Evaluation of Interestingness and Interaction of Conditions in Discovered Rules: Applications in Medical Data Analysis

Jerzy Stefanowski

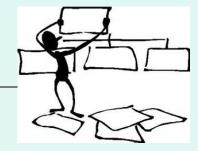
Institute of Computing Sciences, Poznań University of Technology Poland

MLLS workshop, Sept. 23, 2016; Riva del Garda

General outline

- Medical applications of ML
- Rules induced from data
 → Interpretation
- Rule interestingness measures
 - Selection of complete rules
- Another perspective → focus on conditions inside a single rule and in sets of rules
- Studying most important conditions, their subsets and their interaction in rules
 - Set functions → Shapley and Banzhaf indices, Möbius representation
- Medical case studies

IF(BAO > 3) THEN disease A
IF(vol.ofgastric juice < 150) and (pain = high) THEN disease A
IF (Ot.gastric ≥ 100) and (duration=long) THEN disease B</pre>



Machine Learning for medical data

- Machine learning algorithms from beginning applied to analyse medical data
- Digitalization, new diagnostics tools → facilitate collecting and storing more data
- Many health units collect, share large amounts of medical records
- Interest in automatic deriving medical diagnostic knowledge and interpreting results

See some surveys, such as:

...

- I.Konenko: Machine Learning for Medical Diagnosis: History, State of the Art and Perspectives.
- R.Bellazzi, F.Felazzi, L.Sachi: Predictive data mining in clinical medicine: a focus on selected methods and applications.
- G.Magoulas, A.Prentza: Machine learning in medical applications.

However, difficulties with clinical acceptance - ECMLPKDD14 tutorial -P.Rodrigues: Knowledge discovery from clinical data I.Kononeko's postulates:

- Good performance
- Dealing with missing data
- Dealing with noisy data
- Transparency of diagnostic knowledge
- Explanation ability
- Reduction of the number of tests

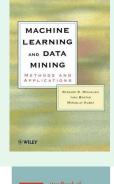
This paper perspective:

→ Symbolic knowledge representation and its interpretation Usually considered in medicine: Decision trees, rules and partly Bayesian classifiers

Rules - basics

- Symbolic representation form IF Conditions THEN Class
- Natural and easy for human → possible inspection and interpretation → descriptive perspective
 - Individual rules constitute "blocks" of knowledge
 - Rules directly related to facts in the training data
- Class predictions → easier to justify
- Rules could be integrated with domain knowledge
- Rules are more flexible than other representations
- Knowledge representations in AI / Intelligent Systems
 - Expert systems, Inference in IS
- Often used in medical applications

```
IF Sex = male AND
Age > 46 AND
No_of_painful_joints > 3
AND
Skin_manif. = psoriasis
THEN Diagnosis =
Crystal_induced_synovitis
```



R. Michalski I.Bratko: Machine Learning and Data Mining.; W.Klosgen, J.Zytkow: Handbook of Data Mining and Knowledge Disc; J.Stefanowski: Rule discovery algorithms; C.Aggarwal: Data Classification 2015.

Different types of rules

Various types of rules in data mining

- Decision / classification rules
- Association rules
- Subgroup discovery → rule patterns
- Logic formulas (ILP)
- Rules in preference learning, rankings and ordinal classification
- Multi-labeled classification
- Sequential rule patterns
- Other \rightarrow action rules, ...
- Other forms of rules in AI or MCDA,
- **Comprehensive view:**
 - Johannes Fürnkranz, Dragan Gamberger, Nada Lavrač: Foundations of Rule Learning, Springer 2012

Foundations of Rule Learning

How to learn rules?

- Typical algorithms based on the scheme of a sequential covering and heuristically generate a minimal set of rule to cover learning examples:
 - see, e.g., AQ, CN2, LEM, PRISM, MODLEM, Other ideas PVM, R1, RIPPER, PART,..
- Other approaches to induce "richer" sets of rules:
 - Satisfying some requirements (Explore, BRUTE, or modification of association rules → "Apriori-like" CBA, OPUS,...)
 - Based on local "reducts" → Boolean reasoning or LDA
- Optimization problem (MP Boolean rules)
- Meta-heuristics, e.g., genetic approaches
- Transformations of other representations:
 - Trees \rightarrow rules
 - Construction of (fuzzy) rules from ANN

