence of the Hoeffding bound, they argue that
using online updated gain is closer to the real idea behind decision trees.
Additionally, a forgetting mechanism via temporal knowledge weighting is
applied to reduce the influence of old instances. This is realized as pruning
random trees, where a classifier is discarded from the ensemble based on its
out-of-bag error and the time its age (time spend in the ensemble).

This idea was further developed by Lakshminarayanan et al. into online
Mondrian Forest algorithm [113]. They used Mondrian processes for their
tree induction scheme, which are a family of random binary partitions. As
they were originally introduced as infinite structures, the authors modified
them into finite Mondrian trees. The main differences between this approach
and standard decision trees are the independence of splits from class labels,
usage of split time at every node, introduction of parameter controlling dy-
namically the number of nodes and that the slit is bounded by the training
data and is not generalized over the entire feature space. The ensemble is
constructed identically as in standard Random Forest, but another differ-
ence lies in online update procedure. Mondrian trees can accommodate new
instances by creating a new split that will be on higher level of tree hierar-
chy than existing ones, extending the existing split, or splitting the existing
leaf into children nodes. Please note that standard online Random Forest
can only update their structure using the third of mentioned methods. This
makes Mondrian Forests much more adaptable to streaming data, allowing
for more in-depth modifications in ensemble structure. The authors report
that their method outperforms existing online Random Forests, achieves ac-
curacy similar to batch versions and is at least an order of magnitude faster
than reference ensembles.

29

4.1.3. Chunk-Based Ensembles for Non-Stationary Streams

Chunk-based approaches for non-stationary environments usually adapt
to concept drifts by creating new component (a.k.a. base) classifiers from
new chunks (blocks or batches) of training examples. In general, component
classifiers of the ensemble are constructed from chunks which correspond to
different parts of the stream. Therefore, the ensemble may represent a
mixture of different distributions (concepts) that have been present in the
data stream. Learning a new component from the most recent chunk is also
a natural way of adaptating to drifts [200]. Additionally, some chunk-based
ensembles maintain an additional buffer for storing old classifiers that can
be reused when needed, offering a potential to handle recurring concepts.

Learning component classifiers from complete chunks enables applying
standard, batch learning algorithms. Forgetting of old classification knowl-
edge can be done by eliminating too poorly performing components. This
offers a way to limit the amount of memory required to store the ensemble,
even though it impedes the ensemble of recovering deleted classifiers if and
when their corresponding concept reoccurs.

Most of the chunk-based ensembles periodically evaluate their compo-
nents with the newest chunk. The results of this evaluation are used to
update weights associated to each component classifier. These weights can
be used to emphasise the classifiers that best reflect the most recent data dis-
tribution when making an ensemble prediction, or to decide which unhelpful
classifiers should be discarded.

One of the main features to distinguish between different chunk-based en-
sembles for non-stationary environments is whether or not they always create
new classifiers for each new chunk of data in order to deal with concept drift.
So, we discuss these approaches under this perspective below. Presented
algorithms are summarized in Table 3.

Typical Chunk-based Approaches.
Typically, chunk-based ensembles are constructed according to the fol-

lowing schema:

1. For each new chunk Bi ∈ S, evaluate component classifiers Cj in the
ensemble with respect to a given evaluation measure Q(Cj);

2. Learn a new candidate classifier Cc using Bi;

3. Add Cc to the ensemble if the ensemble size is not exceeded; otherwise
replace one of the existing components of the ensemble.

30

Table 3: Chunk-based ensembles for non-stationary data streams.

Algorithm Description

Typical approaches
SEA [172] Streaming Ensemble Algorithm
AWE [179] Accuracy Weighted Ensemble
Aboost[37] Adaptive, fast and light Boosting
Learn++.NSE [52] Learn++ for non-stationary environments

Alternative approaches
KBS [156] Boosting-like method using knowledge-based sampling
AUE [32] Accuracy Updated Ensemble
WAE [190] Weighted Aging Ensemble
BWE [40] Batch Weighted Ensemble
ET [148] Ensemble tracking for recurring concepts

Each of these approaches implements a different strategy to restrict the en-
semble size and to weight different classifiers in the ensemble.

As a new classifier is always created to learn each new data chunk, the size
of the chunk plays a particularly important role. A too large chunk size would
result in slow adaptation to drifts. On the other hand, a too small chunk size
would not be enough to learn an entire stable concept well, would increase
computational costs, and may result in poor classification performance [179].

One of the earliest well known approaches in this category is the Stream-
ing Ensemble Algorithm (SEA), proposed by Street and Kim [172]. This
approach creates a new classifier to learn each new chunk of training data.
If the maximum ensemble size has not been reached yet, this new classifier
is simply added to the ensemble. Otherwise, the quality of the new classifier
is first evaluated based on the next incoming training chunk. Then, the new
classifier replaces an existing classifier whose quality is worse than the qual-
ity of the new classifier on this training chunk. One of the key features for
the success of this approach is its quality measure. It favours the classifiers
which correctly classify examples that are nearly undecided by the ensemble.
In this way, this approach can avoid overfitting and maintain diversity. The
predictions given by the ensemble are based on the majority voting. This
approach has been shown to recover faster from concept drift than single
classifiers. One of its potential problems is that old classifiers can outweigh
the new classifier, potentially slowing down adaptation to new concepts. How
fast the ensemble can recover from drifts depends not only on the chunk size,

31

but also on the ensemble size.
A similar way of restructuring an ensemble was proposed by Wang et al.

as the algorithm called Accuracy Weighted Ensemble (AWE) [179]. The
key idea of AWE is to assign weights to each classifier of the ensemble based
on their prediction error on the newest training chunk. A special variant of
the mean square error (which allows to deal with probabilities of a component
classifier predictions) is used for that purpose. The assumption made by this
approach is that the newest training chunk is likely to represent the current
test examples better. Classifiers that have equal or worse performance than a
random classifier (in terms of their mean square errors) are discarded. Prun-
ing can also be applied to maintain only the K classifiers with the highest
weights. In this way, it is possible to remove classifiers that would hinder
the predictions and include new classifiers that can learn the new concepts.
For cost-sensitive applications, it is also possible to use instance-based dy-
namic ensemble pruning [53]. This approach was shown to be successful in
achieving better accuracy than single classifiers when the ensemble size be-
comes large enough (i.e., after enough data chunks are received). However,
as noticed in [28], the AWE’s pruning strategy may sometimes delete too
many component classifiers in the case of certain sudden drifts and decrease
too much of AWE’s classification accuracy. Another problem concerns the
evaluation of the new candidate classifier – it requires k-fold cross-validation
inside the latest chunk, which increases computational time.

Chu and Zaniolo [37] proposed a chunk-based approach inspired by the
boosting framework. When a training chunk is received, the ensemble error is
calculated. After that, a mechanism based on statistical tests is used to detect
concept drifts. If a concept drift is detected, all the classifiers composing
the ensemble are deleted. After the concept drift detection mechanism is
applied (and the possible deletion of ensemble members), a new classifier is
created to learn the training chunk. The training examples of the chunk
are associated to weights determined in an AdaBoost way based on the the
ensemble error. If the ensemble error on the current chunk is e and the
example i is misclassified, then this example’s weight is set to wi = (1−e)/e.
If the example was correctly classified, its weight is maintained as 1. If the
inclusion of the new classifier makes the ensemble exceed the maximum size
M , the oldest ensemble member is eliminated. The classification is done
by averaging the probabilities predicted by the classifiers and selecting the
class with the highest probability. This approach was shown to be able to
improve predictive performance in comparison to previous approaches such

32

as SEA [172] and Wang et al.’s [179] in the presence of concept drift. A
potential problem of this approach is that it resets the whole ensemble upon
drift detection. This strategy can be sensitive to false alarms (false positive
drift detections) and is unable to deal with recurring concepts.

Another approach inspired by the boosting framework is Elwell and Po-
likar’s generalization of Learn++ for Non-Stationary Environments (called
Learn++.NSE) [52]. This approach also sets the weights of the training ex-
amples from a new data chunk based on the ensemble error on this chunk.
If an example i is misclassified, its weight is set to wi = 1/e. Otherwise,
it is set to 1. One of the main differences between this approach and Chu
and Zaniolo’s [37] is that it does not use a concept drift detection mecha-
nism. Instead, reaction to drifts is based on weights associated to each base
classifier. These weights are higher when the corresponding base classifier is
able to correctly classify examples that were missclassified by the ensemble.
Weights are lower if the corresponding base classifier misclassifies examples
that were correctly classified by the ensemble. Weights are also set to give
more importance to the misclassifications on more recent data chunks, which
are believed to represent the current concept better. The predictions given
by the ensemble are based on weighted majority voting. Therefore, base
classifiers that were poorly performing for some period of time can be au-
tomatically re-emphasised through their weights once they become useful.
The fact that base classifiers are not deleted can help dealing with recurrent
drifts. However, as the ensemble size is unlimited and a new base classifier is
added for every new data chunk, the number of base classifiers may become
high.

Alternative Chunk-Based Approaches.
Chunk-based ensembles are typically quite sensitive to a proper tuning of

the size of the data chunk. In particular, a too large chunk size may delay
reaction to drifts, while a too small chunk size may lead to poorly performing
base classifiers. Moreover, learning every new data chunk may introduce a
learning overhead that could be unnecessary when existing classifiers are
considered good enough for the current concept. Some researchers proposed
approaches that deviate from the typical chunk-based learning schema in an
attempt to overcome some of these issues. We discuss some representative
approaches in this section.

Scholz and Klinkenberg’s approach [156, 157] decides, for each new train-
ing chunk, whether to train a new classifier or update the newest existing

33

classifier with it. This decision is based on the accuracy resulting from train-
ing the most recent classifier with the new chunk in comparison with the
accuracy obtained by training a new classifier on the new chunk. Only the
best between these two classifiers is kept. This strategy may reduce the
problem of creating poor base classifiers due to small chunk sizes, because
existing classifiers can be trained with more than one chunk. Besides assign-
ing weights to the examples within a training chunk in a boosting-like style,
each classifier itself also has a weight, which is assigned depending on its
performance on the new training chunk. These weights are not only used to
speed up reaction to concept drifts, but also to prune unhelpful classifiers.
This approach has been shown to perform well in comparison to previous
approaches such as adaptive window size [97] and batch selection [98, 96].
However, it did not perform so well when the drift consisted of an abrupt
concept drift quickly followed by a change back to the previous concept.

Deckert [40] proposed an ensemble approach that uses a concept drift
detection method to decide whether a new classifier should be created to
learn a new data chunk, or whether the new data chunk should be discarded
without further training.

Another alternative chunk-based approach is the Accuracy Updated En-
semble (AUE) [28, 32]. In this ensemble, all component classifiers are in-
crementally updated with a portion of the examples from the new chunk.
This may help reducing the problems associated to creating poor base classi-
fiers due to small chunk sizes. Another novelty includes weighting classifiers
with non-linear error functions, which better promotes more accurate compo-
nents. Moreover, the newest candidate classifier always receives the highest
weight, as it should reflect the most recent data distribution better. AUE also
contains other techniques for improving pruning of ensembles and achieving
better computational costs. The experimental studies [32] showed that AUE
constructed with Hoeffding Trees obtained higher classification accuracy than
other chunk ensembles in scenarios with various types of drifts as well as in
stable streams.

Yet another approach to rebuilding a chunk-based ensemble was presented
by Wozniak et al. Weighted Aging Ensemble (WAE) modifies the classifier
ensemble line-up on the basis of their diversity. The ensemble prediction is
made according to the weighted majority voting, where the weight of a given
classifier depends on its accuracy and time spent inside an ensemble [190].

A number of approaches have been discussed in the literature to specifi-
cally tackle recurring concepts in data streams. Ramamurthy and Bhatnagar

34

[148] proposed an ensemble tracking approach that tries to deal with recur-
ring concepts explicitly. It maintains a global set of classifiers representing
different concepts. Whenever a new training chunk is available, the error of
each classifier on it is determined. MaxMSE is defined as the classification
error of a classifier that predicts randomly. If at least one classifier has er-
ror lower than a pre-defined value τ , or if the error of the weighted ensemble
formed by all classifiers with error lower than AcceptanceFactor∗MaxMSE
is lower than τ , no new classifier is created. This reduces the overhead asso-
ciated to learning every new data chunk. If neither a single classifier nor the
above mentioned ensemble have error lower than τ , a new classifier is created
and trained with the new data chunk, which is assumed to represent a new
concept. One of the problems of this approach is that it has no strategy to
limit the size of the global set of classifiers.

Another approach for storing the special definitions of previous concepts
has been considered by Katakis et al. in their ensemble with conceptual
clusters calculated and compared for each data chunk [93]. Jackowski [86]
described an evolutionary approach for selecting and weighting classifiers
for the ensemble in the presence of recurrent drifts, while Sobolewski and
Wozniak used the idea of the recurring concepts to generate a pool of artificial
models and select the best fitted in the case of concept drift [167].

4.1.4. Online Ensembles for Non-Stationary Streams

Online ensembles learn each incoming training example separately, rather
than in chunks, and then discard it. By doing so, these approaches are able
to learn the data stream in one pass, potentially being faster and requiring
less memory than chunk-based approaches. These approaches also avoid the
need for selecting an appropriate chunk size. This may reduce the problems
associated with poor base models resulting from small chunk sizes, even
though these approaches would still normally have other parameters affecting
the speed of reaction to drifts (e.g., parameters related to sliding windows
and fading factors).

One of the main features to distinguish between different online ensemble
learning approaches for non-stationary environments is the use of concept
drift detection methods. So, they are divided into passive or active categories.
Presented algorithms are summarized in Table 4.

Passive Approaches.
Passive approaches are approaches which do not use explicit concept drift

35

Table 4: Online ensembles for non-stationary data streams.

