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Abstract. Under-sampling extensions of bagging are currently the most
accurate ensembles specialized for class imbalanced data. Nevertheless,
since improvements of recognition of the minority class, in this type of
ensembles, are usually associated with a decrease of recognition of ma-
jority classes, we introduce a new, two phase, ensemble called Actively
Balanced Bagging. The proposal is to first learn a bagging classifier and
then iteratively improve it by updating its bootstraps with a limited
number learning examples. The examples are selected according to an
active learning strategy, which takes into account: decision margin of
votes, example class distribution in the training set and/or in its neigh-
bourhood, and prediction errors of component classifiers. Experiments
with synthetic and real-world data confirm usefulness of this proposal.

Keywords: class imbalance, active learning, bagging, ensembles of clas-
sifiers, Neighbourhood Balanced Bagging

1 Introduction

The problem of learning from class-imbalanced data has been a topic of inten-
sive research in recent years, motivated by an observation that standard learning
methods are inherently biased to focus on the majority classes and fail to suf-
ficiently recognize the minority class which is often of particular interest in the
given application. For reviews of new methods see, e.g, [6,10].

Ensembles are among the most effective methods for improving recognition
of the minority class. Most of them extend strategies from bagging or boosting.
They either employ pre-processing methods before learning component classi-
fiers or embed a cost-sensitive framework in the ensemble learning process; see
review in [9,10]. Experimental comparisons [3,11,12] have shown that extensions
of bagging work better than those of boosting and other solutions.

The basic idea behind extending bagging for imbalanced data is to modify the
distribution of examples from minority and majority classes in bootstraps [9].
This may be achieved in many ways, which usually balance the numbers of
examples from both classes. Experimental studies show that under-sampling,
i.e., reduction of examples from the majority class, performs better than over-
sampling (i.e., multiplication of examples from the minority class) [3,4,11]. Im-
provements are observed even for simplest extensions, like Exactly Balanced
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Bagging (EBBag) [7,9]. Other studies [3,11] demonstrate that Roughly Balanced
Bagging (RBBag), which applies a more sophisticated random under-sampling,
achieves the best G-mean among compared ensembles. We have proposed Neigh-
bourhood Balanced Bagging (NBBag) being competitive to RBBag. NBBag
modifies bootstrap sampling by weighting examples [4]. The weight of an mi-
nority example depends on quantity of examples in the whole training set, and
in the example neighbourhood, which belong to the majority class.

However, these improvements may come with a decrease of recognition ma-
jority class examples [4]. We claim that there is still a possibility to better learn
the trade-off between performance in both classes. This leads us to a research
question how to achieve it. To best of our knowledge the current research focuses
on various modifications of bootstrap samples in under-sampling bagging exten-
sions. In this paper, we want to consider another hypothesis: given an already
good technique of constructing a bagging extension, is it possible to perform
additional steps of updating its bootstraps by selecting a limited number of
learning examples, which are important to improve performance in both classes.

This hypothesis directs our attention toward active learning methods [15].
Recall that, in active learning, a learning method may achieve a better classi-
fication performance when it is allowed to choose examples on which it learns.
Usually it is performed on partially labeled examples, i.e., after the initial step
of full supervised learning, the active method should select a limited number of
examples to be labeled and further used to update the classifier. However, the
active learning could also be used to filter examples in the complete labeled ex-
amples [2]. In this way active strategies have been already applied to imbalanced
learning - although these attempts are still quite limited (see section 2).

We introduce a new approach, called Active Balancing Bagging (ABBag),
to extend bagging for imbalanced data by an active learning modification of
bootstrap samples of previously constructed under-sampling bagging extension.
In this proposal, after the initial training, the ensemble (here we consider two
algorithms: EBBag and NBBag) is re-trained on bootstraps enlarged by batches,
i.e., small portions of learning examples, selected according to active selection
strategies. Batch querying, although being very practical by nature, is rarely
used by existing active learning approaches [5]. According to our best knowledge
no similar extension has been considered in the literature so far.