Case study - buses diagnostic rules

- A fleet of homogeneous 76 buses (AutoSan H9-21) operating in an inter-city and local transportation system [ack: J.Zak]
- 76 buses described by 8 technical symptoms and classified into 2 decision classes (good or bad technical condition)
 - s1 maximum speed [km/h] s5 - summer fuel consumption [l/100lm]
 - s2 compression pressure [Mpa]
 - s3 blacking components in exhaust gas
 - s4 torque [Nm]
- Induction of a minimal set of rules (MODLEM) **1.** if $(s_{2\geq 2.4} \text{ MPa})$ & $(s_{7<2.1} l/1000 \text{ km})$ then (technical state=good) [46] **2.** if (s2<2.4 MPa) then (technical state=bad) [29] **3.** if $(s_{22.1} l/1000 \text{ km})$ then (technical state=bad) [24]
- The prediction accuracy \rightarrow 98.7%.
- $s2 \rightarrow compression pressure, the most difficult measurement$

- s6 winter fuel consumption [l/100km]
- s7 oil consumption [l/1000km]
- s8 maximum horsepower

Another set of rules - describe other conditions

Rules by Explore with threshold (rule coverage > 50% in class):

- 1. if (s1>85 km/h) then (technical state=good) [34]
- 2. if (s8>134 kM) then (technical state=good) [26]
- 3. if (s2≥2.4 MPa) & (s3<61 %) then (technical state=good) [44]
- 4. if (s2≥2.4 MPa) & (s4>444 Nm) then (technical state=good) [44]
- 5. if (*s2*≥2.4 MPa) & (*s*7<2.1 //1000km) then (technical state=good) [46]
- 6. if (s3<61 %) & (s4>444 Nm) then (technical state=good) [42]
- 7. if (s1≤77 km/h) then (technical state=bad) [25]
- 8. if (s2<2.4 MPa) then (technical state=bad) [29]
- **9**. if (*s*7≥2.1 //1000km) then (technical state=bad) [24]
- **10**. if (*s*3≥61 %) & (*s*4≤444 Nm) then (technical state=bad) [28]
- **11.if** (*s3*≥61 %) & (*s8*<120 kM) then (technical state=bad) [27]

More appreciated by domain experts Characteristic description / profile of buses The prediction accuracy - still 97%

Evaluating conditions in ACL rules

- Anterior Cruciate Ligament (ACL) Tear
- Diagnosing of an anterior cruciate ligament (ACL) rupture in a knee on the basis of magnetic resonance (MR) images (Slowinski K. et al. 2002)
- 140 patients described by 6 selected attributes
 - age, sex and body side and MR measurements (X, Y and PCL index)
- Patients categorized into two classes: "1" (with ACL lesion 100 p.) and "2" (without ACL - 40 p.)
- Previous analysis of attribute importance
 - PCLINDEX; then age, sex, side
- □ Rule induction → (MODLEM) 15 rules (1- 4 conditions, with different supports)

or richer set of rules (Explore) \rightarrow over 30 rules

Predictive performance \rightarrow accuracy 93.5%; G-mean 91.2%

$ACL \rightarrow minimal set of rules$

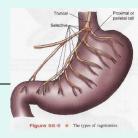
rule 1. if (PCLINDEX < 3.225) then Class1 [26, 65%] rule 2. if (AGE=[16.5,35)) \(PCLINDEX=[3.225,3.71)) then Class1 [6, 15%] rule 3. if (SEX=MALE) \land (SIDE=RIGHT) \land (PCLINDEX=[3.225,3.71)) then Class1 [3, 7.5%] rule 4. if $(AGE=[16.5,35)) \land (PCLINDEX=[3.71,4.125)) \land (X>14.5)$ then Class1 [2, 5%] rule 5. if (X=[8.5,11.75)) \lapha (PCLINDEX=[4.125,4.535)) \lapha (SEX=MALE) then Class1 [1, 2.5%] rule 6. if $(X=[8.5,11.75)) \land (PCLINDEX=[3.225,3.71)) \land (AGE \ge 35)$ then Class1 [2, 5%] rule 7. if (PCLINDEX=[3.71,4.125)) \land (X=[8.5,11.75)) \land (SEX=1) then Class1 [1, 2.5%] rule 8. if (PCLINDEX > 4.535) then Class2 [75, 75%] rule 9. if (SEX=FEMALE) \land (PCLINDEX=[4.125,4.535)) then Class2 [10,10%] rule 10. if (PCLINDEX=[3.71,4.125)) \land (AGE> 35) then Class2 [6,6%] rule 11. if (X=[11.75,14.5)) \lapha (Y=[2.75,3.75)) \lapha (SEX=FEMALE) then Class2 [8, 8%] rule 12. if (SIDE=LEFT) \land (X=[11.75,14.5)) \land (Y=[2.75,3.75)) then Class2 [7, 7%] rule 13. if (PCLINDEX=[3.225,3.71)) \land (AGE> 35) \land (SEX=MALE) then Class2 [2, 2%] rule 14. if (AGE<16.5) then Class2 [14, 14%] rule 15.if (PCLINDEX=[3.225,3.71)) \land (Y=[3.75,4.75)) \land (AGE \geq 35) \land (SIDE=LEFT) then Class2 [1,1%]