Algorithm Description

Passive approaches
DWM [101] Dynamic Weighted Majority
AddExp [100] Addictive expert ensembles for classification
HRE [109] Horse racing ensembles
CDC [170] Concept Drift Committee
OAUE [30] Online Accuracy Updated Ensemble
WWH [81] Ensemble of classifiers using overlapping windows
ADACC [85] Anticipative Dynamic Adaptation to Concept Changes

Active approaches
ACE [135] Adaptive Classifiers-Ensemble
Todi [134] Two Online Classifiers For Learning And Detecting Concept Drift
DDD [127] Diversity for Dealing with Drifts
ADWINBagging [19] Online Bagging with ADWIN drift detector

detection methods. Different passive online ensembles have different strate-
gies to assign weights to classifiers, as well as to decide when to add or
remove classifiers from the ensemble in order to react to potential concept
drifts. Most of these approaches present mechanisms to continuously adapt
to concept drifts that may occur in the stream. How fast adaptation is
achieved and how sensitive this adaptation is to noise usually depends on
parameters.

One of the most well known approaches under this category is Dynamic
Weighted Majority (DWM) [101], proposed by Kolter and Maloof. In this
approach, each classifier has a weight that is reduced by a multiplicative con-
stant β (0 ≤ β < 1) when it makes a wrong prediction, similar to Littlestone
and Warmuth’s Weighted Majority Algorithm [119]. This allows the ensem-
ble to emphasize the classifiers that are likely to be most accurate at a given
point in time. All classifiers are incrementally trained on the incoming train-
ing examples. In addition, in order to accelerate reaction to concept drift,
it is possible to add a new classifier or remove existing classifiers. New clas-
sifiers are added when the ensemble misclassifies a given training example.
They can learn potentially new concepts from scratch, avoiding the need for
existing classifiers to forget their old knowledge when there is concept drift.
Classifiers whose weights are too low are classifiers that have been unhelpful
for a long period of time. They can be deleted to avoid the ensemble becom-

36

ing too large. The weight updates and the addition and removal of classifiers
are performed only at every p time steps, where p is a pre-defined value.
Larger values of p are likely to be more robust against noise. However, too
large p values can result in slow adaptation to concept drift. At every p train-
ing examples, the weights of all ensemble members are also normalized, so
that the new member to be included does not dominate the decision-making
of all the others. DWM has demonstrated to achieve good performance in
the presence of concept drifts [101], usually achieving similar performance
to an approach with perfect forgetting. However, it may not perform so
well as Littlestone and Warmuth’s Weighted Majority Algorithm [119] under
stationary conditions.

Addictive Expert Ensembles (AddExp) is a method similar to DWM
[100]. The main motivation for this method is the fact that it allows the
definition of mistake and loss bounds. In this method, the parameter p is
eliminated, so that weight updates happen whenever a base classifier mis-
classifies a new training example. A new classifier is always added when the
prediction of the ensemble as a whole is wrong. When combined with a strat-
egy to prune the oldest classifiers once a maximum pre-defined ensemble size
if reached, the bounds are defined in the same way as when no pruning of
classifiers is performed. However, eliminating the oldest classifiers may not
be a good strategy to deal with non-stationary environments, as old classi-
fiers may still be very useful. The alternative strategy of pruning the lowest
weight classifiers is more practical, but offers no theoretical guarantees.

Other approaches to combine online classifiers are also considered in
Hedge β or Winnow algorithm [119]. Kuncheva called them “horse rac-
ing” ensembles [109]. For instance, Hedge β works in a similar way to the
Weighted Majority Algorithm, but instead of using an aggregating rule it se-
lects one component classifier based on the probability distribution obtained
by normalized weights to represent the final ensemble prediction. Winnow
also follows the main schema of Weighted Majority Algorithm, but uses dif-
ferent updating and calculating weights ideas.

Another example of passive online learning ensemble approach for non-
stationary environments is Stanley’s Concept Drift Committee (CDC) [170].
As with DWM and AddExp, all classifiers that compose the ensemble are
trained on the incoming training examples. Instead of multiplying the weights
of the classifiers by a constant β upon misclassifications, CDC uses weights
that are proportional to the classifier’s accuracy on the last n training ex-
amples. A new classifier is added whenever a new training example becomes

37

available, rather than only when the ensemble misclassifies the current train-
ing example. When a maximum pre-defined ensemble size is reached, a new
classifier is added only if an existing one can be eliminated. A classifier can
be deleted if its weight is below a pre-defined threshold t and its age (num-
ber of time steps since its creation) is higher than a pre-defined maturity
age. Imature classifiers do not contribute to the ensemble’s prediction. This
gives them a chance to learn the concept without hindering the ensemble’s
generalization. This approach was shown to achieve comparable or better
performance than previous approaches such as FLORA4 [185] and instance-
based learning 3 (IB3) [3] in the presence of concept drifts, but sometimes
presented worse performance than FLORA4 before the drifts.

Yet another idea has been used in Online Accuracy Updated Ensemble
(OAUE) [30]. It inherits some positive solutions coming from its hybrid pre-
ceder AUE, like incremental updating of component classifiers and learning
new classifiers at some time steps. However, to more efficiently process in-
coming single examples and weight component classifiers, the new proposal of
a cost-effective function was introduced. It achieves a good trade-off between
predictive accuracy, memory usage and processing time.

The WWH algorithm from Yoshida et al. [81] builds different compo-
nent classifiers on overlapping windows to select the best learning examples
and aggregates component predictions similarly to the Weighted Majority
Algorithm. Therefore, WWH can be seen as a combination of an instance
selection windowing technique with an adaptive ensemble.

Quite recently, Jaber proposed the Anticipative Dynamic Adaptation to
Concept Changes (ADACC) ensemble, which attempts to optimize control
over the online classifiers by recognizing concepts in incoming examples [85].

Active Approaches.
Even though active online ensemble approaches are not so common as

passive ones, there are a few approaches in this category. One of the ad-
vantages of using explicit drift detection methods is the possibility to inform
practitioners of the existence of concept drifts. The use of concept drift de-
tectors can also help approaches to swiftly react to concept drifts once they
are discovered. However, if concept drift detectors fail to detect drifts, these
approaches will be unable to react to drifts. Concept drift detectors may also
present false alarms, i.e., false positive drift detections. Therefore, it is im-
portant for active ensemble approaches to implement mechanisms to achieve
robustness against false alarms.

38

An example of active online ensemble is the Adaptive Classifiers-Ensemble
(ACE) [135]. This approach uses both an online classifier to learn new train-
ing examples and batch classifiers trained on old examples stored in a buffer.
The batch classifiers are used not only to make predictions, but also to detect
concept drifts. ACE considers that there is a concept drift if the accuracy
of the most accurate batch classifier over the last W examples is outside the
confidence interval formed by its accuracy over the W examples preceding
the last W examples. Whenever a concept drift is detected or the maximum
number of training examples to be stored in the buffer is attained, a new
batch classifier is trained with the stored examples and both the online clas-
sifier and the buffer are reset. A pruning method is used to limit the number
of batch classifiers used. This pruning method removes older classifiers first,
unless they present the highest predictive accuracy over a long period of time.
In that way, the approach can use old knowledge when there are recurring
concepts. The classification is done by weighted majority vote. The weight
is based on the accuracy on the most recent W training examples, and it
is zero if this accuracy is equal to or lower than the lower endpoint of the
accuracy confidence interval. As the size of the buffer of stored examples is
independent of the size of the sliding window W, ACE can respond to sud-
den changes even if the buffer is large. However, determining the size W of
the sliding window may not be easy. ACE also requires storage of examples
in an incremental way to create the batch classifiers, but this issue can be
easily overcome by replacing the buffer by an online learning algorithm. A
comparative experiment of ACE against other ensembles has been presented
in [41].

Two Online Classifiers For Learning And Detecting Concept Drift (Todi)
[134] uses two online classifiers to detect concept drift. One of them (H0) is
rebuilt every time a drift is detected. The other one (H1) is not rebuilt when
a drift is detected, but can be replaced by the current H0 if a detected drift
is confirmed. Todi detects concept drift by performing a statistical test of
equal proportions to compare H0’s accuracies on the most recent W training
examples and on all the training examples presented so far excluding the last
W training examples. After the detection of a concept drift, a statistical test
of equal proportions with significance level β is done to compare the number
of correctly classified training examples by H0 and H1 since the beginning of
the training of H0. If statistical significant difference is detected, this means
that H0 was successful to handle concept drift, and the drift is confirmed.
H0 then replaces H1 and is rebuilt. The classification is done by selecting

39

the output of the most accurate classifier considering the W most recent
training examples. This strategy makes the approach more robust to false
alarms than approaches that reset the learning system upon drift detection
[61, 136]. However, no strategy is adopted to accelerate the learning of a new
concept, as the new concept has to be learnt from scratch.

Another example of active online ensemble learning approach in this cat-
egory is Diversity for Dealing with Drifts (DDD) [127]. DDD is based on the
observation that very highly diverse ensembles (whose base classifiers produce
very different predictions from each other) are likely to have poor predictive
performance under stationary conditions, but may become useful when there
are concept drifts. So, in the mode prior to drift detection, DDD maintains
both a low diversity ensemble and a high diversity ensemble. The low di-
versity ensemble is used for learning and for making predictions. The high
diversity ensemble is used for learning and is only activated for predictions
upon drift detection. This is because this ensemble is unlikely to perform
well under stationary conditions. Concept drifts can be detected by using
existing methods from the literature. Once a concept drift is detected, the
approach shifts to the mode after drift detection, where it activates both the
low and high diversity ensembles and creates new low and high diversity en-
sembles to start learning the new concept from scratch. The prediction given
by DDD is then set to the weighted majority vote of the predictions given
by its ensembles, except for the new high diversity ensemble. The weight of
each ensemble is proportional to its prequential accuracy since drift detec-
tion. This approach manages to achieve robustness to different types of drift
and to false alarms, because the different ensembles are most adequate for
different situations. However, the use of more than one ensemble can make
this approach heavier for applications with very strict time constraints.

Modifications of the architecture of tree ensembles with drift detectors
have also been considered by Bifet at al. [15]. The ADWIN change detector
has been used to reset ensemble members when their predictive accuracy
degrades significantly. This makes it possible to better deal with evolving
data streams. The same ADWIN method may also be integrated with online
bagging ensemble – see ADWINBagging [19].

4.2. Supervised Learning for Regression Problems

Regression analysis is a technique for estimating a functional relationship
between a numeric dependent variable and a set of independent variables. It
has been widely studied in statistics, pattern recognition, machine learning

40

and data mining. Many ensemble methods can be found in the literature
for solving classification tasks on streams, but only a few exist for regression
tasks. Discussed algorithms are summarized in Table 5.

Table 5: Ensembles for regression from data streams.

Algorithm Description

OzaBag [139] Online Bagging for regression
OzaBoost [139] Online Boosting for regression
AddExp [100] Addictive expert ensembles for regression
ILLSA [92] Incremental local learning soft sensing algorithm
eFIMT-DD [83] Ensembles of any-time model trees
AMRules [49] Ensemble of randomized adaptive model rules
iSOUP-Tree-MTR [137] Ensembles of global and local trees
DCL [130] Dynamic cross-company learning
Dycom [129] Dynamic cross-company mapped model learning
LGPC [193] Lazy Gaussian Process committee
OWE [164] Online weighted ensemble of regressor models
DOER [163] Dynamic and on-line ensemble regression

Oza and Russel’s online bagging algorithm for stationary data streams
[139] described in section 4.1.2 is an example of method that is inherently
applicable both to classification and regression.

Kolter and Maloof’s Addictive Expert Ensembles (AddExp) for non-
stationary data streams also contains another version for continuous depen-
dent variables [100]. As in the AddExp for classification problems, a weight
is associated to each base learner. For classification, AddExp makes predic-
tions by using weighted majority vote, while for regression, weighted average
is used. In the version for classification, the weight associated to a base
classifier is multiplied by β, 0 ≤ β < 1, whenever it misclassifies a training
example. In the version for regression, the weight of a base learner is always
multiplied by β|ŷ−y|, where ŷ is the prediction given by the base learner is y
is the actual value of the dependent variable.

Kadlec and Gabrys developed an incremental local learning soft sensing
algorithm (ILLSA) [92], operating in two phases. During the initial phase a
number of base models is being trained, each using different concepts (sub-
sets) of the training data. During the online data stream mining phase,
weights assigned to models are recalculated instance-by-instance using their
proposed Bayesian framework working on output posterior probabilities.

41

The most in depth study on learning ensembles of model trees from data
streams appears in [82, 83]. These research include two different methods
for online learning of tree-based ensembles for regression from data streams.
Both methods are implemented on the top of single model trees induced
using the FIMT-DD algorithm (a special incremental algorithm for learning
any-time model trees from evolving data streams). Then, the ensembles
of model trees are induced by the online bagging algorithm and consist of
model trees learned with the original FIMT-DD algorithm and a randomized
version named R-FIMT-DD. Authors explore the idea of randomizing the
learning process through diversification of the input space and the search
trajectory and examine the validity of the statistical reasoning behind the
idea for aggregating multiple predictions. It is expected that this would
bring the resulting model closer to the optimal or best hypothesis, instead
of relying only on the success of a greedy search strategy in a constrained
hypothesis space. The authors also perform a comparison with respect to
the improvements that an option tree brings to the learning process.

In [84], the authors observe that the use of options acts as a kind of
backtrack past selection decisions. Their empirical comparison has shown
that the best tree found within the option tree has a better accuracy (on most
of the problems) than the single tree learned by FIMT-DD. The increased
predictive performance and stability comes at the cost of a small increase of
the processing time per example and a controllable increase in the allocation
of memory. The increase in the computational complexity is due to the
increased number of internal nodes being evaluated at any given point in time.
The option tree incurs an additional increase in computational complexity
when computing the aggregate of the multiple predictions for a single testing
example, as it has to examine all of the options on the path from the root to
the corresponding leaf node.

Adaptive Model Rules [49] is the first streaming rule learning algorithm
for regression problems. It extends AMRules algorithm by using random
rules from data streams. Several sets of rules are being generated. Each rule
set is associated with a set of Natt attributes. These attributes are selected
randomly from the full set of attributes of the dataset. The new algorithm
improves the performance of the previous version.

Osojnik et al. [137] investigated ensembles of local and global trees for
multi-target regression from data streams. Authors argued that predict-
ing all target at once is more beneficial to mining streams than using local
models. A novel global method was proposed, named incremental Structured

42

Output Prediction Tree for Multi-target Regression (iSOUP-Tree-MTR). For
improving the predictive power, the authors used it as a base learner for Oza’s
Online Bagging.

