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Abstract Various modifications of bagging for class imbalanced data are dis-
cussed. An experimental comparison of known bagging modifications shows
that integrating with undersampling is more powerful than oversampling. We
introduce Local-and-Over-All Balanced bagging where probability of sam-
pling an example is tuned according to the class distribution inside its neigh-
bourhood. Experiments indicate that this proposal is competitive to best
undersampling bagging extensions.

1 Introduction

Class imbalance is one of obstacles for learning accurate classifiers. Standard
learning algorithms tend to show a strong bias toward the majority classes
and misclassify too many examples from the minority class. Several meth-
ods to address class imbalance have been proposed so far (see, e.g., [8] for
a review). In general, they are categorized in data level and algorithm level
ones. Methods within the first category try to re-balance the class distribu-
tion inside the training data by either adding examples to the minority class
(oversampling) or removing examples from the majority class (undersam-
pling). The other category covers methods modifying the learning algorithm,
its classification strategy or adapting the problem to cost sensitive framework.
New type of ensembles of component classifiers is also visible among these
methods. They modify sampling strategies (e.g., in bagging), integrate the
ensemble with specialized pre-processing method (e.g. SMOTEbagging [13])
or use different cost weights in generalizations of boosting (see, e.g., [7]).

Although these ensembles are presented as a remedy to a certain imbal-
anced problems, there is still a lack of a wider study of their properties.
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Authors often compare their proposals against the basic versions of other
methods. The set of considered imbalance data is usually also limited. Up
to now, only two studies were carried out in different experimental frame-
works [7, 11]. In [7] authors presented a wide study of 20 different ensembles
(all with C4.5 tree classifiers) over 44 data sets. They considered a quite
wide range of ensembles from simple modifications of bagging to complex
changes of cost Adaboost or hybrid approaches. Their main conclusions said
that SMOTEbagging, RUBoost and RUBagging presented the best AUC re-
sults. It was also shown that simple versions of undersampling or SMOTE
re-sampling combined with bagging worked better than more complex solu-
tions. In [11], two best boosting and bagging ensembles were compared over
noisy and imbalanced data. Different amounts of class noise were randomly
injected in the training data. The experimental results showed that bagging
significantly outperformed boosting. The difference was more significant when
data were more noisy. Another surprising conclusion said that it was better
to implement sampling without replacement in bagging.

We focus our interest on bagging extensions for class imbalance - following
both these related works and its potential usefulness for better handling mas-
sive data streams than more complex ensembles. We want to study behavior
of bagging extensions more precisely than in [7, 11]. In particular, roughly
balanced bagging [9] was missed in [7], although it is appreciated in the liter-
ature. The study presented in [11], was too much oriented to the noise level
and only two versions of random undersampling in bagging were considered.

Our first objective is to study more precisely a wider set of known ex-
tensions of bagging. We will consider exactly balanced bagging and rough
balanced bagging but also more variants of using oversampling in bagging
– including new type of integrating SMOTE method. We want to check ex-
perimentally whether undersampling is better than oversampling in extended
bagging. The other contribution is to introduce new extensions of bagging.
They are based on the analysis of local neighborhood of each example, which
affect the probability of its selection into bootstrap sample – which is a dif-
ferent perspective than the known integrations with pre-processing methods.

2 Adapting Bagging for Imbalanced Data

Bagging introduced by Breiman [4] is an ensemble of T base classifiers induced
by the same learning algorithm from T bootstrap samples drawn from the
original training set. The predictions of component classifiers form the final
decision as the result of equal weight majority voting. The key concept is
bootstrap aggregation, where the training set for each classifier is constructed
by random uniformly sampling (with replacement) instances from the original
training set (usually keeping the size of the original data).



Extending Bagging for Imbalanced Data 3

2.1 Related Modifications of Bagging

The majority of proposals modify the bootstrap sampling by integrating it
with data pre-processing. As the original data is imbalanced the bootstrap
sampling will not change significantly the class distribution in the training
sample. Its bias toward the majority class could be changed in different ways.

Exactly Balanced Bagging (EBBag) is based on a kind of undersampling,
which reduces the number of the majority class examples in each bootstrap
sample to the cardinality of the minority class (Smin) [5]. While creating
each training sample, the entire minority class is copied and combined with
randomly chosen subsets of the majority class.