Clinical discussion \rightarrow MR measurements are the most important.

- In particular, PCL< 3.23 (patients with ACL), PCL \ge 4.53 (without ACL)
- Other PCL values → combinations with two other attributes age or sex indicate classes
 - Age below 16.5 years (so children or youth) characteristic class (without ACL lesion)
 - ACL injury more frequent for men and right side leg (sportsmen)!

Highly selective vagotomy (HSV)

- Highly selective vagotomy (HSV) laparoscopic surgery for perforated Duodenal Ulcer Disease - stomach;
- An attempt to determine indications for HSV treatment (Slowinski K. et al. 1986);
- 122 patients × 11 pre-operating attributes and assigned to 4 target classes (long term result wrt. Visick grading)
 - Highly imbalanced and complex data
- $\Box \quad \text{LEM2 rule induction algorithm} \rightarrow 44 \text{ rules (1-5 conditions)}$
- Predictive performance accuracy 57% (not the main criterion)
- Focus on describing characteristic profiles of patients
- The previous results (e.g. very good prediction class 1)
 - medium or longer duration of the disease,
 - without complications of ulcer or acute haemorrhage from ulcer,
 - medium or small volume of gastric juice per 1 hour (basic secretion),
 - medium volume of gastric juice per 1 hour under histamine,
 - high HCl concentration under histamine.



HSV - patient profiles for other classes

Other classes

Satisfactory result of HSV treatment (class 2)

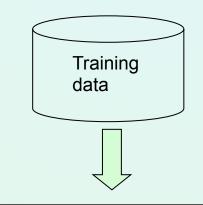
- long or medium duration of disease,
- multiple haemorrhages,
- medium volume of gastric juice per 1 hour (basic secretion),
- medium volume of gastric juice per 1 hour under histamine,
- medium HCl concentration under histamine

Unsatisfactory result of HSV treatment (class 3)

- medium or short duration of the disease,
- perforation of ulcer,
- high or small volume of gastric juice per 1 hour (basic secretion),
- high volume of gastric juice per 1 hour under histamine,
- Iow HCl concentration under histamine.

Motivations for interpreting rule patterns

- Description perspective → each rule evaluated individually - possibly an "interesting pattern".
- Difficulties
 - Too many rules to be analyzed!
 - HSV (122 ob.×11 attr.) \rightarrow 44 rules
 - Urology (500 ob. \times 33 attr.) \rightarrow 121 rules
- Related works → focus interest on some rules:
 - Subjective vs. objective perspective
 - Rule selection or ordering
 - Studies on rule evaluation measures
 - Interactive browsing
- Need for identification of characteristic attribute value pairs describing patients from particular classes



r1. (A6 = 3) => (D1=1);
r2. (A1=2)&(A2=2)&(A4=2)&(A5=3) => (D1=1);
r3. (A1 =2)&(A3=1)&(A4=2) & (A =3) => (D1=1)
r4. (A1 = 2) & (A5 = 1) => (D1=2);
r5. (A1 = 2) & (A6 = 1) => (D1=2);
r6. (A2 = 1) & (A4 = 3) => (D1=2);
r7. (A2 = 1) & (A5 = 1) => (D1=2);
· · · · · · · · · · · · · · · · · · ·

Rule R: IF P THEN K

Objective measures \rightarrow quantify R with the contingency table (learning data - n)