An approach called Dynamic Cross-company Learning (DCL) [130] has
been proposed to perform transfer learning for data streams in non-stationary
environments. The approach aims at making predictions in the context of
a given target company or organization. A data stream containing training
examples from this company or organization is available, but produces few
examples over time. This can happen, for example, when it is expensive
to collect labeled examples in the context of a given company. Therefore,
this approach maintains not only a base learner to learn such examples, but
also other base learners to learn examples obtained from other companies or
organizations. A weight is associated to each base learner. This weight is
multiplied by β, 0 ≤ β < 1, whenever this base learner is not the one that
provided the best prediction to a new target company / organization training
example. So, these weights can be used to emphasize the base learners that
currently best reflect the present concept of the target company / organiza-
tion. The prediction given by the ensemble is the weighted average of the
predictions given by the base learners.

Another approach called Dynamic Cross-company Mapped Model Learn-
ing (Dycom) [129] extends DCL to learn linear functions to map the base
learners created with data from other companies or organizations to the cur-
rent concept of the target company or organization. These mapping functions
are trained based on a simple algorithm that uses training examples from the
target company / organization data stream and the predictions given to these
examples by the base learners representing other companies / organizations.
This algorithm operates in an online manner and gives more importance to
more recent training examples, so that the mapping functions represent the
current concept of the companies / organizations. It is expected to enable a
reduction in the number of training examples required from the target com-
pany while keeping a similar predictive performance to DCL. This is because
it can benefit from all base learners by mapping them to the concept of the
target company, rather than benefiting only from base learners that currently
best represent the concept of the target company.

Xiao and Eckert [193] proposed an approximation of Gaussian processes
for online regression tasks. They combined several base models, each being
initialized with random parameters. Each incoming instance is used to up-
date a selected subset of base models that are being chosen using a reedy

43

subset selection, realizing an optimization of a submodular function. The
authors showed that their method displays favorable results in terms of error
reduction and computational complexity, however used only methods based
on Gaussian processes as a reference.

On-line Weighted Ensemble (OWE) of regressor models was discussed by
Soares and Araujo [164]. It was designed to handle various types of concept
drift, including recurrent ones. The ensemble model is based on a sliding
window that allows to incorporate new samples and remove redundant ones.
A boosting-like solution is used for weight calculation of ensemble models, by
measuring their error on the current window. Additionally, contribution of
old windows can be taken into consideration during weight calculation, thus
allowing for switching between recurring and non-recurring environments.
Finally, OWE can expand its structure by adding new model when the en-
semble error is increasing and pruning models characterized by highest loss
of accuracy.

This concept was further developed by the same authors in their dynamic
and on-line ensemble regression (DOER) [163]. Here, the selection and prun-
ing of models within the ensemble is being done dynamically, instance after
instance, to offer improved adaptation capabilities. Additional novelty lies in
ability of each base model to update its parameters during the stream mining
procedure.

An evolutionary-based ensemble that can adapt the competence areas
and weights assigned to base models for regression tasks was also discussed
by Jackowski in [87].

5. Advanced Issues in Data Stream Analysis

The previous sections have discussed typical representations of examples
and output values (as attribute - value pairs) and learning problems which
are the commonly encountered in data stream analysis. However, in several
new studied problems one can meet more complex representations or learning
issues. We will now discuss ensemble solutions to these problems, including
learning from imbalanced data, novelty detection, lack of counterexamples,
active learning and non-standard data structures.

5.1. Imbalanced Classification

Non-stationary data streams may be affected by additional data com-
plexity factors besides concept drifts and computational requirements. In

44

particular, it concerns class imbalance, i.e., situations when one of the tar-
get classes is represented by much less instances than other classes. Class
imbalance is an obstacle even for learning from static data, as classifiers are
biased toward the majority classes and tend to misclassify minority class ex-
amples. Dealing with unequal cardinalities of different classes is one of the
contemporary challenges in batch learning from static data. It has been more
studied in this static framework and many new algorithms have already been
introduced, for their comprehensive review see the recent monograph [74] or
surveys [9, 73, 103].

Out of these new solutions ensembles are one of the most promising di-
rections. However, class imbalance has still received less attention in non-
stationary learning [78]. Note that imbalanced data streams may not be
characterized only by an approximately fixed class imbalance ratio over time.
The relationships between classes may also be no longer permanent in evolv-
ing imbalanced streams. A more complex scenario is possible where the
imbalance ratio and the notion of a minority class may change over time.
It becomes even more complex when multi-class problems are being con-
sidered [182]. Below we discuss main ensemble-based proposals for mining
imbalanced evolving streams. They are summarized in Table 6.

Table 6: Ensembles for imbalanced data streams.

Algorithm Description

Chunk-based approaches
SE [66] Ensemble with majority class sampling
SERA [35] Selectively recursive approach for sampling minority class
REA [36] SERA with k-NN for chunk similarity analysis
BD [118] Boundary definition ensemble
Learn++.CDC [44] Learn++ with concept drift and SMOTE

Online approaches
EONN [68] Ensemble of online cost-sensitive neural networks
ESOS-ELM [131] Ensemble of subset online sequential extreme learning machines
OOB [181] Oversampling-based online Bagging
UOB [181] Undersampling-based online Bagging
MOOB [182] Multi-class oversampling-based online Bagging
MUOB [182] Multi-class undersampling-based online Bagging

Many of these proposals adapt an idea of re-sampling the data in incoming
data to obtain more balanced class distributions. In general re-sampling

45

methods transform the distribution of examples in the original data towards
more balanced classes. Undersampling removes some examples from the
majority classes while oversampling adds minority class examples (either by
random replicating or generating synthetic new ones).

The first proposal by Gao et al. [66] was an ensemble approach that
divided examples from the incoming data chunk into positive (the minority
class) and negative (other classes) subsets. To build a new base classifier
one takes all positive instances gathered so far and randomly selects a subset
of the negative instances of the new data chunk. The size of this subset
is calculated basing on a parameter referring to the class distribution ra-
tio. Then, this new classifier is added to the ensemble. Predictions of base
classifiers are combined using a simple voting technique. In order to accom-
modate this idea for a potentially infinite stream authors propose to sample
examples from only a limited number of the most recent chunks, using ei-
ther fixed (each chunk contributes equally) or fading (the more recent chunks
contribute more instances) strategy. However, as all positive examples are
used to learn each classifier, this method is limited to situations with a stable
definition of the minority class.

Selectively recursive approach (SERA) [35] is another ensemble method
proposed by Chen and He that extends the Gao et al. concept by using
selective sampling of the minority class. Mahalanobis distance is used to
select a subset of most relevant minority instances (from the previous chunks)
for the current chunk of the stream and combine them with bagging method
applied on examples from the majority class. This approach alleviates the
drawbacks of the previous method regarding drifts on minority class, but at
the same time makes SERA very sensitive to proper selection of the number
of minority samples taken under consideration.

Chen and He proposed yet another ensemble, called REA [36], which
changes SERA properties by adopting the k-nearest neighbor principle to
estimate similarity between previous minority examples with ones in the
most recent chunk. The predictions of base classifiers are weighted on the
basis of their classification of the recent chunk.

Lichtenwalter and Chawla [118] proposed weighted ensembles in which
both classified minority and majority instances are being propagated between
chunks. This allows to better capture the potentially changing boundary be-
tween classes. A combination of information gain and Hellinger’s distance
(a skew-insensitive metric) is used to measure similarities between two data
chunks and thus to implicitly check if a concept drift has taken place. This

46

information is then used to weight ensemble members during the combination
of their predictions, with a linear function being inverse of the actual close-
ness of chunks. The authors acknowledge the potential limitations of this
approach (like small differences in weights or reduced variance) but leave a
more precise examination of different combination functions for future stud-
ies.

Ditzler and Polikar [44] proposed an extension of their Learn++ ensemble
for incremental learning from imbalanced data. This combines their previ-
ous approach to learning in non-stationary scenarios with idea of bagging,
where undersampling is performed in each bag. Classifiers are weighted based
on their performance on both minority and majority classes, thus prevent-
ing significant loss of accuracy on negative cases. However, one must point
out that this approach assumes well-defined minority class and cannot han-
dle dynamically changing properties of classes. The authors also studied a
variant called Learn++.CDC (Concept Drift with SMOTE), which employs
oversampling of the minority class.

Ghazikhani et al. [68] introduced an ensemble of online neural networks
to handle drifting and imbalanced streams. They embedded a cost-sensitive
learning into the process of neural network training in order to tackle the
skewed class distribution. A number of cost-sensitive neural networks is
trained at the beginning of the stream using different initial random weights.
Then, the ensemble is updated with new instances without set-up modifica-
tions. A cost matrix is predefined, with penalty for errors on minority class
being twice the remaining costs. The usage of the fixed cost matrix limits
the adaptability to evolving streams. Classifiers are combined using weighted
voting, and individual weights are calculated with a modified Winnow strat-
egy.

An ensemble of online sequential extreme learning machine (ESOS-ELM)
was developed by Mirza et al. [131]. It maintains randomized neural networks
that are trained on balanced subsets of stream. Short and long term memories
were implemented to store the ensemble and the progress of the stream. Two
different learning schemes were proposed for moderate and high imbalance
ratios (the difference being the way of processing majority class instances).
However, the algorithm replicates the limitations of some of the previous
methods, assuming no drift on the minority class taking place.

Another approach to imbalanced and drifting streams was proposed by
Wang et al. [181]. These authors are the only researchers which currently
consider also dynamic changes of class cardinalities. They proposed a num-

47

ber of online bagging-based solutions that are able to cope with dynamically
changing imbalance ratio and switching of class properties (e.g. majority
becoming minority over time). They considered a dedicated concept drift
detector for imbalanced streams, whose output directly influences the over-
sampling or undersampling ratios, allowing to accommodate evolving data
skewness. A further modification, called WEOB, uses a combination of both
under and oversampling in order to choose the better strategy for the cur-
rent state of the stream. An adaptive weighting combination scheme was
proposed to accommodate this hybrid solution, where the weights of the
sampling strategies are either computed as their G-mean values or are binary
(meaning only one of them will be used at a time). A multi-class extension
of this method was discussed in [182], where concepts of multi-minority and
multi-majority classes are used to model complex relations among classes.

Finally, recently some researchers have started to discuss the need for
new evaluation measures to address complexity of imbalanced data streams,
see , e.g., [21, 31, 34].

5.2. Novelty Detection and One-class Classification

Due to the evolving nature of data streams the learning algorithm has to
be prepared to handle new, unseen data that do not follow the previously
seen distributions. Such examples may be caused by noise in the stream or
may actually originate from a novel concept that started emerging. Such a
novelty may be caused by some abnormality (like zero-day-attach in networks
or anomaly in the system) or may be a new instance from a concept that was
previously not seen. In the latter case a completely new class may appear
in the decision space, existing classes may merge or one of the classes may
star to disappear. This may happen in the context of two possible scenarios:
binary and multi-class. In the former case we may treat it as a task of
recognizing a target (correct) concept and a set of potential outliers [117],
while in the latter we must deal at the same time with a recognition problem
among a number of classes and detection of possible new emerging classes
[39]. For the binary case we often must face the fact that it is difficult or
even impossible to gather sufficient representatives of the novel class, or that
they may not even form a class. Therefore, one-class classification (known
as learning in the absence of counterexamples) is being utilized as it allows
to model the target concept without making any assumptions regarding the
properties of the novelty observations to appear.

48

Let us discuss now main ensemble-based methods suitable for these sce-
narios. They are summarized in Table 7.

Table 7: Ensembles for novelty detection and one-class classification.

Algorithm Description

OCLS [198] One-class learning and summarization ensemble
UOCL [120] Extended ensemble for one-class learning and summarization
IncOCBagg [104] Incremental one-class Bagging
OLP [38] One-class ensemble based on prototypes
Learn++.NC [132] Learn++ ensemble for novel class detection
ECSMiner [124] Ensemble for novelty detection with time constraints
MCM [123] Ensemble for novelty detection and drifting feature space
AnyNovel [1] Two-step clustering ensemble for novelty detection
CBCE [173] Class-based ensemble for class evolution
CLAM [4] Class-based micro classifier ensemble
SCARN [4] Stream Classifier and novel and recurring class detector

Zhu et al. [198] proposed an one-class ensemble approach to mining data
streams with a concept summarization approach by providing labels not for
single instances but for chunks of instances. They introduced a vague one-
class learning module, based on one-class Support Vector Machines. Each
base classifier utilized weights assigned to instances from given chunk, re-
flecting their level of relevance (in the discussed application the relevance
was based on user’s interests in given information). This was done in a
two-step procedure, utilizing local and global weighting. Local weighting
calculated instance weight values using examples in the given data chunk.
Global weighting was used to calculate a weight value for both positive and
unlabeled instances in given chunk, utilizing information coming from classi-
fiers trained on previous data chunks. This weight information was directly
embedded in the process of classifier training. A weighted classifier combina-
tion scheme was used to make a final ensemble decision, where the weights of
each classifier were calculated as an agreement measure between it and the
most recent classifier in the pool. One must notice that this approach used
static one-class classifiers and thus adaptability was achieved only by adding
new members to the ensemble.

This idea was further developed by Liu et al. [120]. They also proposed a
chunk-based ensemble of one-class classifiers for simultaneous learning from
uncertain data streams and concept summarization. They proposed a differ-

49

ent scheme for calculating instance weights by using a local kernel-density
approach. It allowed to generate a bound score for each example based on its
local nearest neighbors in a kernel feature space. Thus, instance weight was
calculated only once and directly embedded in the process of one-class Sup-
port Vector Machine training. A combination of classifiers was done using a
weighted aggregation, where a weight for each base classifier was determined
by its mean square error. Similar to the previous work, classifiers used here
were static ones.

An ensemble of adaptive one-class classifiers for drifting data streams
was proposed by Krawczyk and Woźniak [104]. Here, classifiers were trained
with the usage of Bagging. The set-up of the ensemble remains unchanged
during the stream processing, but base classifiers are updated with random
subsets of examples from incoming data chunks. As a base classifier they
used an incremental weighted one-class Support Vector Machine [105]. It
incorporates new examples by re-weighting support vectors and adding /
removing them according to the stream progress. New instances can be
weighted according to two different strategies (highest priority to newest
examples or weights based on the distance from the hypersphere center).
The forgetting mechanism was implemented as a gradual decrease of weights
assigned to vectors, realized as a time-dependent function (the longer time
given instance spent in the stream, the higher the forgetting ratio). This
approach allowed the method to adapt to concept drift without a need for
an external drift detector, as old concepts were gradually removed from the
ensemble memory. Additionally, a parallel implementation was proposed in
order to achieve a computational speed-up. However, authors focused their
works only with chunk-based processing of data streams.