The paper is organized as follows. The next section summarizes related works
on bagging extensions proposed for imbalanced data and active learning strate-
gies. The following section 3, describes the proposed active balancing bagging
extension. Experimental validation of the proposed methods is carried out in
section 4. The paper is concluded in section 5.

2 Related Works

Besides working on new algorithms, some researchers also studied the charac-
teristics of imbalanced data and sources of difficulties for learning classifiers. It
has been noticed that the global imbalance ratio is not the only or even not
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the most important factor which makes learning difficult. Other data difficulty
factors such as class overlapping, small disjuncts or lack of representativeness sig-
nificantly deteriorate the quality of an induced model even on exactly balanced
data [13,14]. They also inspire development of new methods, see e.g. [4].

Several extensions of bagging approach for imbalanced data have been pro-
posed [4,9,16]. In the simplest one, called Exactly Balanced Bagging (EBBag),
while constructing bootstrap sample, the entire minority class is copied and
combined with the randomly chosen subset of the majority class to exactly
balance cardinalities of examples in both classes. The first bagging extension
which uses knowledge of data difficulty factors is Neighbourhood Balanced Bag-
ging (NBBag) [4]. NBBag focuses bootstrap sampling toward difficult minority
examples by using certain type of weights. The weight of a minority example de-
pends on the analysis of class labels among its k nearest neighbours. A minority
example is considered the more unsafe, the more it has majority examples in its
neighbourhood. Thus, this part of the weight reflects a local balancing factor.
Moreover, this weight is also aggregated with a global balancing factor, which
takes into account the imbalance ratio between classes. Hence, the formula for

minority example weight is the following: w = 0.5 ×
(

(N ′−)
ψ

k + 1
)

where N ′− is

the number of majority examples among k nearest neighbours of the example
and ψ is a scaling factor. Setting ψ = 1 causes a linear amplification of the ex-
ample weight with an increase of unsafeness and setting ψ to values greater then
1 effects in an exponential amplification. Each majority example is assigned a
constant weight w = 0.5× N+

N−
.

Active learning approaches for imbalanced data are rather limited. The ac-
tive strategy proposed by Ertkin et al. [8] relies on iterations of selecting single
uncertain example and rebuilding the model. However, selecting more that one
instance at time, and rebuilding model on a batch, often can greatly reduce the
computation time [5]. This is especially true when the cost of constructing clas-
sifier is higher than for online SVM [8]. A simple active extension of bagging has
been proposed for unlabeled data in imbalanced medical problems [16].

3 Active Selection of Examples in Balanced Bagging

In this section we describe Actively Balanced Bagging (ABBag), which is com-
posed of two phases. The first phase consists in learning an ensemble classifier by
one of approaches to construct under-sampling extensions of bagging. Although
one can choose any extension, we will further consider one simple, yet effective
one: Exactly Balanced Bagging (EBBag) [9], and better performing, yet more
complex one: Neighbourhood Balanced Bagging NBBag [4]. For more informa-
tion on constructing these ensemble refer to section 2. Here, we focus on an
explanation of the second phase, which is specific to ABBag, and which we call
active selection of examples. It consists in: (1) an iterative modification of boot-
strap samples, constructed in the first phase, by adding selected examples from
the training set; (2) re-training of component classifiers on modified bootstraps.
The examples in (1) are added to bootstraps in small portions called batches.
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The proposed active selection of examples can be seen as a variant of Query-
by-committee (QBC) approach [1]. In QBC, one constructs an ensemble of di-
verse component classifiers and then ranks all classified examples with respect
to a selected committee disagreement measure (a decision margin). Originally,
this margin is defined as a difference between number of votes for a class, or
probabilities of a class, between the two most supported classes. Note that QBC
has been already successfully applied in active learning of ensemble of diverse
component classifiers in [5]. Ensembles constructed in the first phase of ABBag
are attractive to combine with QBC, because, as we have previously shown in [4],
they promote component classifiers diversity. However, QBC does not take into
account global (i.e., concerning the whole training set) properties of examples
distribution, and in result, it can focus on selecting outliers and sparse regions [5].