Roughly Balanced Bagging (RBBag) results from a critique of EBBag [9].
Instead of fixing the sample size, it equalizes sampling probability of each
class. Size of the majority class in each bootstrap sample (BSmaj) is deter-
mined probabilistically according to the negative binomial distribution. Then,
Smin, and BSmaj examples are drawn with or without replacement from the
minority class and majority class, respectively. The class distribution in the
bootstrap samples maybe slightly imbalanced and varies over iterations. Au-
thors of[9], said that RBBag is more consistent with the nature of bagging
and performs better than EBBag. However, authors of [11] claim that there
is no significant difference in performance between RBBag and EBBag.

Another way to overcome class imbalance in the bootstrap sampling is
oversample the minority class. OverBagging (OverBag) is the simplest ver-
sion which applies oversampling to create each training bootstrap sample.
Smaj of minority class examples is sampled with replacement to exactly bal-
ance the cardinality of the minority and the majority class in each sample.
Majority examples are sampled with replacement as in the original bagging.

Another methodology is used in SMOTEBagging (SMOTEBag) to in-
crease diversity of component classifiers [13]. Firstly, SMOTE is used instead
of random oversampling of the minority class. Then, the SMOTE resam-
pling rate (α) is stepwise changed in each iteration from small to high values
(e.g,. from 10% till 100%). This ratio defines the number if minority examples
(α×Smin) to be additionally re-sampled in each iteration. Quite similar trick
to construct bootstrap training samples is also used in the ”from undersam-
pling to oversampling” ensemble. According to [7] SMOTEBag gave slightly
better results than other good random undersampling ensembles.

2.2 New Proposals

We propose to consider another approaches to bagging based on analyzing the
local characteristics of examples and focusing sampling toward more consis-
tent ones. Following [12], type of an example (with respect to its classification
consistency) can be identified by analyzing its local neighborhood. It can be
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modeled by class assignments of its k-nearest neighbours. For each example,
the ratio n/k representing the consistency weight is defined, where n is the
number of neighbor examples that have the same class label (the Heteroge-
neous Valued Distance Metric is used and k is relatively small k=5).

Firstly, we consider modifications of Roughly Balanced Bagging, where the
probabilities of sampling the majority class examples are changed. Instead of
using equal probabilities they are tuned to reflect the consistency weight of
examples. We consider two variants. In RBBagV1, weights of the examples
correctly re-classified by their neighbours are set to 1 (to focus more interest
on safer regions while reducing the role of border examples). On the other
hand, in RBBagV2 the probability of drawing the example is proportional
to n/k instead of equal probabilities. In both variants, weights of outlier ex-
amples (with all neighbours from the other class) are set to 0.1. The minority
examples are drawn with uniform probabilities (as in RBBag).

In the other approach, we prioritize changing probability of example draw-
ing, without modifying the size of the bootstrap samples. In this way, we drop
the idea to integrate either undersampling nor oversampling and stay with
the original boostrap idea. Our intuition is still to focus the sampling toward
more safe, consistent examples. The approach also results in two variants. In
Over-All Balanced Bagging (O-ABBag), we perform overall (global) balanc-
ing. For each majority example, its weight is reduced according to proportion
of majority class in the original data, i.e.,

Smin+Smaj

Smaj
. The weights of minority

examples are increased analogously, with respect to proportion
Smin+Smaj

Smin
.

Local-and-Over-All Balanced Bagging (L-O-ABBag), on the other hand,
uses a mixture of local and global balancing. For each example, its weight is
tuned, w.r.t. (with respect to) O-ABBag, in the way to reflect the local imbal-
ance, i.e., imbalance in its neighborhood. The tuning takes a form of product
of the local and global proportions under the assumption that the local im-
balance is independent on the global imbalance. The first component of the
product is global proportion, which is calculated exactly as in O-ABBag. The
second component is the local proportion that has the same mathematical
form as global proportion, however it is calculated taking into account only
the examples from neighborhood. The neighborhood is composed of all sim-
ilar examples, i.e., examples, which share the same description on nominal
features and have the value in the same interval on numerical ones (i.e., lo-
cal discretization) [3]. We consider neighborhoods which are constructed on
random subsets of the original feature set (see [2]). More precisely, for each
example, we calculate the local proportion w.r.t. random subset of features
of size equal to ln of the feature set size. This idea is unlike the previously
considered k-nearest neighbours. Instead of taking given k similar examples
w.r.t. all features, we take all similar examples, however, w.r.t small random
subset of features. In this way, the local proportion promotes examples that
are distinct (having different description than any other example) or that
have the common description for the class. Taking random subsets of fea-
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tures is a way to consider larger neighborhoods, which may help to obtain
more diversified bootstrap samples used in bagging.