Czarnowski and Jedrzejowicz [38] proposed yet another chunk-based en-
semble of one-class classifiers for handling binary and multi-class data streams.
Here a single one-class classifiers (decision tree) was responsible for tackling a
single class. Each class-based data chunk utilized for training classifiers con-
sisted of class prototypes and information about whether the class predictions
of these instances, carried-out at earlier steps, has been correct. When a new
chunk of data becomes available, an instance selection algorithm is applied to
select the most valuable examples. Classifiers are combined using a weighted
voting scheme.

Muhlbaier et al. [132] introduced an extension of Learn++ for the cases
with novel class appearance in streams. The main change over the previous
version of the ensemble is an extension of the classifier combination phase.

50

A dynamically weighted consult and vote was proposed, where individual
classifiers interchange their information regarding novel instances and select
the most competent ones by assigning them highest weights. This allows to
prevent cases when a new classifier trained with a novel class is outvoted by
older ones who did not have access to new instances. However, this solution
is suitable only to scenarios in which classes emerge in a transient manner.

Masud et al. [124] introduced an ensemble classifier for simultaneous
classification and novelty detection in drifting data streams with embedded
time constraints. It worked under an assumption that each example must be
evaluated within a given time window not to create a bottleneck for rapidly
incoming instances. This is of crucial importance to the novelty detection
module that is usually characterized by the highest computational complex-
ity in the entire classification system. Additionally, authors took into account
the possible delay with which a true class label may become available to the
system. These two constraints allowed to create a computationally efficient
ensemble for high-speed and evolving data streams. As a base component au-
thors proposed Enhanced Classifier for Data Streams with novel class Miner
(ECSMiner), an ensemble system with three buffers: for potentially novel
instances, for instances waiting for class labels, and for labeled instances to
be used in training new classifiers.

In their follow-up work Masud et al. [123] proposed a new ensemble
method that take into account not only concept drift and novel class ap-
pearance, but also the possibility of evolving feature space. They assumed
that new features may appear over time, which is being justified by specific
domain-based applications (e.g., new phrases in text stream mining). Each
model in the ensemble was built using feature space homogenization using
lossless conversion, to avoid differences between training and testing sets.
However, there are several different modifications of their methods in this
work. The outlier detection module has been enhanced with an adaptive
threshold for changing definitions of novel instances. The novelty detection
module was constructed with the usage of Gini coefficient to simultaneously
measure the difference among new instance and existing classes, as well as its
similarity to other novel instances stored in a buffer. Finally, the proposed
classification system allowed for detecting multiple novel classes at the same
time using a graph analysis.

Abdallah et al. [1] proposed an adaptive ensemble approach for multi-
class novelty detection. The proposed method was based on a two-step cluster
formation. Firstly a supervised learning method was applied to divide the

51

initial data into class-based clusters. Then, an unsupervised learning was
applied to detect sub-concepts within each cluster and thus to create more
local models. Authors showed that their algorithm can efficiently distinguish
between actual novel concept appearance, drift present in one of the existing
sub-concepts or singular outliers appearance. This was done by defining novel
concept as residing outside all existing cluster-based models and consistently
moving away from all existing concepts. A forgetting mechanism was imple-
mented to detect concepts that no longer appear in the incoming stream and
mark them as irrelevant. To evaluate the model within the stream progress,
authors proposed an active learning strategy to reduce labeling costs.

Sun et al. [173] introduced Class-Based ensemble for Class Evolution
(CBCE). They considered three possible scenarios: class emergence, disap-
pearance and re-occurrence. CBCE constructs its ensemble by storing in a
memory an online classifier for every single class that has appeared during
the course of data stream processing. This is done via one-vs-all binary de-
composition. Additionally, a dynamic undersampling technique to deal with
class imbalance is applied to each base classifier to counter the evolving dis-
proportions between instances in classes. However, CBCE requires its base
classifiers to provide predictions in the form of a score, which limits the num-
ber of possible models to be used. When a novel class emerges, then its prior
probability is being estimated and a new classifier is being trained. Classi-
fiers may be deactivated when a concept disappears and reactivated when its
re-occurrence has been detected.

Two other ensemble-based approaches to novel class detection were pro-
posed by Al-Khateeb et al.[4], namely Class Based Micro Classifier Ensem-
ble (CLAM) and Stream Classifier And Novel and Recurring class detec-
tor (SCARN). CLAM uses an ensemble of micro-classifiers, where each base
micro-classifier has been trained using only positive instances from a given
class. This is done via a clustering approach. When a new instance becomes
available, the ensemble of micro-classifiers decides whether this is instance
belongs to any of existing classes or it is a novel one. After a certain num-
ber of instances has been tagged as representatives of a novel concept, a
new classifier is trained on them and added to the ensemble. The novelty
detection is conducted using a proposed neighborhood-based distance score.
SCARN approach uses two ensemble models: primary ensemble and auxil-
iary ensemble. The primary ensemble is responsible for distinction between
known classes and potential outliers. If the outlier has been detected by the
primary ensemble, it is then delegated to the auxiliary ensemble. Its role is

52

to decide whether this is a reoccurring concept from previously known class
or a completely new case.

5.3. Active and Semi-supervised Learning

Fast availability of information about true target value (class) of incoming
examples is another issue which should be taken into account. As mentioned
in Section 3 most of used frameworks assume immediate or not too much
delayed access to target values. In some situations it is possible to obtain
true example state at minimal or no cost. An example would be weather
prognosis, where our prediction will be evaluated in future. This is however
connected with the problem of label latency - even if we will have access to
such an information it does not become available right after the arrival of a
new instance. However, in many practical situation this assumption may not
be realistic, mainly due to potentially high speed of incoming examples and
costs of human labeling. Note that while cooperating with human experts one
has to take into account their limited abilities, responsiveness, and threshold
on amount of data labeled in a certain amount of time. When all examples
cannot be quickly labeled, it may be still possible to obtain true target values
for a limited number of these examples at reasonable costs – see a discussion
in subsection 2.2. This can be exploited with active learning [59] or semi-
supervised (including self-labeling) learning [175].

Active learning techniques must take into account the possible drifts in
data and adapt their sampling rules to it [205]. One cannot use standard
static uncertainty-based methods, as they are not robust to situations where
drift occurs in a region of high classifier certainty. In recent years, one could
see an increased number of studies dealing with this problem that propose
various mechanisms for adaptive active learning over non-stationary streams
[24, 95, 188, 191]. Ensemble-inspired approaches have been already applied
to select examples in static, non-stream data frameworks. However, existing
work on using ensemble-based approaches for active learning in data stream
mining is scarce and this direction seems worthwhile for future exploitation.
We present the ensemble solutions for active and semi-supervised learning
over data streams below. Discussed algorithms are summarized in Table 8.

It is worth mentioning one of the key concepts of active learning called
Query by Committee [57], where active learning sampling is controlled by
an ensemble of classifiers. The most popular methods from this domain
include Query by Bagging [2] and Query by Boosting [2]. They have been
proven to offer increased stability and improved instance selection for labeling

53

Table 8: Active and semi-supervised ensembles.

Algorithm Description

MV [199] Optimal Weight Classifier Ensemble with active learning
ReaSC [125] Ensemble of semi-supervised micro-clusters
ECU [196] Semi-supervised ensemble integrating classifiers and clusters
COMPOSE [51] Ensemble for initially labeled data streams
SPASC [79] Ensemble of semi-supervised clustering algorithms

compared to queries based on a single classifier decision. However, work on
using ensemble-based approaches for active learning in data stream mining
is scarce and this direction also seems worthwhile for future exploitation.

Zhu et al. [199] proposed to use active learning for controlling the adap-
tation progress of an ensemble over drifting data streams. Authors argued
that variance of an ensemble has a direct relationship with its error rate and
thus one should select such instances for labeling that contribute towards
the minimization of the variance. Authors used bias-variance decomposition
of ensemble error as a basis for their minimum-variance instance selection
method. Additionally, these authors derived an optimal weight calculation
scheme for combining components. These two elements work in an active
learning loop – weights from the previous iteration are used to guide the
active learning procedure, after which a set of labeled examples is used for
the weight update step.

Masud et al. [125] proposed an approach where micro-clusters are gener-
ated using semi-supervised clustering and a combination of these models are
used to handle unlabeled data incoming from the stream. A label propaga-
tion technique is used to assign each micro-cluster to a class. Then, inductive
label propagation is used to classify a new instance. New micro-clusters can
be added to an ensemble with the progress and changes in the stream. Addi-
tionally, an ensemble pruning technique is utilized, deleting any micro-cluster
with accuracy dropping below the given threshold (70%).

Learning with delayed labels has often been studied with a mechanism
to propagate available labels through the next steps when only unlabeled
data is available. For instance, Zhang et al. considered a hybrid ensemble
integrating classifiers and clusters, where labeled example are used to learn
classifiers while clusters are formed from unlabeled data [196]. New incoming
instance receives a label resulting from voting both classifiers and clusters.
Another interesting statistical approach to represent each class in the stream

54

by a mixture of sub-population was considered by Krempl and Hofer [106].
However this approach is restricted to track only limited gradual drifts in
unlabeled data.

COMPOSE (COMPacted Object Sample Extraction) ensemble [51] was
proposed for streams where labeled instances are available only during the
initial training of classifiers. After this phase, all incoming instances are
assumed to be non-labeled. COMPOSE works in three steps. First, ini-
tial labels are combined with new unlabeled data to train a semi-supervised
classifier and use it to label these instances. Then, each class gets assigned
a geometric descriptor to construct an enclosing boundary and provide the
current distribution of this class. Finally, instances called core supports are
extracted to serve as class representatives. This allows to track concept drift
in a semi-supervised manner and adapt models accordingly.

Hosseini et al.[79] proposed an ensemble of semi-supervised clustering al-
gorithms, where each class is described by a single model. Each new incoming
chunk obtains a pre-defined number of labeled instances, which are used to
update classifiers in the ensemble. Chunks are assigned based on a semi-
supervised Bayesian approach. Authors claim that their approach is able to
automatically recognize recurrent concepts within the data stream.

5.4. Complex Data Representations and Structured Outputs

Non-standard data and class structures have gained increasing attention
in recent years from the machine learning community. Due to the advent of
big data and the necessity to mine unstructured, heterogeneous and complex
information, we require learning methods that can efficiently accommodate
such instances. Although most of the current research concerns static, non-
streaming frameworks, some research has been undertaken in the case of data
streams. The most important streaming ensemble solutions are discussed
below and are summarized in Table 9.

Multi-label and multi-instance learning is still a largely unexplored area in
data stream mining. In case of multi-label algorithm a proper experimental
and evaluation framework was proposed by Read et al. [151], but there is
not an abundance of work that follow it, especially from the ensemble point
of view. Qu et al. [147] proposed a dynamic classifier ensemble for multi-
label data streams, where a binary relevance scheme was extended by using
feature weighting and keeping a subset of the most recent classifiers in the
pool, instead of all possible pairwise combinations. Classifiers are weighted
dynamically for each incoming example from the stream.

55

Table 9: Ensembles for streaming complex data representations.

Algorithm Description

Multi-label data streams
DI [147] Dynamic ensemble with improved binary relevance
MW [194] Multiple-window ensemble for multi-label streams
MLDE [168] Multi-voting dynamic ensemble with clustering
FCM-BR [174] Binary relevance with fuzzy confusion matrix

Multi-instance data streams
MILTrack [10] Multi-instance online Boosting
OMILBoost [146] Online Boosting based on image patches
Semi-WMIL [183] Semi-supervised ensemble of weak online classifiers

Other data structures
AdaTreeMiner [17] XML stream mining using closed tree algorithms
XSC [27] Ensemble of maximal frequent subtrees for each class
gSLU [142] Ensemble based framework to partition graph streams
gEboost [141] Boosting for imbalanced and noisy graph streams

Xioufis et al. [194] introduced an ensemble using a binary relevance model
and maintaining two separate windows – one for positive and one for neg-
ative examples. An efficient implementation of k-NN classifier is used due
to its natural incremental nature, while each base classifier is trained on an
undersampled label set to tackle possible label imbalance.

The problems related with labeling costs for multi-label data streams
were discussed by Wang et al. [180]. A theoretical loss function for their
proposed ensemble classifier and an active learning function to select exam-
ples minimizing this function were derived. This allowed for using less labeled
instances for training and detecting concept drift on the basis of labeling the
most uncertain examples.

Multi-Label Dynamic Ensemble (MLDE) was developed in [168]. It used
adaptive cluster-based classifiers that were combined by a voting method
utilizing two separate weights based on accuracy on the given dara chunk
and similarity among chunks.

Trajdos and Kurzynski [174] proposed a stream-based extension of binary
relevance model utilizing a fuzzy confusion matrix to correct the decisions of
base classifiers in the ensemble. The correction model was updated as the
stream progressed, thus adapting to its current state. However, no explicit
drift detection technique was used.

56

Multi-instance learning is an even less exploited area in the stream mining
context. Most work in this domain concentrates on image analysis applica-
tions and is used in online video processing. However, one may see a video
as a stream of images. Babenko et al. [10] proposed a modification of online
boosting for learning from bags of examples. They assumed that once a bag
is labeled as a positive one, then all examples within are also positive and
hence used for training. However, this drawback was reduced by choosing
weak classifiers on the basis of a bag likelihood loss function. The ensemble
could be updated with new models with the progress of the stream similar
to standard online Boosting. A similar approach was proposed by Qi et al.
[146], using however a different classifier selection approach based on selecting
correct image patch around the labeled target. Wang et al. [183] proposed a
semi-supervised ensemble of weak online classifiers for object tracking. The
final ensemble was constructed by selecting weak classifiers obtained by maxi-
mizing the log-likelihood function but minimizing the inconsistency function.