Recall that single example selection is a typical strategy in active learn-
ing [2,15]. In ABBag we promote to select, in each iteration, a small batch
instead of one example. It is motivated by a potential reduction of computation
time as well as increasing diversity of examples in the batch. As it was observed
in [5], a greedy selection of example with respect to a single criterion, e.g., typical
for active strategy: highest utility/uncertainty measure [2,15], does not provide
desired diversity. In our view, giving chance to also randomly select some slightly
sub-optimal examples besides the best ones may result in higher diversity of new
bootstraps and increased diversity of re-trained component classifiers.

We address the above mentioned issues twofold. First, and foremost, the pro-
posed active selection of examples considers multiple factors. Among them, we
consider: uncertainty of example prediction by component classifiers, and a pre-
diction error of a single component classifier. In addition, we consider factors
specific to imbalanced data, which reflect more global (i.e., concerning the whole
training set) and/or local (i.e., concerning example neighbourhood) class distri-
bution of examples. Second, we use a specific variant of the rejection sampling
to enforce diversity within the batch through randomization.

The pseudo-code of the algorithm for learning ABBag ensemble is presented
as Algorithm 1. It starts with training set LS, andmbag bootstrap samplesSSS, and
it results, in the first phase (lines 3-3), in an under-sampling extension of bagging.
Moreover, it makes use of initial balancing weights www, which are calculated in
accordance with the under-sampling bagging extension. These initial balancing
weights www allow us to direct sampling toward more difficult to learn examples in
comparison to uniform sampling typical for bagging. In case of EBBag,www reflects
the global imbalance of example in the training set. For NBBag,www expresses both
global and local imbalance of example in the training set [4].

In the second phase, the active selection of examples is performed between
lines 4, and 10. All bootstraps from SSS are iteratively (mal times) enlarged by
adding batches, and new component classifiers are re-learned. In each itera-
tion, new weights w′w′w′ of examples are calculated according to weights update
method um (which is described in the next paragraph), and then they are
sorted (lines 6-7). Each bootstrap is enhanced by nal examples selected ran-
domly with rejection sampling according to α = w′(xnal) + ε, i.e., nal random
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Algorithm 1: Actively Balanced Bagging Algorithm

Input : LS training set; TS testing set; CLA component classifier learning
algorithm; mbag number of bootstrap samples; SSS bootstrap samples;
www initial weights of examples in LS; um weights update method; mal

number of active learning iterations; nal size of active learning batch
Output: CCC ensemble classifier

1 Learning phase;
2 for i := 1 to mbag do
3 Ci := CLA (Si) {generate a component classifier} ;

4 for l := 1 to mal do
5 for i := 1 to mbag do
6 w′w′w′ := updateWeights(www, CCC, um) {update weights used in sampling} ;
7 sort all x with respect to w′(x), so that w′(x1) ≥ w′(x2) ≥ . . . ≥ w′(xn) ;
8 S′

i := random sample from x1, x2, . . . , xnal according to w′w′w′ {rejection
sampling from top nal x sorted according to w′w′w′; α = w′(xnal) } ;

9 Si := Si ∪ S′
i ;

10 Ci := CLA (Si) {re-train a new component classifier} ;

11 Classification phase;
12 foreach x in TS do
13 CCC(x) := majority vote of Ci(x), where i = 1, . . . ,m {the prediction for

example x is a combination of predictions of component classifiers Ci} ;

examples with weights w′ higher than α are selected (lines 8-9). Parameter ε in-
troduces an additional (after α) level of randomness into the sampling. Finally,
after each bootstrap sample is enlarged, new component classifier Ci is trained
resulting in new ensemble classifier CCC (line 10).