3 Experiments

In the first experiments we compare literature best extensions of bagging,
while in the second experiments we evaluate our new extensions proposed in
the previous section. All implementations are done for WEKA framework.
Component classifiers b are learned with C4.5 tree learning algorithm (J4.8),
which uses standard parameters except disabling pruning.

We choose 22 real-world data sets representing different domains, sizes and
imbalance ratio. Most of them come from the UCI repository and are often
used in other works on class imbalance, e.g. in [1]. Other data sets come from
our medical applications. For data sets with more than two decision classes,
we chose the smallest class as a minority class and aggregated other classes
into one majority class.

The performance of classifiers is measured using: sensitivity of the minority
class, its specificity and their aggregation to the geometric mean (G-mean).
For their definitions see, e.g. [8, 10]. They are estimated in stratified 10-fold
cross-validation repeated several times to reduce variance.

3.1 Comparison of Known Bagging Extension

The following bagging variants are considered: Exactly Balanced Bagging
(denoted further as EBBag), Roughly Balanced Bagging (RBBag) as the best
representatives of undersampling generalization. OverBagging (OverBag) and
SMOTEBagging (SMOBag) for oversampling perspectives. In case of using
SMOBag, we used 5 neighbours and oversampling ration α was stepwise
changed in each sample starting from 10%. Moreover, we decided to use
SMOTE in yet another way. In the new ensemble, called BagSMOTE, the
bootstrap samples were drawn in a standard way, and than SMOTE was
applied to balance majority and minority class distribution in each sample
(but with the same α, invariant between samples). For all bagging variants,
we tested the following numbers T of component classifiers: 20, 50 and 100.
Due to space limit, we present detailed results for T = 50 only. Results
for other T lead to similar general conclusions. The average values of the
sensitivity measure are presented in Table 1. The last row contains averaged
ranks calculated as in the Friedman test [10]. The test with post-hoc analysis
(the critical difference CD = 1.61) shows that EBBag and RBBag leads to
significantly better sensitivity than all other bagging variants. However, the
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Table 1 Sensitivity [%] for known bagging extensions

data set Bag EBBag RBBag OverBag SMOBag BagSMOTE

abdominal pain 72.05 (5) 81.65 (1) 80.08 (2) 74.22 (4) 71.57 (6) 76.86 (3)
acl-m 83.33 (6) 94.17 (1) 88.5 (2) 84.17 (5) 85.0 (4) 88.33 (3)

balance-scale 0 (6) (6) 49.33 (1) 44.2 (2) 8.83 (3) 1.0 (4) 0.67 (5)
breast-cancer 35.93 (5) 56.06 (2) 56.25 (1) 44.91 (3) 34.36 (4) 50.05 (6)

breast-w 94.88 (6) 96.01 (2) 96.27 (1) 95.84 (3) 95.02 (4) 95.17 (5)

bupa 60.48 (5) 66.97 (3) 68.49 (1) 63.27 (4) 57.02 (6) 67.21 (2)
car 73.97 (6) 100 (1.5) 100 (1.5) 92.62 (3) 92.54 (4) 92.13 (5)

cleveland 9.72 (6) 77.22 (1) 73.5 (2) 16.11 (5) 20.83 (4) 36.11 (3)

cmc 36.67 (6) 66.61 (1) 63.62 (2) 46.47 (4) 40.05 (5) 53.10 (3)
german credit 48.89 (5) 72.5 (2) 91.67 (1) 52.89 (4) 45.89 (6) 63.11 (3)

ecoli 56.67 (6) 78.2 (1.5) 78 (1.5) 60.85 (5) 71.67 (4) 77.11 (3)