Mining XML data is well-studied in static scenarios. However, modern
computing environments require online and efficient document processing
within time and memory constraints. Bifet and Gavaldà [17] proposed com-
pression of XML trees into vectors that are possible for processing by stan-
dard classifiers, creating closed frequent pattern data structures. These are
later feed into a number of stream classifiers based on variants of Bagging
and Boosting for online analysis. However, the main contribution of the pa-
per lied in new data structures, whereas their ensembles were standard ones
from the literature.

Brzezinski and Piernik [27] developed XML Stream Classifier (XSC) en-
semble. It creates a set of maximal frequent subtrees for each class indepen-
dently. Label prediction is done using association between new documents
incoming from the stream and the closest maximal frequent subtree (and
thus the class to which it is associated). The base classifiers are updated in
sequential manner, but as each class has its own classifier the update rates or
size of the update chunks may vary. This makes XCS suitable for processing
imbalance and locally drifting data streams.

Streams of graphs are also a frequent challenge for learning algorithms,
as they become more and more prevalent with the constant growth of social
networks. Pan et al. [142] proposed an ensemble approach for mining graph
streams, where a stream is partitioned into a number of chunks, each of
which contains both labeled and unlabeled graphs. A minimum-redundancy
feature selection is applied independently in each chunk to reduce its di-

57

mensionality. A sliding window solution with instance weighting is used to
accommodate the possibility of drift presence and forget outdated examples.
Each chunk serves as a training set to build a classifier, and then form them
into an ensemble. Nearly the same authors have recently extended this idea
by proposing a Boosting approach called gEboost for imbalanced and noisy
graph streams [141]. It maintains the graph partitioning approach (including
a special feature selection from subgraphs), but for each chunk a Boosting
classifier was constructed and learned with a variant of margin maximization.
Instance weighting was incorporated directly into this scheme to put more
emphasis on the most difficult examples for the imbalance problem.

6. Future Research Directions

In this paper, we have discussed the challenging issues of learning ensem-
bles from data streams. We have considered both classification and regression
ensembles, even though classifier ensembles are typically the most often ap-
plied approaches in data stream analysis.

In the first sections of the paper, we have presented characteristics which
distinguish data streams from the standard static data repositories. New re-
quirements to using computationally effective algorithms, which should usu-
ally also be able to adapt to concept drift in non-stationary data streams,
have been discussed. Different types of concept drift, their characteristics,
and methods for their detection in different stream scenarios have been re-
viewed. Moreover, difficulties in evaluating stream classifiers in presence of
concept drift have been shown. The main part of our paper includes a de-
tailed survey of ensembles, which are categorized with respect to different
criteria (stationary or not data, chunk or online processing modes, passive or
active reactions to drifts). Furthermore, we have extended this study to more
complex stream situations such as class-imbalanced learning, novelty detec-
tion, active and semi-supervised learning, and dealing with more complex
data structures.

Despite many interesting developments in the field of mining data streams,
there is still a number of open research problems and challenges awaiting to
be properly addressed. We briefly present our views on potential directions
that seem worthwhile to be further explored below:

• Better handling delayed information and extending current
techniques within semi-supervised learning: these approaches

58

are still limited to few ensemble proposals and definitely need more
attention. In particular, in fast evolving streams, the relationship be-
tween attributes and target values may be only locally valid due to
concept drift [107]. Many of the discussed approaches employ a kind
of transfer learning, where predictions from models learned from la-
beled examples are transferred to next unlabeled portions of the data.
In general, they are more useful for limited gradual drifts, while more
complex scenarios are still open problems. Developing new approaches
to deal with delayed information, including ensembles, that would work
in the presence of different types of drift is a non-trivial research task.
It would be particularly useful for many real life automated systems,
where an interaction with human experts is quite limited. Finally,
delayed information may not refer to target values only, but may con-
cern also incomplete attribute descriptions. The problem of incomplete
data is more intensively studied in static, off-line data mining, where
different imputation techniques have been developed. In the streaming
context, there is not too much research on such techniques or other
approaches which could learn classifiers with omitting such incomplete
descriptions and then update the classifier structure.

• New frameworks for evaluating data stream classifiers: several
interesting issues on evaluating classifiers have been studied for static,
off-line data. For a comprehensive overview, we refer the reader to [90].
Although new measures [21, 31, 64, 160] have been recently introduced,
the nature of complex evolving data streams still poses requirements
for novel theoretical and algorithmic solutions. This is particularly
needed for more complex stream scenarios with verification latency,
changing class imbalance, censored even data streams [159], multiple
data streams [169], and changes of misclassification costs [107]. As
researchers have considered many different kinds of measures (e.g. pre-
dictive performance, time or memory costs, reaction time and many
others), a multi-criteria analysis may be more appropriate than aggre-
gating several measures into a single coefficient [29]. Another open
issue is rethinking frameworks for testing stream algorithms. Tuning
parameters of streaming ensembles is more difficult than in the static
case, where special validation sets or internal cross-validation are usu-
ally employed. Their equivalents for evolving streams are yet to be in-
vented. How to acess ground truth in unsupervised streams also needs

59

to be elaborated. Finally, statistical analysis of significance of differ-
ence between several algorithms with respect to time changes should
be developed, similarly to recent recommendations to use appropriate
non-parametric tests for static offline setup.

• Benchmark datasets: the number of real-world publicly available
datasets for testing stream classifiers is still too small. It limits compar-
ative studies of different streaming algorithms. Moreover, some popular
data used in the literature is questioned to represent sufficiently real
drifts, see e.g. discussions on electricity data [202]. This is a more dif-
ficult situation compared to the state of available static datasets such
as the UCI Machine Learning Repository.

• Dedicated diversity measures for data stream classifier ensem-
bles: recall that ensemble diversity is one of the important character-
istics of ensembles in the standard, static data context [25, 110, 161].
As discussed in Section 1, several researchers studied the relationship
between high ensemble predictive performance and the diversity of its
components. Others used specialized diversity measures [110] to visu-
ally analyzing ensemble classification accuracy. These measures have
also been used to tune the combination rule for aggregating component
classifier predictions or to prune too large pool of components inside
the ensemble. However, such research is not much visible in case of
streaming ensembles. On the one hand, one can say that as compo-
nent classifiers are learnt from different parts of the stream, they are
already different and diverse ones. On the other hand, our literature
survey shows that only few authors directly consider promoting diver-
sity while constructing an ensemble or rebuilding them in the moment
of detecting drifts, see e.g. DDD ensemble [128] or other generalizations
of online bagging such as [18]. However, nearly nobody directly mea-
sures the diversity of component classifiers in streams. Rare studies are
based on taking into consideration the diversity measures developed for
static, off-line solutions. The most recent study [33] provides a wider
experimental study of using six of the most popular diversity measures
[110], where a few online and chunk-based ensembles were evaluated in
several scenarios of drifts. The first observation from these experiments
is that diversity of ensembles is rather low. Some diversity measures,
e.g., κ inter-agreement measure, change values over the stream with re-

60

lation to occurring drifts – it is more visible for sudden changes rather
than for gradual drifts. So, these results may indicate further research
lines on combining selected diversity measures, perhaps also with more
typical drift detectors to better monitor changes in the evolving stream
and to more precisely identify moments of drifts. This could also lead to
new solutions for monitoring changes in unlabeled streams. Neverthe-
less, more research on new diversity measures specialized for evolving
stream should be undertaken.

• Dealing with multiple streams and more complex representa-
tions: nearly all streaming ensembles have been proposed to processing
a single stream only. However, some applications, see e.g. studies on
internet messages or censored data in the variant of survival analysis
[159], may provide several parallel streams. In such multiple streams,
the same data events (objects identified in the data sources) may ap-
pear in different time moments in each stream and may have different
descriptions. This poses several interesting and new challenges, e.g.,
how to aggregate the information about the same event available in
different streams, how to predict the moment of an event appearing in
one of the streams, given knowledge on other streams, and whether to
develop a new ensemble dedicated to work over such multiple streams.
These aspects should be particularly important in the context of in-
tegrating different (also heterogeneous) data repositories in Big Data
Analysis [89]. Note that data streams are becoming more and more
complex in some new applications, such as social media or electronic
health records, which require to deal with many heterogeneous data
representations at the same moment. Such mixed representations in-
clude both structured, semi-structured and completely unstructured
data fields, quite often referring to static images, video sequences, or
other signals. To fully comprehend the dynamic and phenomenon of
these data sources, we need to find interactions among such complex
and varying data. As ensembles naturally integrate diverse models,
they seem to be a highly promising solution for this challenge.

• Considering more complex class distributions in imbalanced
streams: working with class-imbalanced and evolving streams is still
in early stages. Among very few existing ensemble proposals, most re-
searchers consider the simplest problem of the imbalanced class ratio,

61

without changes of imbalance ratio [181] over time. Note that in the
static data framework, other data difficulty factors such as decompo-
sition of the minority class into rare sub-concepts, overlapping with
other classes, and presence of very rare minority cases in the majority
class regions are also considered as more influential than the global im-
balance between classes. Considering them in drifting scenarios, where
sub-concepts or rare cases appear over time and overlapping regions
change, is an open research problem. Similar new challenges may refer
to studying changing multiple minority classes [182]. Finally, new eval-
uation measures and more rigorous evaluation procedures are needed
for evaluating algorithms in such complex imbalanced streams – see a
discussion in [107].

• More studies on the nature of some drift types: although a lot
of research has been done on adaptating ensembles to different concept
drifts, several more detailed characteristics of drifts have not yet been
consistently examined in literature. In particular, gradual drifts are
more difficult to be detected and tracked than sudden changes or reoc-
curring concepts. The current drift detectors work better with sudden
drifts, while the identification of characteristic moments of developing
gradual or incremental drifts in real streams are still not sufficiently
developed. Furthermore, a more formal definition of different kinds of
gradual drifts should be proposed. The authors of [184] showed that
the progress of changes inside gradual drifts may be realized in many
different ways and needs more specialized solutions. The work of [127]
also considers different types of gradual drifts, besides considering that
drifts may occur in a sequence of several abrupt and non-severe drifts.
The paper [45] postulates that the idea of the so called limited grad-
ual drift is used rather in an intuitive way in most work. Although
the work of [184] has attempted to provide more formal definitions of
drift characteristics and introduces a new taxonomy of different types
of drift, more research should be undertaken to better understand the
nature of some drifts, how they develop in real streams, how to measure
drift magnitude (e.g. small, medium or high), and which forms of drift
could be better handled by specific categories of ensembles.

• Considering background knowledge or context while classify-
ing data streams: some researchers argue for including more addi-

62

tional information than basic descriptions of instances when construct-
ing predictions from streams. One of the options is to add background
knowledge into drift adaptation techniques [208]. For instance, taking
into account seasonal effects while analyzing the electricity benchmark
data set nicely illustrates the usefulness of this postulate [206]. Another
possibility is classifying data streams taking context into consideration,
i.e., usually Markov chains are used to analyze the data stream when
there are inter-dependencies between the successive labels, e.g., medi-
cal diagnosis – the state of the patient depends not only on the recent
observation but also his/her history is taken into consideration. The
same in the case of character recognition, when we know that the text
is, e.g., written in English, where we can recognize the current letter
on the basis of its characteristic, but also take into consideration what
was the previous letter (some combinations are not possible and some of
them are almost impossible). There are several studies on classification
with context, e.g., [150, 71, 187].

• Self-tuning ensembles: most online and chunk-based approaches use
models with parameters being either individually tuned or using some
preset values – fixed for the complete analysis process. However, with
the changes within the stream the previously set parameters may no
longer be the sufficiently good (especially in case of parameter-sensitive
methods, like support vector machines or neural networks). Therefore,
proposing a new methodology for self-tuning streaming ensemble sys-
tems may lead to improved predictive power. Additionally, tuning pa-
rameters for single classifiers should take into account that they are
components within the ensemble. Thus, more global update methods
that can lead to obtain more complementary models seems to be worth
exploring.

• Ensemble pruning: although many ensembles for data streams apply
pruning procedures, they are usually based on prediction performance
or time that the model has spent within the ensemble. However, as
data stream mining is a complex task, these factors may not be suf-
ficient to capture the full dynamics of changes. More advanced prun-
ing techniques could also exploit a multiple criteria analysis, including
not only current predictive ability, but also computational efficiency
of base models, memory usage or other resources, current diversity of

63

the ensemble, available information on class labels, etc. At the same
time, these pruning techniques should impose minimal computational
overhead. Such compound, yet lightweight approaches, should lead to
maintaining better ensemble setup and improve adaptation abilities to
various types of changes.

• Other requirements to processing Big Data and privacy issues:
when dealing with massive data streams, algorithms should be able to
handle not only changing data, but also big volumes of instances ar-
riving rapidly. At the same time, an ensemble for such data must still
work under strict time and memory constraints. This can be handled
in two ways – by proposing algorithms with improved scalability or
by using special performance computing environments, like SPARK,
Hadoop or GPU clusters. Although some attempts to extend the most
often used software, like MOA, have already been undertaken, there
is still a need for efficient implementations of existing methods within
these specialized frameworks for Big Data, as well as developing new
solutions natively for them. Another aspect of analyzing Big Data con-
cerns the requirements for privacy protection, especially in complex
systems where streams are a sub-part of a more complex analytical
workflow [89]. Here, often not only no information can be leaked out-
side, but also the teams participating within the analysis may not be
willing to directly share their data. It raises the need for data stream
ensemble algorithms able to work in such scenarios without the pos-
sibility of reverse-engineering the underlying data from their decisions
and models.

Acknowledgments.

This work was supported by the Polish National Science Center under the
grants no. DEC-2013/09/B/ST6/02264 and no. DEC-2013/11/B/ST6/00963.
J. Gama acknowledges project MAESTRA - ICT-750 2013-612944.

References

[1] Zahraa Said Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and
Shonali Krishnaswamy. Anynovel: detection of novel concepts in evolv-
ing data streams. Evolving Systems, 7(2):73–93, 2016.

[2] Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using
boosting and bagging. In Proceedings of the Fifteenth International

64

Conference on Machine Learning (ICML 1998), Madison, Wisconsin,
USA, July 24-27, 1998, pages 1–9, 1998.

[3] D. Aha, D. Kibler, and M. K. Albert. Instance-based learning algo-
rithms. Machine Learning, 6:37–66, 1991.