We consider four different weights update methods. The simplest method,
called margin (m), is substituting the initial weights of examples with a decision
margin between component classifiers in CCC. For a given example it is defined as:

m = 1 −
∣∣∣Vmaj−Vminmbag

∣∣∣, where Vmaj is number of votes for majority class, Vmin

is number of votes for minority class, and mbag is the number of component
classifiers. Since the margin may not be directly reflecting the characteristic
of imbalanced data (indeed under-sampling somehow should reduce bias of the
classifiers) we consider aggregating it with additional factors. As a result, three
variants of weights update methods are proposed. In the first variant, called,
margin and weight (mw), new weight w′ is a product of m and initial balancing
weight w. Additionally we reduce the influence of w in subsequent iterations
of active example selection, as active selection iteration index l is increasing.
The reason for this reduction of influence is that we expect that margin m is
improving with subsequent iterations, and thus initial weights w are becoming

less important. More precisely, mw = m× w
(
mal−l
mal

)
.
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Recall that both considered so far weights update methods produce bootstrap
samples which, in the same iteration l, differ only according to randomization
introduced by rejection sampling, i.e., weights w′w′w′ are the same for each i. That is
why, we consider yet another modification of m and mw, which makes w′w′w′, and,
consequently, each bootstrap dependent on performance of the corresponding
component classifier. These two new update methods: margin and component
error (mce), and margin, weight and component error (mwce) are defined, re-
spectfully, as follows. mce = m + 1e × w, and mwce = mw + 1e × w. In this
notation, 1e is an indicator function defined so that 1e = 1 when a component
classifier is making a prediction error on the example, and 1e = 0 otherwise.

4 Experiments

We consider two aims of the experiments. First, we check whether the predic-
tive performance of Actively Balanced Bagging is improved in comparison to
known well performing under-sampling extensions of bagging. To examine this
part more generally we have decided to choose two efficient extensions based on
different principles: Exactly Balanced Bagging (EBBag) [7] and Neighbourhood
Balanced Bagging (NBBag) [4]. Our second aim is to compare different variants
of active selection methods, which result in different versions of ABBag.

In order to examine both aims we use several synthetic and real-world imbal-
anced data sets representing various difficulty factors in the distribution of the
minority class. All considered synthetic data sets, i.e., flower, and paw, were
constructed, as described in [17]. They have a controlled level of difficulty, i.e.,
decomposition of the minority class into sub-concepts, overlapping area, presence
of rare examples and outliers. The percentage of minority examples representing
safe, borderline, rare and outlier examples are given in the suffix of the data
set name. The examples from the minority class were generated randomly inside
predefined spheres and the majority class examples were randomly distributed
in an area surrounding them. Following similar motivations and analysis from
works on difficulty imbalanced data [4,14], we selected UCI data sets, and addi-
tional scrotal-pain data set1. Due to page limits we redirect the reader to the
description and characteristics of these data sets in [4]. Note that some of data
sets contain multiple majority classes, which were aggregated into one class.

The experiments were carried out in two variants with respect to the first
phase of the active selection. In the first variant, standard EBBag or under-
sampling NBBag was considered. In the other variant, the size of each of the
classes in bootstrap samples was reduced to 50% of the size of the minority class
in the training set. Active selection parameters, used in the second phase, mal,
and nal were chosen in a way, which enables the bootstrap samples constructed
in ABBag to excess the size of standard under-sampling bootstrap by a factor
not higher than two. The size of ensembles mbag, in accordance with previous ex-
periments [4], was always fixed to 50 J4.8 decision trees. NBBag parameters were

1 We are grateful to prof. W. Michalowski and the MET Research Group from the
University of Ottawa for allowing us to use scrotal-pain data set
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set the same as in [4]. All presented results are estimated by a stratified 10-fold
cross-validation repeated three times to improve reproducibility. The number of
repetitions is the same for all considered data sets for better comparability.

Due to page limits, we present results of two main experiments, which are
good representatives of tendencies observed in other analyzed settings.2 In Ta-
bles 1, and 2, we present values of G-mean measure, since we want to find a
good trade-off between recognition in both classes [4]. More precisely, we show
the best G-mean value, which can be achieved with a limited number of active
learning iterations (we considered mal ≤ 10) for relatively small batches. The
size of batch in experiments was set as percentage of the size minority class
(nal = {5%, 10%}). We show two variants of the first phase of the active se-
lection. Each of them is appropriate for the analyzed type of ABBag. Table 1,
presents results of active balancing of 50% under-sampling EBBag. While in Ta-
ble 2, we present results of active balancing of standard under-sampling NBBag.
The last row of Tables 1, and 2 contains average ranks calculated as in the
Friedman test – the lower average rank, the better the classifier.