flags 0 (6) 70 (1) 67.4 (2) 65.27 (3) 55.6 (4) 20 (5)
haberman 26.38 (6) 60.56 (2) 58.39 (3) 49.86 (4) 48.91 (5) 66.25 (1)

hepatitis 49.44 (6) 81 (2) 81.5 (1) 61.67 (3) 54.44 (5) 67.25 (4)
ionosphere 81.79 (6) 85.73 (2) 85.86 (1) 84.7 (3) 83.7 (4.5) 83.76 (4.5)

new-thyroid 87.5 (6) 95.5 (1.5) 95.5 (1.5) 93.06 (4) 92.22 (5) 93.89 (3)

pima 61.28 (6) 76.7 (1) 75.64 (2) 67.38 (3) 65.13 (4) 63.38 (5)
scrotal pain 58.11 (6) 73.78 (2) 74.6 (1) 65.89 (4) 73.8 (3) 58.56 (5)

solar-flareF 7 (6) 86 (2) 86.7 (1) 42.3 (3) 37.33 (4) 34.4 (5)

transfusion 34.62 (6) 65.45 (2) 64.36 (3) 61.88 (4) 56.54 (5) 68.66 (1)
vehicle 91.29 (6) 91.16 (2) 96.78 (1) 93.46 (4) 92.14 (5) 94.97 (3)

yeast-M2 32.22 (6) 90.22 (1) 89.8 (2) 39.9 (5) 41.18 4) 57.94 (3)

average rank 5.54 1.57 1.52 3.54 4.34 3.52

more precised Wilcoxon test (with α=0.05) shows that differences between
these two classifiers are not significant.

While using SMOTE to oversample the minority class, the new integration
BagSMOTE performs better than the previously known SMOTE+Bag and
OverBag. We also analysed sampling with or without replacement. Conclu-
sions are not univocal. For best undersampling variants like EBBag differ-
ences are insignificant while for oversampling standard replacement sampling
works much better.

Similar analysis is performed for G-mean (we have to skip details). All
extensions are significantly better than the standard version and the ranking
of best performing classifiers is the same as for the sensitivity. Again, under-
sampling methods EBBag and RBBag are better than oversampling bagging
variants. However, RBBag seems to be slightly better than EBBag and this
trend is more visible for a higher number of component classifiers and using
bootstrap sampling with replacement. Bag+SMOTE is also the best per-
forming classifier among oversampling variants. For EBBag and RBBag, we
calculated F-measure as yet another popular measure. In this case, RBBag
with replacement is better than EBBag with in the Wilcoxon test.

For all bagging variants average values of Q statistics are also calculated to
analyze the diversity of component classifiers. Generally, its values are high
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positive which indicates that diversity is not high. Sampling with replacement
improves the diversity. RBBag produces more diverse classifiers than EBBag.

3.2 Newly Proposed Extensions

Then, we compare newly proposed extensions of bagging for class imbalance
(see Section 2.2) to Roughly Balanced Bagging, which show good properties.
We will consider: two modifications of RBBag (RBBagV1 and RBBagV2),
Over-All Balanced Bagging (O-ABBag), and Local-and-Over-All Balanced
Bagging (L-O-ABBag). In case of L-O-ABBag, a random subset of features
of size ln of the number of features in the data set is used.

Table 2 Sensitivity [%] calculated for newly proposed extensions of bagging

data set RBBag RRBBagV1 RRBBagV2 O-ABBag L-O-ABBag

abdominal pain 80 (4) 82.26 (1) 82.08 (2) 75.35 (5) 80.4 (3)

acl-m 88.5 (3.5) 89.5 (2) 90 (1) 86 (5) 88.5 (3.5)

balance-scale 44.2 (2) 25.1 (4) 32 (3) 8.163 (5) 99.59 (1)
breast-cancer 56.56 (2) 56.06 (3) 54.97 (4) 51.76 (5) 63.29 (1)

breast-w 96.27 (3) 97.11 (2) 97.52 (1) 95.35 (5) 96.27 (4)

bupa 68.49 (2) 68.37 (3) 66.39 (4) 65.66 (5) 71.03 (1)
car 100 (2.5) 100 (2.5) 100 (2.5) 94.78 (5) 100 (2.5)