[4] Tahseen Al-Khateeb, Mohammad M. Masud, Khaled Al-Naami,
Sadi Evren Seker, Ahmad M. Mustafa, Latifur Khan, Zouheir Tra-
belsi, Charu C. Aggarwal, and Jiawei Han. Recurring and novel class
detection using class-based ensemble for evolving data stream. IEEE
Trans. Knowl. Data Eng., 28(10):2752–2764, 2016.

[5] C. Alippi, G. Boracchi, and M. Roveri. Change detection tests using
the ICI rule. In Proceedings of the 2010 International Joint Conference
on Neural Networks (IJCNN), pages 1–7, 2010.

[6] C. Alippi, G. Boracchi, and M. Roveri. Hierarchical change-detection
tests. IEEE Transactions on Neural Networks and Learning Systems,
28(2):246–258, 2017.

[7] Cesare Alippi. Intelligence for Embedded Systems. A Methodological
Approach. Springer International Publishing, 2014.

[8] Cesare Alippi and Manuel Roveri. Just-in-time adaptive classifiers.
part i: Detecting nonstationary changes. IEEE Transactions on Neural
Networks, 19(7):1145–1153, 2008.

[9] Paula Branco andLuis Torgo and Rita Ribeiro. A survey of predictive
modeling under imbalanced distributions. ACM Computing Surveys,
49(2):31:1–31:50, 2016.

[10] Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. Robust ob-
ject tracking with online multiple instance learning. IEEE Trans. Pat-
tern Anal. Mach. Intell., 33(8):1619–1632, 2011.

[11] M. Baena-Garćıa, J. Del Campo-Ávila, R. Fidalgo, and A. Bifet. Early
drift detection method. In Proceedings of the Forth ECML PKDD
International Workshop on Knowledge Discovery From Data Streams
(IWKDDS’06), pages 77–86, Berlin, Germany, 2006.

65

[12] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl. Moa: Massive online analysis. Journal of Machine learn-
ing Research (JMLR), pages 1601–1604, 2010.

[13] Albert Bifet. Adaptive learning and mining for data streams and fre-
quent patterns. PhD thesis, Universitat Politécnica de Catalunya, 2009.

[14] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twitter
streaming data. In Discovery Science - 13th International Conference,
DS 2010, Canberra, Australia, October 6-8, 2010. Proceedings, pages
1–15, 2010.

[15] Albert Bifet, Eibe Frank, Geoffrey Holmes, and Bernhard Pfahringer.
Accurate ensemble for data streams: Combining restricted hoeffding
trees with stacking. In 2nd Asian Conf. on Machine Learning (ACML
2010), pages 225–240, 2010.

[16] Albert Bifet and Ricard Gavaldà. Learning from time-changing data
with adaptive windowing. In Proc. 7th SIAM Int. Conf. Data Min.,
2007.

[17] Albert Bifet and Ricard Gavaldà. Adaptive XML tree classification
on evolving data streams. In Machine Learning and Knowledge Dis-
covery in Databases, European Conference, ECML PKDD 2009, Bled,
Slovenia, September 7-11, 2009, Proceedings, Part I, pages 147–162,
2009.

[18] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. Leveraging
bagging for evolving data streams. In ECML/PKDD (1), pages 135–
150, 2010.

[19] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby,
and Ricard Gavaldà. New ensemble methods for evolving data streams.
In Proc. 15th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., pages
139–148, New York, NY, USA, 2009. ACM Press.

[20] Albert Bifet, Goeffrey Holmes, Barnard Pfahringer, and Ricard
Gavaldà. Improving adaptive bagging methods for evolving data
streams. In Proc. 1st Asian. Conf. on Machine Learning, volume 5828
of Lecture Notes in Computer Science, pages 23–47. Springer, 2009.

66

[21] Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff
Holmes, and Bernhard Pfahringer. Efficient online evaluation of big
data stream classifiers. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Sydney, NSW, Australia, August 10-13, 2015, pages 59–68, 2015.

[22] Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, and In-
dre Zliobaite. CD-MOA: change detection framework for massive online
analysis. In Advances in Intelligent Data Analysis XII - 12th Inter-
national Symposium, IDA 2013, London, UK, October 17-19, 2013.
Proceedings, pages 92–103, 2013.

[23] Isvani Inocencio Frias Blanco, Jose del Campo-Avila, Gonzalo Ramos-
Jimenez, Rafael Morales Bueno, Agustin Alejandro Ortiz Diaz, and
Yaile Caballero Mota. Online and non-parametric drift detection meth-
ods based on hoeffding’s bounds. IEEE Trans. Knowl. Data Eng.,
27(3):810–823, 2015.

[24] Mohamed-Rafik Bouguelia, Yolande Beläıd, and Abdel Beläıd. An
adaptive streaming active learning strategy based on instance weight-
ing. Pattern Recognition Letters, 70:38–44, 2016.

[25] Gavin Brown, Jeremy L. Wyatt, Rachel Harris, and Xin Yao. Diversity
creation methods: a survey and categorisation. Information Fusion,
6(1):5–20, 2005.

[26] Dariusz Brzezinski. Block-based and online ensembles for concept-
drifting data streams. PhD thesis, Poznan University of Technology,
2015.

[27] Dariusz Brzezinski and Maciej Piernik. Structural XML classification
in concept drifting data streams. New Generation Comput., 33(4):345–
366, 2015.

[28] Dariusz Brzezinski and Jerzy Stefanowski. Accuracy updated ensemble
for data streams with concept drift. In Proc. 6th HAIS Int. Conf.
Hyb. Art. Intell. Syst., Part II, volume 6679 of LNCS, pages 155–163.
Springer, 2011.

[29] Dariusz Brzezinski and Jerzy Stefanowski. Classifiers for concept-
drifting data streams: Evaluating things that really matter. In ECML

67

PKDD 2013 Workshop on Real-World Challenges for Data Stream
Mining, September 27th, Prague, Czech Republic, pages 10–14, 2013.

[30] Dariusz Brzezinski and Jerzy Stefanowski. Combining block-based
and online methods in learning ensembles from concept drifting data
streams. Information Sciences, 265:50–67, 2014.

[31] Dariusz Brzezinski and Jerzy Stefanowski. Prequential AUC for clas-
sifier evaluation and drift detection in evolving data streams. In New
Frontiers in Mining Complex Patterns - Third International Workshop,
NFMCP 2014, Held in Conjunction with ECML-PKDD 2014, Nancy,
France, September 19, 2014, Revised Selected Papers, pages 87–101,
2014.

[32] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types
of concept drift: The accuracy updated ensemble algorithm. IEEE
Trans. on Neural Netw. Learn. Syst., 25(1):81–94, 2014.

[33] Dariusz Brzezinski and Jerzy Stefanowski. Ensemble diversity in evolv-
ing data streams. In Discovery Science: 19th International Conference,
DS 2016. Proceedings, volume 9956 of LNCS, pages 229–244. Springer,
2016.

[34] Dariusz Brzezinski and Jerzy Stefanowski. Prequential auc: Properties
of the area under the roc curve for data streams with concept drift.
Knowledge and Information Systems, 2017.

[35] Sheng Chen and Haibo He. SERA: selectively recursive approach to-
wards nonstationary imbalanced stream data mining. In International
Joint Conference on Neural Networks, IJCNN 2009, Atlanta, Georgia,
USA, 14-19 June 2009, pages 522–529, 2009.

[36] Sheng Chen and Haibo He. Towards incremental learning of nonstation-
ary imbalanced data stream: a multiple selectively recursive approach.
Evolving Systems, 2(1):35–50, 2011.

[37] F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining
of data streams. In Proceedings of the Eight Pacific-Asia Knowledge
Discovery and Data Mining Conference (PAKDD’04), pages 282–292,
Sydney, 2004.

68

[38] Ireneusz Czarnowski and Piotr Jedrzejowicz. Ensemble online classifier
based on the one-class base classifiers for mining data streams. Cyber-
netics and Systems, 46(1-2):51–68, 2015.

[39] Elaine Ribeiro de Faria, Isabel Ribeiro Goncalves, João Gama, and
André Carlos Ponce de Leon Ferreira de Carvalho. Evaluation of mul-
ticlass novelty detection algorithms for data streams. IEEE Trans.
Knowl. Data Eng., 27(11):2961–2973, 2015.

[40] Magdalena Deckert. Batch weighted ensemble for mining data streams
with concept drift. In International Symposium on Methodologies for
Intelligent Systems, pages 290–299. Springer Berlin Heidelberg, 2011.

[41] Magdalena Deckert and Jerzy Stefanowski. Comparing block ensembles
for data streams with concept drift. In New Trends in Databases and
Information Systems, pages 69–78. Springer Berlin Heidelberg, 2013.

[42] Sarah Delany, Padraig Cunningham, Alexey Tsymbal, and Lorcan
Coyle. A case-based technique for tracking concept drift in spam fil-
tering. Knowledge Based Systems, 18(4-5):187–195, 2005.

[43] Misha Denil, David Matheson, and Nando de Freitas. Consistency of
online random forests. In Proceedings of the 30th International Con-
ference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21
June 2013, pages 1256–1264, 2013.

[44] Gregory Ditzler and Robi Polikar. Incremental learning of concept
drift from streaming imbalanced data. IEEE Trans. Knowl. Data Eng.,
25(10):2283–2301, 2013.

[45] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar.
Learning in nonstationary environments: A survey. IEEE Computa-
tional Intelligence Magazine, 10(4):12–25, 2015.

[46] Pedro Domingos and Geoff Hulten. Mining High-Speed Data Streams.
In Ismail Parsa, Raghu Ramakrishnan, and Sal Stolfo, editors, Proceed-
ings of the ACM Sixth International Conference on Knowledge Discov-
ery and Data Mining, pages 71–80, Boston, USA, 2000. ACM Press.

[47] Anton Dries and Ulrich Rückert. Adaptive concept drift detection.
Stat. Anal. Data Min., 2(56):311–327, December 2009.

69

[48] Lei Du, Qinbao Song, Lei Zhu, and Xiaoyan Zhu. A selective detector
ensemble for concept drift detection. The Computer Journal, 2014.

[49] João Duarte, João Gama, and Albert Bifet. Adaptive model rules from
high-speed data streams. TKDD, 10(3):30, 2016.

[50] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi-
fication. Wiley, New York, 2. edition, 2001.

[51] Karl B. Dyer, Robert Capo, and Robi Polikar. COMPOSE: A semisu-
pervised learning framework for initially labeled nonstationary stream-
ing data. IEEE Trans. Neural Netw. Learning Syst., 25(1):12–26, 2014.

[52] R. Elwell and R. Polikar. Incremental learning of concept drift in
nonstationary environments. IEEE Transactions on Neural Networks,
22(10):1517–1531, 2011.

[53] W. Fan, F. Chu, H. Wang, and P. S. Yu. Pruning and dynamic schedul-
ing of cost-sensitive ensembles. In Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence (AAAI’02), pages 146–151,
Menlo Park, USA, 2002. American Association for Artificial Intelli-
gence.

[54] Wei Fan, Yi an Huang, Haixun Wang, and Philip S. Yu. Active mining
of data streams. In Proc. 4th SIAM Int. Conf. Data Min., 2004.

[55] Tom Fawcett. An introduction to {ROC} analysis. Pattern Recognition
Letters, 27(8):861 – 874, 2006. {ROC} Analysis in Pattern Recognition.

[56] Alan Fern and Robert Givan. Online ensemble learning: An empirical
study. Mach. Learn., 53(1-2):71–109, October 2003.

[57] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby.
Selective sampling using the query by committee algorithm. Machine
Learning, 28(2-3):133–168, 1997.

[58] J. Friedman and L. Rafsky. Multivariate generalizations of the wald-
wolfowitz and smirnov two-sample tests. The Annals of Statistics, pages
697–717, 1979.

[59] Yifan Fu, Xingquan Zhu, and Bin Li. A survey on instance selection
for active learning. Knowl. Inf. Syst., 35(2):249–283, 2013.

70

[60] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krish-
naswamy. A Survey of Classification Methods in Data Streams, pages
39–59. Springer U, 2007.

[61] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with
drift detection. In Proceedings of the Seventh Brazilian Symposium
on Artificial Intelligence (SBIA’04) - Lecture Notes in Computer Sci-
ence, volume 3171, pages 286–295, São Luiz do Maranhão, Brazil, 2004.
Springer.

[62] João Gama. Knowledge Discovery from Data Streams. Chapman &
Hall, CRC Press, 2010.

[63] João Gama and Pedro Medas. Learning decision trees from dynamic
data streams. J. UCS, 11(8):1353–1366, 2005.

[64] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On eval-
uating stream learning algorithms. Machine Learning, 90(3):317–346,
2013.

[65] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. A survey on concept drift adaptation. ACM
Computing Surveys, 46(4):44:1–44:37, 2014.

[66] Jing Gao, Bolin Ding, Wei Fan, Jiawei Han, and Philip S. Yu. Classi-
fying data streams with skewed class distributions and concept drifts.
IEEE Internet Computing, 12(6):37–49, 2008.

[67] Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco Her-
rera. Advanced nonparametric tests for multiple comparisons in the
design of experiments in computational intelligence and data mining:
Experimental analysis of power. Inf. Sci., 180(10):2044–2064, 2010.

[68] Adel Ghazikhani, Reza Monsefi, and Hadi Sadoghi Yazdi. Ensemble of
online neural networks for non-stationary and imbalanced data streams.
Neurocomputing, 122:535–544, 2013.

[69] Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost-sensitive
active classifiers. Artif. Intell., 139(2):137–174, August 2002.

71

[70] Frederik Gustafsson. Adaptive Filtering and Change Detection. Wiley,
October 2000.

[71] Robert M. Haralick. Decision making in context. IEEE Trans. Pattern
Anal. Mach. Intell., 5(4):417–428, April 1983.

[72] Marwan Hassani, Yunsu Kim, Seungjin Choi, and Thomas Seidl. Sub-
space clustering of data streams: new algorithms and effective evalua-
tion measures. Journal of Intelligent Information Systems, 45(3):319–
335, 2015.

[73] Haibo He and Edwardo A. Garcia. Learning from imbalanced data.
IEEE Trans. Knowl. Data Eng., 21(9):1263–1284, 2009.