Table 1. G-mean of actively balanced 50% under-sampling EBBag

Data set EBBag m-EBBag mce-EBBag mw-EBBag mwce-EBBag

abalone 79.486 79.486 79.486 79.486 79.574
breast-cancer 57.144 59.817 58.355 59.793 59.827
car 96.513 97.312 98.202 97.208 98.192
cleveland 70.818 74.823 72.347 75.027 71.940
cmc 64.203 65.229 64.900 65.435 64.786
ecoli 87.836 88.398 88.667 88.287 88.639
flower5-3d-10-20-35-35 0.000 53.445 52.992 52.768 53.809
flower5-3d-100-0-0-0 92.315 93.272 94.094 93.402 94.398
flower5-3d-30-40-15-15 77.248 77.867 78.591 77.780 78.543
flower5-3d-30-70-0-0 91.105 91.947 92.971 91.876 93.039
flower5-3d-50-50-0-0 91.966 92.311 93.414 92.381 93.558
haberman 62.908 65.551 65.423 65.909 65.378
hepatitis 78.561 79.302 80.169 79.427 81.044
paw3-3d-10-20-35-35 0.000 51.245 51.047 51.984 50.788
paw3-3d-100-0-0-0 90.857 93.004 94.193 92.926 94.312
paw3-3d-30-40-15-15 74.872 76.707 78.429 77.971 78.091
paw3-3d-30-70-0-0 88.545 91.159 91.535 90.827 91.438
paw3-3d-50-50-0-0 91.424 91.427 92.249 91.427 92.232
scrotal-pain 72.838 73.915 73.581 73.572 73.344
solar-flare 82.048 82.834 82.771 82.464 82.674
transfusion 66.812 66.847 66.812 67.607 66.812
vehicle 95.506 96.275 96.663 96.409 96.573
yeast 82.658 85.225 85.305 84.702 85.084

average rank 4.891 2.739 2.109 3.000 2.261

2 We have published detailed results for specific values of parameters, on-line, in the
appendix, http://www.cs.put.poznan.pl/jblaszczynski/ISMIS17/resABBag.pdf

http://www.cs.put.poznan.pl/jblaszczynski/ISMIS17/resABBag.pdf
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The first, general conclusion resulting from our experiments is that ABBag
performs better than under-sampling extensions of bagging, both: EBBag, and
NBBag. Let us treat EBBag, and NBBag as baselines in Tables 1, and 2, respec-
tively. The observed improvements of G-mean are statistically significant regard-
less of the version of ABBag. More precisely, following Friedman statistical test,
each actively balanced EBBag has lower average rank than the baseline EBBag,
and, similarly, each actively balanced NBBag has lower average rank than the
baseline NBBag. Moreover, Friedman tests results in p-values � 0.00001. Ac-
cording to Nemenyi post-hoc test, critical difference CD between average ranks
is around 1.272. CD is thus higher than the difference between average ranks
of each actively balanced EBBag and the baseline EBBag. An analogous obser-
vation holds for each actively balanced NBBag and the baseline NBBag. Some
more detailed observations concerning results presented in Tables 1, and 2 may
be given. The most striking difference in performance between baseline bagging
extensions and ABBag is visible for synthetic data sets with the most difficult
to learn distribution of safe, borderline, rare and outlier examples (i.e., data
sets with suffix 10-20-35-35). In that case, both baseline EBBag and NBBag
are not able to learn the minority class at all. ABBag shows significantly better
performance for these data sets, regardless of the weights update strategy.