	K	<i>¬K</i>	
Р	а	С	n _P
¬P	b	d	n _{¬P}
	n _K	n _{¬K}	n

$$sup(R) = a$$

$$G(P \land K) = \frac{a}{n}$$

$$conf(R) = \frac{a}{a+c}$$

$$IND(K,Q) = \frac{G(P \land K)}{G(P) \cdot G(K)}$$

$$K(K \mid P) = G(P)^{\alpha} \cdot (P(K \mid P) - G(K))$$

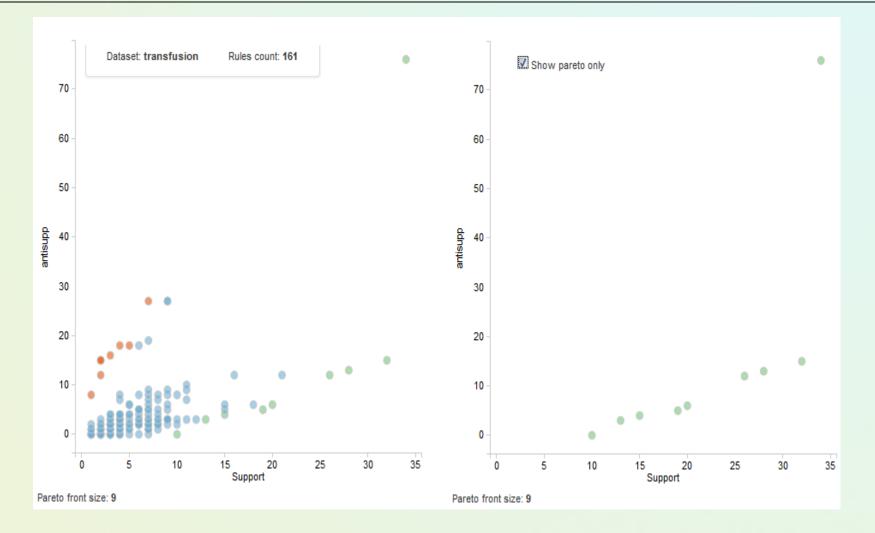
Many measures \rightarrow see McGarry, Geng, L., Hamilton, H.et al. surveys;

- Besides support \rightarrow Bayesian confirmation measures (K,P)
- Study impact of the rule premise on its conclusion
 - Refer to class probabilities \rightarrow imbalance C(P,K) = conf(K|P) P(K)

$$N(K,P) = P(P | K) - P(P | \neg K) = \frac{a}{a+b} - \frac{c}{c+d}$$

I.Szczech, S.Greco, R.Slowinski: Properties of rule interestingness measures. Inf. Scie. 2012

Minority class rules in the support-anti-support evaluation space \rightarrow transfusion data and BRACID rules [Szczech,Stefanowski]



The best rules according to any monotonic measure are located on the supportanti-support Pareto border if $p_1 \wedge p_2 \wedge \dots \wedge p_n$ then class K

if (blacking=medium) ^ (oil_cons=low) ^ (horsepower=high) *then* (technical condition = good)

Current proposals:

- \rightarrow Selecting a subset of rules from a larger set of many rules;
- \rightarrow Focus on a "complete" condition part of a rule!
- New view → evaluating an importance of elementary conditions and their interaction within the "if" part of the rule

Our aims:

- To propose a new approach based using set functions → Shapley, Banzhaf indices and Möbius representation
 - Start from a single rule \rightarrow then generalize to the set of rules
- To verify the approach in rule discovery problems

Shapley, Banzhaf indices / values and Möbius representation

- Previously considered in cooperative games, voting systems, party coalitions and multiple criteria decision aid:
 - □ $X = \{1, 2, ..., n\}$ a set of elements / agents A set function $\mu : P(X) \rightarrow [0, 1]$
 - A weighted average contribution of agent / element i in all coalitions
 - Conjoint importance of elements A⊆X
 - Measuring interaction of elements
 - Main inspiration (Greco, Slowinski 2001) → a study of the relative value of information supplied by attributes to the quality of classification