[74] Haibo He and Yunqian Ma, editors. Imbalanced Learning: Foundations,
Algorithms, and Applications. Wiley-IEEE Press, 2013.

[75] Tin Kam Ho. Complexity of classification problems and comparative
advantages of combined classifiers. In Proceedings of the First Interna-
tional Workshop on Multiple Classifier Systems, MCS ’00, pages 97–
106, London, UK, UK, 2000. Springer-Verlag.

[76] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision combi-
nation in multiple classifier systems. IEEE Trans. Pattern Anal. Mach.
Intell., 16(1):66–75, January 1994.

[77] Hoens and Nitesh Chawla. Learning in non-stationary environments
with class imbalance. In Proc. 18th ACM SIGKDD. Conf. of Knowledge
Discovery and Data Min., pages 168–176, 2012.

[78] T. Ryan Hoens, Robi Polikar, and Nitesh V. Chawla. Learning from
streaming data with concept drift and imbalance: an overview. Progress
in AI, 1(1):89–101, 2012.

[79] Mohammad Javad Hosseini, Ameneh Gholipour, and Hamid Beigy. An
ensemble of cluster-based classifiers for semi-supervised classification of
non-stationary data streams. Knowl. Inf. Syst., 46(3):567–597, 2016.

[80] Harold Hotelling. The Generalization of Student’s Ratio. Annals of
Mathematical Statistics, 2(3):360–378, 1931.

72

[81] Sin ichi Yoshida, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda.
Adaptive online prediction using weighted windows. IEICE Transac-
tions, 94-D(10):1917–1923, 2011.

[82] Elena Ikonomovska, João Gama, and Saso Dzeroski. Learning
model trees from evolving data streams. Data Min. Knowl. Discov.,
23(1):128–168, 2011.

[83] Elena Ikonomovska, João Gama, and Saso Dzeroski. Online tree-based
ensembles and option trees for regression on evolving data streams.
Neurocomputing, 150:458–470, 2015.

[84] Elena Ikonomovska, João Gama, Bernard Zenko, and Saso Dzeroski.
Speeding-up hoeffding-based regression trees with options. In Lise
Getoor and Tobias Scheffer, editors, Proceedings of the 28th Interna-
tional Conference on Machine Learning, ICML 2011, Bellevue, Wash-
ington, USA, June 28 - July 2, 2011, pages 537–544. Omnipress, 2011.

[85] G. Jaber. An approach for online learning in the presence of concept
changes. PhD thesis, AgroParisTech University, 2001.

[86] Konrad Jackowski. Fixed-size ensemble classifier system evolutionarily
adapted to a recurring context with an unlimited pool of classifiers.
Pattern Anal. Appl., 17(4):709–724, 2014.

[87] Konrad Jackowski. Adaptive splitting and selection algorithm for re-
gression. New Generation Comput., 33(4):425–448, 2015.

[88] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive mixtures of local experts. Neural Comput., 3:79–87,
March 1991.

[89] Nathalie Japkowicz and Stefanowski Jerzy, editors. Big Data Analysis:
New Algorithms for a New Society. Springer, 2016.

[90] Nathalie Japkowicz and Mohak Shah. Evaluating learning algorithms:
a classification perspective. Cambridge University Press, 2011.

[91] Paulo M. Gonalves Jr., Silas G.T. de Carvalho Santos, Roberto S.M.
Barros, and Davi C.L. Vieira. A comparative study on concept drift
detectors. Expert Systems with Applications, 41(18):8144 – 8156, 2014.

73

[92] Petr Kadlec and Bogdan Gabrys. Local learning-based adaptive soft
sensor for catalyst activation prediction. AIChE Journal, 57(5):1288–
1301, 2011.

[93] Ioannis Katakis, Grigorios Tsumakas, and Ioannis Vlahavas. An en-
semble of classifier for coping with recurring contexts in data streams.
In Frontiers in Artificial Intelligence and Applications (ECAI 2008),
pages 763–764, 2008.

[94] Takuya Kidera, Seiichi Ozawa, and Shigeo Abe. An incremental learn-
ing algorithm of ensemble classifier systems. In Proceedings of the In-
ternational Joint Conference on Neural Networks, IJCNN 2006, part of
the IEEE World Congress on Computational Intelligence, WCCI 2006,
Vancouver, BC, Canada, 16-21 July 2006, pages 3421–3427, 2006.

[95] Hyunjoo Kim, Sriganesh Madhvanath, and Tong Sun. Hybrid active
learning for non-stationary streaming data with asynchronous labeling.
In 2015 IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015, pages 287–292,
2015.

[96] R. Klinkenberg. Learning drifting concepts: Example selection vs. ex-
ample weighting. Intelligent Data Analysis (IDA) Journal - Special
Issue on Incremental Learning Systems Capable of Dealing with Con-
cept Drift, 8(3):281–300, 2004.

[97] R. Klinkenberg and T. Joachims. Detecting concept drift with sup-
port vector machines. In Proceedings of the Seventeenth International
Conference on Machine Learning (ICML’00), pages 487–494, San Fran-
cisco, CA, 2000. Morgan Kaufmann Publishers.

[98] R. Klinkenberg and S. Ruping. Concept Drift and the Importance of
Examples, pages 55–77. Physica-Verlag, 2003.

[99] Milosz Kmieciak and Jerzy Stefanowski. Handling sudden concept drift
in Enron message data streams. Control and Cybernetics, 40(3):667–
695, 2011.

[100] J. Z. Kolter and M. A. Maloof. Using additive expert ensembles to
cope with concept drift. In Proceedings of the Twenty Second ACM

74

International Conference on Machine Learning (ICML’05), pages 449–
456, Bonn, Germany, 2005.

[101] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An en-
semble method for drifting concepts. Journal of Machine Learning
Research, 8:2755–2790, 2007.

[102] J.Z. Kolter and M.A. Maloof. Dynamic weighted majority: a new
ensemble method for tracking concept drift. In Data Mining, 2003.
ICDM 2003. Third IEEE International Conference on, pages 123 –
130, nov. 2003.

[103] Bartosz Krawczyk. Learning from imbalanced data: open challenges
and future directions. Progress in Artificial Intelligence, 5(4):221–232,
2016.

[104] Bartosz Krawczyk and Michal Woźniak. Incremental one-class bag-
ging for streaming and evolving big data. In 2015 IEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Vol-
ume 2, pages 193–198, 2015.

[105] Bartosz Krawczyk and Michal Woźniak. One-class classifiers with in-
cremental learning and forgetting for data streams with concept drift.
Soft Comput., 19(12):3387–3400, 2015.

[106] Georg Krempl and Vera Hofer. Classification in presence of drift and
latency. In Data Mining Workshops (ICDMW), 2011 IEEE 11th Inter-
national Conference on, Vancouver, BC, Canada, December 11, 2011,
pages 596–603, 2011.

[107] Georg Krempl, Indre Zliobaite, Dariusz Brzeziński, Eyke Hüllermeier,
Mark Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi,
Myra Spiliopoulou, and Jerzy Stefanowski. Open challenges for data
stream mining research. SIGKDD Explor. Newsl., 16(1):1–10, Septem-
ber 2014.

[108] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross
validation, and active learning. In Advances in Neural Information
Processing Systems, volume 7, pages 231–238, 1995.

75

[109] Ludmila I. Kuncheva. Classifier ensembles for changing environments.
In Proc. 5th MCS Int. Workshop on Mult. Class. Syst., volume 3077
of Lecture Notes in Computer Science, pages 1–15. Springer, 2004.

[110] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience, Hoboken, NJ, July 2004.

[111] Ludmila I. Kuncheva. Classifier ensembles for detecting concept change
in streaming data: Overview and perspectives. In Proc. 2nd Workshop
SUEMA 2008 (ECAI 2008), pages 5–10, 2008.

[112] Bartosz Kurlej and Michal Woźniak. Active learning approach to con-
cept drift problem. Logic Journal of the IGPL, 20(3):550–559, 2012.

[113] Balaji Lakshminarayanan, Daniel M. Roy, and Yee Whye Teh. Mon-
drian forests: Efficient online random forests. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 3140–3148, 2014.

[114] Yuan Lan, Yeng Chai Soh, and Guang-Bin Huang. Ensemble of online
sequential extreme learning machine. Neurocomputing, 72(13-15):3391–
3395, 2009.

[115] Herbert K. H. Lee and Merlise A. Clyde. Lossless online bayesian
bagging. Journal of Machine Learning Research, 5:143–151, 2004.

[116] Vincent Lemaire, Christophe Salperwyck, and Alexis Bondu. A survey
on supervised classification on data streams. In 4th European Summer
School on Business Intelligence eBISS 2014, volume 205 of Lecture
Notes Business Information Processing, pages 88–125. Springer, 2014.

[117] Chen Li, Yang Zhang, and Xue Li. Ocvfdt: one-class very fast decision
tree for one-class classification of data streams. In Proceedings of the
Third International Workshop on Knowledge Discovery from Sensor
Data, Paris, France, June 28, 2009, pages 79–86, 2009.

[118] Ryan Lichtenwalter and Nitesh V. Chawla. Adaptive methods for clas-
sification in arbitrarily imbalanced and drifting data streams. In New

76

Frontiers in Applied Data Mining, PAKDD 2009 International Work-
shops, Bangkok, Thailand, April 27-30, 2009. Revised Selected Papers,
pages 53–75, 2009.

[119] Nicholas Littlestone and Marcus K. Warmuth. The weighted majority
algorithm. Information and Computation, 108:212–261, 1994.

[120] Bo Liu, Yanshan Xiao, Philip S. Yu, Longbing Cao, Yun Zhang, and
Zhifeng Hao. Uncertain one-class learning and concept summarization
learning on uncertain data streams. IEEE Trans. Knowl. Data Eng.,
26(2):468–484, 2014.

[121] B. I. F. Maciel, S. G. T. C. Santos, and R. S. M. Barros. A lightweight
concept drift detection ensemble. In Tools with Artificial Intelligence
(ICTAI), 2015 IEEE 27th International Conference on, pages 1061–
1068, Nov 2015.

[122] Markos Markou and Sameer Singh. Novelty detection: a review–part 1:
statistical approaches. Signal Processing, 83(12):2481–2497, December
2003.

[123] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal,
Jing Gao, Jiawei Han, Ashok N. Srivastava, and Nikunj C. Oza. Clas-
sification and adaptive novel class detection of feature-evolving data
streams. IEEE Trans. Knowl. Data Eng., 25(7):1484–1497, 2013.

[124] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bha-
vani M. Thuraisingham. Classification and novel class detection in
concept-drifting data streams under time constraints. IEEE Trans.
Knowl. Data Eng., 23(6):859–874, 2011.

[125] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei
Han, Kevin W. Hamlen, and Nikunj C. Oza. Facing the reality of data
stream classification: coping with scarcity of labeled data. Knowl. Inf.
Syst., 33(1):213–244, 2012.

[126] Fernanda L. Minku, Hirotaka Inoue, and Xin Yao. Negative correlation
in incremental learning. Natural Computing, 8(2):289–320, 2009.

77

[127] L. L. Minku and X. Yao. DDD: A new ensemble approach for deal-
ing with concept drift. IEEE Transactions on Knowledge and Data
Engineering (TKDE), page 16p. (accepted), 2010.

[128] Leandro L. Minku, Allan P. White, and Xin Yao. The impact of diver-
sity on online ensemble learning in the presence of concept drift. IEEE
Trans. Knowl. Data Eng., 22(5):730–742, 2010.

[129] Leandro L. Minku and Xin Yao. How to make best use of cross-company
data in software effort estimation? In ICSE, pages 446–456, 2014.

[130] L.L. Minku and X. Yao. Can cross-company data improve performance
in software effort estimation? In PROMISE, pages 69–78, 2012.

[131] Bilal Mirza, Zhiping Lin, and Nan Liu. Ensemble of subset online
sequential extreme learning machine for class imbalance and concept
drift. Neurocomputing, 149:316–329, 2015.

[132] Michael D. Muhlbaier, Apostolos Topalis, and Robi Polikar.
Learn++.nc: Combining ensemble of classifiers with dynamically
weighted consult-and-vote for efficient incremental learning of new
classes. IEEE Trans. Neural Networks, 20(1):152–168, 2009.

[133] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on
data stream clustering and classification. Knowledge and Information
Systems, 45(3):535–569, 2015.

[134] K. Nishida. Learning and Detecting Concept Drift. PhD thesis,
Hokkaido University, Japan, 2008.

[135] K. Nishida and K. Yamauchi. Adaptive classifiers-ensemble system
for tracking concept drift. In Proceedings of the Sixth International
Conference on Machine Learning and Cybernetics (ICMLC’07), pages
3607–3612, Honk Kong, 2007.

[136] K. Nishida and K. Yamauchi. Detecting concept drift using statisti-
cal testing. In Proceedings of the Tenth International Conference on
Discovery Science (DS’07) - Lecture Notes in Artificial Intelligence,
volume 3316, pages 264–269, Sendai, Japan, 2007.

78

[137] Aljaz Osojnik, Pance Panov, and Saso Dzeroski. Comparison of tree-
based methods for multi-target regression on data streams. In New
Frontiers in Mining Complex Patterns - 4th International Workshop,
NFMCP 2015, Held in Conjunction with ECML-PKDD 2015, Porto,
Portugal, September 7, 2015, Revised Selected Papers, pages 17–31,
2015.

[138] Nikunj C. Oza. Online ensemble learning. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial Intelligence,
AAAI/IAAI, page 1109, Austin, Texas, USA, 2000. AAAI Press / The
MIT Press.

[139] Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In
Proceedings of the Eighth International Workshop on Artificial Intel-
ligence and Statistics (AISTATS’01), page 105112, Key West, USA,
2001. Morgan Kaufmann.

[140] E. S. Page. Continuous Inspection Schemes. Biometrika, 41(1/2):100–
115, 1954.

[141] Shirui Pan, Jia Wu, Xingquan Zhu, and Chengqi Zhang. Graph ensem-
ble boosting for imbalanced noisy graph stream classification. IEEE
Trans. Cybernetics, 45(5):940–954, 2015.

[142] Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. Graph
stream classification using labeled and unlabeled graphs. In 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 398–409, 2013.

[143] Ali Pesaranghader and Herna L. Viktor. Fast hoeffding drift detection
method for evolving data streams. In Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2016,
Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II,
pages 96–111, 2016.