cleveland 73.5 (1) 66.67 (4) 67.5 (3) 32.57 (5) 70.29 (2)

cmc 63.62 (2) 61.41 (4) 61.88 (3) 48.41 (5) 68.23 (1)
german credit 89.33 (3) 91 (2) 91.67 (1) 62.6 (5) 71.8 (4)

ecoli 78 (2) 64 (4.5) 64 (4.5) 71.43 (3) 93.14 (1)

flags 66 (4) 67.4 (2) 67.27 (3) 51.76 (5) 92.94 (1)

haberman 58.39 (4) 57.58 (5) 58.58 (3) 59.75 (2) 89.14 (1)

hepatitis 81.5 (1) 76.17 (3) 78.67 (2) 64.38 (5) 71.25 (4)
ionosphere 85.86 (1.5) 85.86 (1.5) 85.4 (3) 85.4 (4) 84.76 (5)

new-thyroid 95.5 (2) 93.33 (3) 92.67 (5) 93.14 (4) 96 (1)

pima 75.64 (4) 76.7 (3) 77.38 (2) 75.3 (5) 79.18 (1)
scrotal pain 74.6 (2) 73.8 (3.5) 73.8 (3.5) 71.53 (5) 77.63 (1)

solar-flareF 86.7 (1) 86.3 (2) 85.4 (3) 41.4 (5) 83.72 (4)

transfusion 64.36 (2) 61.88 (4) 63.12 (3) 60.56 (5) 89.66 (1)
vehicle 96.78 (4) 97.38 (2) 97.29 (3) 93.97 (5) 97.99 (1)
yeast-M2 89.8 (2) 82.33 (4) 83.93 (3) 41.18 (5) 92.94 (1)

average rank 2.48 2.95 2.84 4.68 2.05

Again we show results only for T = 50 classifiers. The average values of
sensitivity and G-mean are presented in Table 2, and Table 3, respectively
(with average ranks). The results of Friedman tests (with CD = 1.3), reveals
that only O-ABBg is the worst classifiers. Still, we can give some more de-
tailed observations. According to the average ranks on sensitivity the best
performing is L-O-ABBag. However, according to Wilcoxon, its difference
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to RBBag is not so significant (p-value is just at 0.05). The two modified
versions of RBBag perform similarly to each other.

For G-mean, RBBag is the best classifier according to average ranks. How-
ever, as Wilcoxon test indicates, its results are not significantly better than
these of RBBagV1, and L-O-ABBag. The worst classifier in comparison is
again O-ABBag.

Table 3 G-mean [%] calculated for newly proposed extensions of bagging

data set RBBag RRBBagV1 RRBBagV2 O-ABBag L-O-ABBag

abdominal pain 81.04 (1) 80.78 (2) 80.56 (4) 79.3 (5) 80.73 (3)

acl-m 88.97 (3) 89 (2) 89.24 (1) 87.68 (5) 88.65 (4)

balance-scale 51.32 (1) 35.65 (4) 43 (2) 25.42 (5) 39.8 (3)
breast-cancer 60.28 (1) 60.14 (2) 59.68 (4) 59.53 (5) 59.7 (3)

breast-w 96.12 (4) 96.53 (2) 96.71 (1) 95.73 (5) 96.47 (3)

bupa 71.97 (2) 72.25 (1) 70.67 (3) 70.31 (4) 69.45 (5)
car 96.81 (4) 96.94 (2) 96.78 (5) 96.93 (3) 97.32 (1)

cleveland 73.33 (1) 71.23 (3) 71.14 (4) 53.56 (5) 72.06 (2)

cmc 65.29 (2) 65.25 (3) 65.68 (1) 60.12 (5) 64.18 (4)
german credit 87.07 (3) 88.61 (2) 88.71 (1) 67.67 (5) 67.94 (4)

ecoli 71.84 (3) 63.95 (4.5) 63.95 (4.5) 81.19 (2) 89.04 (1)

flags 67.23 (4) 68.81 (2) 68.6 (3) 63.8 (5) 74.04 (1)

haberman 64.17 (1) 63.04 (4) 63.29 (3) 63.53 (2) 50.74 (5)