Basics

- □ $X = \{1, 2, ..., n\}$ a set of elements (e.g. players in the game); P(X) - the power set of X = the set of all possible subsets of X A set function $\mu : P(X) \rightarrow [0,1]$
- **\Box** Function μ a fuzzy measure satisfying:
 - $\mu(\emptyset) = 0$ and $\mu(X) = 1$
 - $A \subseteq B$ implies $\mu(A) \leq \mu(B)$
 - "1" could be treated as max value
- **Interpretation of function** μ in a particular problem
 - The profit obtained by players / agents
 - The importance of criteria in MCDA
- **Transformations** of function μ
 - Shapley and Banzhaf values refer to single elements $i \in X$, their interactions, subsets of elements $A \subseteq X$
 - Möbius representation $m: P(X) \rightarrow R$

Illustrative example - Möbius representation

Möbius representation $m: P(X) \to R$ For all $A \subseteq X$: $\sum_{B \subseteq A} m(B) = \mu(A)$

$$m(A) = \sum_{B \subseteq A} \mu(B) (-1)^{|A| - |B|}$$

 m(A) - the contribution given by the conjoint presence of all elements from A to the function µ

Consider players 1,2,3, where the profits of their actions are $\mu(\{1\})=5, \mu(\{2\})=7, \mu(\{3\})=4 \text{ and } \mu(\{1,2\})=15 \text{ (by def. } \mu(\emptyset)=0)$ Calculate $m(\{1\})=5, m(\{2\})=7 \text{ and } m(\{1,2\})=15-5-7=3$ Note - $\mu(\{1,2\})=15$ is greater than $\mu(\{1\} + \mu(\{2\})=5+7$ The contribution coming out from the conjoint presence of $\{1\}$ and $\{2\}$ in this coalition and it is equal to $m(\{1,2\})=3$

Illustrative example - Shapley value

- Shapley value average contribution / importance of element
- Consider X={1,2,3} where the profits of the agent actions are μ({1})=5, μ({2})=7, μ({3})=4, μ({1,2})=15, μ({1,3})=12, μ({2,3})=14 and μ({1,2,3})=30
- How to fairly split the total profit of 30 units among the agents taking into account their contribution?
- Attribute to the conjoint presence of agents A⊆X, so split equally m(A) among agents

m(A)/|A|

Each agent should receive the value (Shapley)

$$\phi_i(\mu) = \sum_{A \subseteq X: i \in A} \frac{m(A)}{|A|}$$

Illustrative example - Shapley value

• X={1,2,3} and profits are $\mu(\{1\})=5$, $\mu(\{2\})=7$, $\mu(\{3\})=4$, $\mu(\{1,2\})=15$, $\mu(\{1,3\})=12$, $\mu(\{2,3\})=14$ and $\mu(\{1,2,3\})=30$

Möbius representations

• $m(\{1\})=5, m(\{2\})=7, m(\{3\})=4, m(\{1,2\})=\mu(\{1,2\})-\mu(\{1\})-\mu(\{2\})$ =15-5-7=3, $m(\{1,3\})=3, \mu(\{2,3\})=3$ and $m(\{1,2,3\})=\mu(\{1,2,3\})-\mu(\{1,2\})-\mu(\{1,2\})-\mu(\{1,3\})-\mu(\{2,3\})+\mu(\{1\})+\mu(\{2\})+\mu(\{3\})=30-15-12-14+5+7+4=5$

Shapley values for each agent

- $\phi_1(\mu) = m(\{1\})/1 + m(\{1,2\})/2 + m(\{1,3\})/2 + m(\{1,2,3\})/3 = 5 + 3/2 + 3/2 + 5/3 = 9.67$
- $\phi_2(\mu)=m(\{2\})/1+m(\{1,2\})/2+m(\{2,3\})/2+m(\{1,2,3\})/3=7+3/2+3/2+5/3=11.67$
- $\phi_3(\mu)=m(\{3\})/1+m(\{1,3\})/2+m(\{2,3\})/2+m(\{1,2,3\})/3=5+3/2+3/2+5/3=9.67$

$$\phi_i(\mu) = \sum_{A \subseteq X: i \in A} \frac{m(A)}{|A|}$$

Other formulations

Shapley value:

$$\Phi_{i}(\mu) = \sum_{A \subseteq X - \{i\}} \frac{(|X - A| - 1)! |A|!}{|X|!} \cdot [\mu(A \cup \{i\}) - \mu(A)]$$