[144] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. New op-
tions for hoeffding trees. In Proc. 20th Australian Joint Conf. on Arti-
ficial Intelligence, volume 4830 of Lecture Notes in Computer Science,
pages 90–99. Springer, 2007.

79

[145] Robi Polikar, L. Upda, S. S. Upda, and Vasant Honavar. Learn++: an
incremental learning algorithm for supervised neural networks. IEEE
Trans. Systems, Man, and Cybernetics, Part C, 31(4):497–508, 2001.

[146] Zhiquan Qi, Yitian Xu, Laisheng Wang, and Ye Song. Online multiple
instance boosting for object detection. Neurocomputing, 74(10):1769–
1775, 2011.

[147] Wei Qu, Yang Zhang, Junping Zhu, and Qiang Qiu. Mining multi-
label concept-drifting data streams using dynamic classifier ensemble.
In Advances in Machine Learning, First Asian Conference on Machine
Learning, ACML 2009, Nanjing, China, November 2-4, 2009. Proceed-
ings, pages 308–321, 2009.

[148] S. Ramamurthy and R. Bhatnagar. Tracking recurrent concept drift
in streaming data using ensemble classifiers. In Proceedings of the
Sixth International Conference on Machine Learning and Applications
(ICMLA’07), pages 404–409, Cincinnati, Ohio, 2007.

[149] Sarunas Raudys. Statistical and Neural Classifiers: An Integrated Ap-
proach to Design. Springer Publishing Company, Incorporated, 2014.

[150] J. Raviv. Decision making in markov chains applied to the problem of
pattern recognition. IEEE Trans. Inf. Theor., 13(4):536–551, Septem-
ber 2006.

[151] Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Scal-
able and efficient multi-label classification for evolving data streams.
Machine Learning, 88(1-2):243–272, 2012.

[152] Juan J. Rodŕıguez and Ludmila I. Kuncheva. Combining online clas-
sification approaches for changing environments. In Proceedings of
the 2008 Joint IAPR International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition, SSPR & SPR ’08, pages 520–529,
Berlin, Heidelberg, 2008. Springer-Verlag.

[153] Fabio Roli and Giorgio Giacinto. Design of Multiple Classifier Systems.
World Scientific Publishing, 2002.

80

[154] Gordon Ross, Niall Adams, Dimitras Tasoulis, and David Hand. Expo-
nentially weighted moving average charts for detecting concept drifts.
Pattern Recognition Letters, 33(2):191–198, 2012.

[155] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and
Horst Bischof. On-line random forests. In Computer Vision Work-
shops (ICCV Workshops), 2009 IEEE 12th International Conference
on, pages 1393–1400. IEEE, 2009.

[156] M. Scholz and R. Klinkenberg. An ensemble classifier for drifting con-
cepts. In Proceedings of the Second International Workshop on Knowl-
edge Discovery from Data Streams(IWKDDS’05), pages 53–64, Porto,
Portugal, 2005.

[157] M. Scholz and R. Klinkenberg. Boosting classifiers for drifting concepts.
Intelligent Data Analysis (IDA) - Special Issue on Knowledge Discovery
From Data Streams, 11(1):3–28, 2007.

[158] Raquel Sebastiao and Joao Gama. A study on change detection meth-
ods. Progress in Artificial Intelligence, 14th Portuguese Conference on
Artificial Intelligence, EPIA, pages 12–15, 2009.

[159] Ammar Shaker and Eyke Hüllermeier. Survival analysis on data
streams: Analyzing temporal events in dynamically changing environ-
ments. International Journal of Applied Mathematics and Computer
Science, 24(1):199–212, 2014.

[160] Ammar Shaker and Eyke Hüllermeier. Recovery analysis for adaptive
learning from non-stationary data streams: Experimental design and
case study. Neurocomputing, 150:250–264, 2015.

[161] Amanda J. C. Sharkey and Noel E. Sharkey. Combining diverse neural
nets. Knowl. Eng. Rev., 12(3):231–247, September 1997.

[162] David J. Sheskin. Handbook of parametric and nonparametric statistical
procedure. 5th ed. Boca Raton, FL: CRC Press, 5th ed. edition, 2011.

[163] Symone G. Soares and Rui Araújo. A dynamic and on-line ensemble
regression for changing environments. Expert Syst. Appl., 42(6):2935–
2948, 2015.

81

[164] Symone G. Soares and Rui Araújo. An on-line weighted ensemble of
regressor models to handle concept drifts. Eng. Appl. of AI, 37:392–
406, 2015.

[165] Piotr Sobolewski and Michal Woźniak. Comparable study of statisti-
cal tests for virtual concept drift detection. In Robert Burduk, Konrad
Jackowski, Marek Kurzynski, Micha Woźniak, and Andrzej Zolnierek,
editors, Proceedings of the 8th International Conference on Computer
Recognition Systems CORES 2013, volume 226 of Advances in Intel-
ligent Systems and Computing, pages 329–337. Springer International
Publishing, 2013.

[166] Piotr Sobolewski and Michal Woźniak. Concept drift detection and
model selection with simulated recurrence and ensembles of statistical
detectors. Journal of Universal Computer Science, 19(4):462–483, feb
2013.

[167] Piotr Sobolewski and Michal Woźniak. Scr: simulated concept recur-
rence a non-supervised tool for dealing with shifting concept. Expert
Systems, pages n/a–n/a, 2013. EXSY-Oct-12-210.R1.

[168] Ge Song and Yunming Ye. A new ensemble method for multi-label data
stream classification in non-stationary environment. In 2014 Interna-
tional Joint Conference on Neural Networks, IJCNN 2014, Beijing,
China, July 6-11, 2014, pages 1776–1783, 2014.

[169] Myra Spiliopoulou and Georg Krempl. Tutorial on mining multiple
threads of streaming data. In The Pacific-Asia Conference of Knowl-
edge Discovery and Data Mining (PAKDD 2013), 2013.

[170] K. O. Stanley. Learning concept drift with a committee of decision
trees. Technical Report UT-AI-TR-03-302, Department of Computer
Sciences, University of Texas at Austin, Austin, USA, 2003.

[171] Jerzy Stefanowski. Adaptive ensembles for evolving data streams - com-
bining block-based and online solutions. In New Frontiers in Mining
Complex Patterns - 4th International Workshop, NFMCP 2015, Held
in Conjunction with ECML-PKDD 2015, Porto, Portugal, September
7, 2015, Revised Selected Papers, pages 3–16, 2015.

82

[172] W. Street and Y. Kim. A streaming ensemble algorithm (SEA)
for large-scale classification. In Proceedings of the Seventh ACM
International Conference on Knowledge Discovery and Data Mining
(KDD’01), pages 377–382, New York, 2001. ACM Press.

[173] Yu Sun, Ke Tang, Leandro L. Minku, Shuo Wang, and Xin Yao. Online
ensemble learning of data streams with gradually evolved classes. IEEE
Trans. Knowl. Data Eng., 28(6):1532–1545, 2016.

[174] Pawel Trajdos and Marek Kurzynski. Multi-label stream classifica-
tion using extended binary relevance model. In 2015 IEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Vol-
ume 2, pages 205–210, 2015.

[175] Isaac Triguero, Salvador Garćıa, and Francisco Herrera. Self-labeled
techniques for semi-supervised learning: taxonomy, software and em-
pirical study. Knowl. Inf. Syst., 42(2):245–284, 2015.

[176] A. Tsymbal. The problem of concept drift: Definitions and related
work. Technical Report TCD-CS-2004-15, Trinity College Dublin, Ire-
land, april 2004.

[177] Kagan Tumer and Joydeep Ghosh. Analysis of decision boundaries in
linearly combined neural classifiers. Pattern Recognition, 29(2):341 –
348, 1996.

[178] Abraham Wald. Sequential Analysis. John Wiley and Sons, 1947.

[179] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the Ninth ACM
International Conference on Knowledge Discovery and Data Mining
(KDD’03), pages 226–235, New York, 2003. ACM Press.

[180] Peng Wang, Peng Zhang, and Li Guo. Mining multi-label data streams
using ensemble-based active learning. In Proceedings of the Twelfth
SIAM International Conference on Data Mining, Anaheim, California,
USA, April 26-28, 2012., pages 1131–1140, 2012.

[181] Shuo Wang, Leandro L. Minku, and Xin Yao. Resampling-based ensem-
ble methods for online class imbalance learning. IEEE Trans. Knowl.
Data Eng., 27(5):1356–1368, 2015.

83

[182] Shuo Wang, Leandro L. Minku, and Xin Yao. Dealing with multiple
classes in online class imbalance learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, pages 2118–2124, 2016.

[183] Zhihui Wang, Sook Yoon, Shan Juan Xie, Yu Lu, and Dong Sun Park.
Visual tracking with semi-supervised online weighted multiple instance
learning. The Visual Computer, 32(3):307–320, 2016.

[184] Geoffrey Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois
Petitjean. Characterizing concept drift. Data Mining and Knowledge
Discovery Journal, 30:964–994, 2016.

[185] G. Widmer and M. Kubat. Learning in the presence of concept drift
and hidden context. Machine Learning, 23:69–101, 1996.

[186] David H. Wolpert. The supervised learning no-free-lunch theorems. In
In Proc. 6th Online World Conference on Soft Computing in Industrial
Applications, pages 25–42, 2001.

[187] Micha l Woźniak and Bogus law Cyganek. A First Attempt on Online
Data Stream Classifier Using Context, pages 497–504. Springer Inter-
national Publishing, Cham, 2016.

[188] Michal Woźniak, Boguslaw Cyganek, Andrzej Kasprzak, Pawel Ksie-
niewicz, and Krzysztof Walkowiak. Active learning classifier for stream-
ing data. In Hybrid Artificial Intelligent Systems - 11th International
Conference, HAIS 2016, Seville, Spain, April 18-20, 2016, Proceedings,
pages 186–197, 2016.

[189] Michal Woźniak, Manuel Graña, and Emilio Corchado. A survey of
multiple classifier systems as hybrid systems. Information Fusion, 16:3–
17, 2014.

[190] Michal Woźniak, Andrzej Kasprzak, and Piotr Cal. Application of
combined classifiers to data stream classification. In Proceedings of the
10th International Conference on Flexible Query Answering Systems
FQAS 2013, LNCS, page in press, Berlin, Heidelberg, 2013. Springer-
Verlag.

84

[191] Michal Woźniak, Pawel Ksieniewicz, Boguslaw Cyganek, Andrzej
Kasprzak, and Krzysztof Walkowiak. Active learning classification of
drifted streaming data. In International Conference on Computational
Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA,
pages 1724–1733, 2016.

[192] Micha l Woźniak, Pawe l Ksieniewicz, Bogus law Cyganek, and Krzysztof
Walkowiak. Ensembles of Heterogeneous Concept Drift Detectors - Ex-
perimental Study, pages 538–549. Springer International Publishing,
Cham, 2016.

[193] Han Xiao and Claudia Eckert. Lazy gaussian process committee for
real-time online regression. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, July 14-18, 2013, Belle-
vue, Washington, USA., 2013.

[194] Eleftherios Spyromitros Xioufis, Myra Spiliopoulou, Grigorios
Tsoumakas, and Ioannis P. Vlahavas. Dealing with concept drift and
class imbalance in multi-label stream classification. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial In-
telligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 1583–
1588, 2011.

[195] G. Zenobi and P. Cunningham. Using diversity in preparing ensembles
of classifiers based on different feature subsets to minimize generaliza-
tion error. Machine Learning: ECML 2001, pages 576–587, 2001.

[196] P. Zhang, X. Zhu, J. Tan, and L. Guo. Classifier and cluster ensembles
for mining concept drifting data streams. In Proc. of. IEEE Interna-
tional Conference on Data Mining, pages 1175–1180, 2010.

[197] Qiang-Li Zhao, Yan-Huang Jiang, and Ming Xu. Incremental learning
by heterogeneous bagging ensemble. In Advanced Data Mining and
Applications - 6th International Conference, ADMA 2010, Chongqing,
China, November 19-21, 2010, Proceedings, Part II, pages 1–12, 2010.

[198] Xingquan Zhu, Wei Ding, Philip S. Yu, and Chengqi Zhang. One-class
learning and concept summarization for data streams. Knowl. Inf.
Syst., 28(3):523–553, 2011.

85

[199] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learn-
ing from stream data using optimal weight classifier ensemble. IEEE
Trans. Systems, Man, and Cybernetics, Part B, 40(6):1607–1621, 2010.

[200] Indre Zliobaite. Adaptive training set formation. PhD thesis, Vilnius
University, 2010.

[201] Indre Zliobaite. Controlled permutations for testing adaptive learning
models. Knowledge and Information Systems, 30:1–4, 2013.

[202] Indre Zliobaite. How good is the electricity benchmark for evaluating
concept drift adaptation. arXiv preprint arXiv:1301.3524, 2013.

[203] Indre Zliobaite, Albert Bifet, Mohamed Gaber, Bogdan Gabrys, Joao
Gama, Leandro Minku, and Katarzyna Musial. Next challenges for
adaptive learning systems. SIGKDD Explor. Newsl., 14(1):48–55, De-
cember 2012.

[204] Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes.
Active learning with evolving streaming data. In Proceedings of the
2011 European Conference on Machine Learning and Knowledge Dis-
covery in Databases, volume 6913 of Springer LNCS, pages 597–612,
2011.

[205] Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, and Geoffrey
Holmes. Active learning with drifting streaming data. IEEE Trans.
Neural Netw. Learning Syst., 25(1):27–39, 2014.

[206] Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, and
Geoff Holmes. Evaluation methods and decision theory for classifica-
tion of streaming data with temporal dependence. Machine Learning,
98(3):455–482, 2015.

[207] Indre Zliobaite, Marcin Budka, and Frederic T. Stahl. Towards cost-
sensitive adaptation: When is it worth updating your predictive model?
Neurocomputing, 150:240–249, 2015.

[208] Indre Zliobaite, Mykola Pechenizkiy, and João Gama. An overview
of concept drift applications. In Nathalie Japkowicz and Jerzy Ste-
fanowski, editors, Big Data Analysis: New Algorithms for a New Soci-
ety, pages 91–114. Springer, 2016.

86