Table 2. G-mean of actively balanced under-sampling NBBag

Data set NBBag m-NBBag mce-NBBag mw-NBBag mwce-NBBag

abalone 78.714 79.426 79.585 79.621 80.066
breast-cancer 58.691 62.037 62.130 62.223 62.201
car 96.200 97.094 97.414 97.126 97.724
cleveland 73.004 73.004 73.718 74.197 75.318
cmc 65.128 65.184 65.128 65.184 65.128
ecoli 88.581 88.867 88.581 88.867 88.581
flower5-3d-10-20-35-35 0.000 52.425 52.685 52.601 51.340
flower5-3d-100-0-0-0 92.373 93.244 93.185 93.048 93.998
flower5-3d-30-40-15-15 76.914 78.520 78.282 77.998 78.412
flower5-3d-30-70-0-0 91.120 92.508 93.019 92.044 92.997
flower5-3d-50-50-0-0 92.003 93.154 92.870 92.726 93.321
haberman 64.128 65.404 65.126 66.098 66.199
hepatitis 78.017 79.323 79.648 79.080 79.551
paw3-3d-10-20-35-35 0.000 52.294 51.545 50.043 50.825
paw3-3d-100-0-0-0 90.122 92.915 93.420 93.101 94.346
paw3-3d-30-40-15-15 63.966 76.500 76.423 76.987 77.921
paw3-3d-30-70-0-0 87.208 90.707 90.438 90.296 90.730
paw3-3d-50-50-0-0 91.317 91.603 91.803 91.527 91.973
scrotal-pain 73.205 74.836 76.003 75.515 75.336
solar-flare 83.435 83.738 83.929 83.435 83.605
transfusion 65.226 66.612 65.391 66.612 65.375
vehicle 95.339 96.102 96.922 96.491 97.437
yeast 84.226 85.368 85.444 85.359 84.605

average rank 4.870 2.739 2.435 2.870 2.087
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Moving to the next research question on the role of the proposed active
modifications, i.e., weights update methods in the active selection, we make the
following observations. First, if we consider actively balanced EBBag, margin
and component error weights update method, thus (mce-EBBag), has the best
average rank. Nevertheless, margin, weight and component error weights update
method, thus (mwce-EBBag), has the best value of median calculated for all G-
mean in Table 1. These observations are, not statistically significant according to
the critical difference and results of Wilcoxon test for a selected pair of classifiers.
On the other hand, in all of experiments with actively balanced EBBag we note
that one of the two weights update methods: mce or mwce yields the best results.

Similar observations are valid for actively balanced NBBag. In this case,
the best weights update method according to average rank is margin, weight
and component error, and thus (mwce-NBBag). On the other hand, margin
and component error weights update method, and thus (mce-NBBag), has the
best value of median. Again these observations are not statistically significant.
However, Wilcoxon paired test between mwce-NBBag and mw-NBBag resulted
in p-value close to 0.045, and mwce-NBBag has the higher value of median. We
can take it as another indication that inclusion of component error inside the
weights update method yields better G-mean results.

To sum up, we can interpret results obtained with all four different weights
update methods applied in the active selection in the following way. First, they
show that all considered elements of weights update strategy: margin of classi-
fiers in ensemble, weight of example, and component error are important for im-
proving ABBag performance. Second, two combinations of considered elements
tend to give better results than the others. These are: margin and component
error (mce), and margin, weight and component error (mwce).

5 Conclusions

In this paper we examined the following research question: is it possible to im-
prove classification performance of an under-sampling bagging ensemble with
an active learning strategy? To address this question we introduced a new two
phase approach, called Actively Balanced Bagging (ABBag). The proposed ac-
tive selection of examples involves iterative updating of bootstraps with batches
composed of examples selected from the training set. These examples were sam-
pled according to the distribution of weights, which expressed: a decision margin
of ensemble votes, balancing of example class distribution in the training set
and/or in its neighbourhood, and prediction errors of component classifiers.

The results of experiments have clearly shown that the active selection of
examples has improved G-mean performance of considered under-sampling bag-
ging extensions, which are known to be very good classifiers for imbalanced data.
Another important observation resulting from experiments is that the active se-
lection strategy performs best when it integrates the ensemble disagreement
factor (typical for active learning) with information on class distribution in im-
balanced data and prediction error of component classifiers.
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We hope that this study may open future research lines on adapting active
learning strategies to improve ensemble classifiers.
Acknowledgment. The research was funded by the Polish National Science
Center, grant no. DEC-2013/11/B/ST6/00963.
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