hepatitis 80.29 (1) 77.49 (3) 78.85 (2) 74.2 (5) 75.04 (4)
ionosphere 90.75 (5) 90.87 (2) 90.84 (3) 90.79 (4) 90.91 (1)

new-thyroid 96.21 (2) 95.07 (4) 94.34 (5) 95.65 (3) 96.72 (1)

pima 74.84 (3) 75.67 (2) 75.83 (1) 74.44 (4) 73.91 (5)
scrotal pain 74.43 (1) 73.62 (4) 73.41 (5) 74.37 (2) 74.16 (3)

solar-flareF 85.03 (2) 85.05 (1) 84.43 (3) 61.33 (5) 82.12 (4)

transfusion 67.65 (2) 67.82 (1) 67.52 (3) 66.93 (4) 44.77 (5)
vehicle 95.23 (2) 94.9 (3) 94.81 (4) 94.77 (5) 96.2 (1)

yeast-M2 85.57 (1) 82.94 (4) 83.64 (3) 63.32 (5) 85.06 (2)

average rank 2.23 2.61 2.98 4.23 2.95

4 Discussion

The results of first experiments clearly show that applying simple random
undersampling leads to much better classification performance than oversam-
pling variants. Definitely, both EBBag and RBBag achieve the best results.
However, the difference between them and the best oversampling bagging is
much higher than shown in [7]. Moreover, according to our results, SMOTE-
Bagging is not as accurate as it has been presented in [13]. A new oversam-
pling bagging variant, where SMOTE is applied with the same oversampling
ratio, works better than the previously promoted SMOTEBagging.
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Although EBBag and RBBag performs similarly with respect to the sen-
sitivity, RBBag seems to be slightly better than EBBag for G-mean and
F-measure, in particular when sampling is done with replacement. This is a
bit different observation to [11], where both classifiers worked similarly on all
artificially modified noisy data. Authors of RBBag also showed its slightly
better performance over EBBag [9] over 9 data sets only (4 of them was also
used in our experiments). Yet another novel observation is that sampling with
replacement may be profitable for RBBag unlike EBBag, where our results
show no differences between sampling with or without replacement. This re-
sult is contradictory to a quite strong claim, from [11], that “bagging should
be implemented without replacement”.

Discussing these results, we can hypothesize that undersampling may help
in random distributing majority examples among many small bootstrap sam-
ples, which may direct learning to some useful complementary classification
patterns. Even though some of bootstrap samples may contain unsafe, diffi-
cult majority examples, the final voting with better components reduces their
influence. We plan to carry our future experiments of studying the content
and diversity of bootstraps in both EBBag and RBBag.

The main methodological contribution of our study is a new extension
of bagging called Local-and-Over-All Balanced Bagging. It is based on dif-
ferent principles than all known bagging extensions. Firstly, instead of in-
tegrating bagging with pre-processing, we keep the standard bagging idea
but we change radically probabilities of sampling examples by increasing the
chance of drawing more minority examples. In this sense we somehow over-
sample some minority examples and go toward another distribution balance
inside the bootstrap sample. Moreover, we promote sampling more safe ex-
amples with respect to analyzing class distribution in their neighborhood.
The next novel contribution is modeling this nearest distribution by finding
similar examples with respect to subsets of features describing them. This
idea is inspired by our earlier proposal of variable consistency sampling [2]
and according to our best knowledge has not been considered yet in case of
imbalanced data.

The results of the second part of experiments clearly show that this novel
proposal leads to competitive results to best known undersampling bagging
extensions. Furthermore, using more local information about class imbalance
is more powerful than using only global imbalance ratio (which was often con-
sidered in earlier works). In our future works we plan to study more precisely
other ways of modeling and using local approaches to class imbalance.

We would also like to extend our comparison to other component classi-
fiers. In final remarks we refer to problems of using these bagging variants
to massive data. In our opinion, more complex solutions do not work better
than these simpler bagging variants. Notice that bagging is relatively easy to
implement (even in a parallel way) and to generalize, e.g., for class imbalance.
Therefore, randomly balanced variants of bagging could be attractive with
respect to computational costs since appropriate redistribution of the major-
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ity class leads to many smaller training samples. Moreover, according to [7],
all these bagging extensions lead to smaller trees than boosting variants.
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