Banzhaf value:

$$\Phi_{B_i}(\mu) = \frac{1}{2^{|X|-2}} \sum_{A \subseteq X - \{i\}} \left[\mu(A \cup \{i\}) - \mu(A) \right]$$

Both interpreted as an averaged contribution of element *i* to all coalitions A

Interaction indices $(i,j) \rightarrow$ Morofushi and Soneda; Roubens

$$I_{MS}(i,j) = \sum_{A \subseteq X - \{i,j\}} \frac{(|X - A| - 2)!|A|!}{(|X| - 1)!} \cdot [\mu(A \cup \{i,j\}) - \mu(A \cup \{i\}) - \mu(A \cup \{j\}) + \mu(A)]$$
$$I_R(i,j) = \frac{1}{2^{n-2}} \sum_{A \subseteq X - \{i,j\}} [\mu(A \cup \{i,j\}) - \mu(A \cup \{i\}) - \mu(A \cup \{j\}) + \mu(A)]$$

Adaptation to evaluate conditions in a single rule

- Consider a single rule if $p_1 \wedge p_2 \wedge \ldots \wedge p_n$ then class K
- Need to analyse its sub-rules if p_{j1}∧p_{j2}∧...∧p_{jl} then class K such that {p_{j1},p_{j2},...,p_{jl} } ⊆ {p₁,p₂,...,p_n }
 - sub-rules are more general than the first rule
- Choice of the characteristic function µ to evaluate a rule?
 - Confidence of the rule µ(W,K)=conf(r), where W is a set of conditions in r
 - Also confirmation measures, ...
- Then, for $Y \subset W$ we need to adapt set functions
 - µ(Ø,K)=? O or class prior

Indices for each condition in a rule

 $p_i \in W$ - single condition in rule r, and |W| = n

Shapley value:

$$\Phi_{s}(p_{i},r) = \sum_{Y \subseteq W - \{p_{i}\}} \frac{(n-|Y|-1)!|Y|!}{n!} \cdot [\mu(Y \cup \{p_{i}\},K) - \mu(Y,K)]$$

Banzhaf value:

$$\Phi_B(p_i, r) = \frac{1}{2^{n-1}} \sum_{Y \subseteq W - \{p_i\}} [\mu(Y \cup \{p_i\}, K) - \mu(Y, K)]$$

Both values Φ - a weighted contribution of p_i in rules generalized from rFor Shapley value - $\mu(W)$ is shared among all elements of W

Pairs - measures of an interaction resulted from putting p_i and p_j together in all subsets of conditions in rule r:

- **Positive complementary in increasing the confidence**
- Negative putting together provide some redundancy

 $I_{MS}(p_i, p_j) = \sum_{Y \subseteq W - \{p_i, p_j\}} \frac{(n - |Y| - 2)! |Y|!}{(n - 1)!} \cdot [\mu(Y \cup \{p_i, p_j\}, K) - \mu(Y \cup \{p_i\}, K) - \mu(Y \cup \{p_j\}) + \mu(Y, K)]$

Adapted indices for subsets - part 2

Generalized indices for a subset of conditions VCW [Grabisch] Shapley generalized index

$$I_{S}(V,r) = \frac{1}{2^{n-|V|}} \sum_{Y \subseteq W-V} \frac{(n-|Y|-|V|)!|Y|!}{(n-|V|+1)!} \sum_{L \subseteq V} (-1)^{|V|-|L|} \mu(Y \cup L,K)$$

Banzhaf index of conditions $V \subset W$

$$I_B(V,r) = \frac{1}{2^{n-|V|}} \sum_{Y \subseteq W-V} \sum_{L \subseteq V} (-1)^{|V|-|L|} \mu(Y \cup L, K_j)$$

Average conjoint contribution of the subset of conditions $V \subset W$ to the confidence of all rules generalized from r

The Möbius representation of set functions μ :

$$m(V,r) = \sum_{B \subseteq V} (-1)^{|V-B|} \mu(B,K)$$

- Rule generalizations and Möbius representation *m*:
 - Empty condition part $\rightarrow m(0)=0$
 - *if* (gastric_juice=medium) then (*result =good*) m(1)=0.16667 and conf=0.16667
 - *if* (HCL_conc.=*low*) then (*result =good*) m(2)=0.97826 and conf= 0.97826
- An increase of rule confidence
 1 = m(1) + m(2) + m(1,2)
- Values of Möbius representation show the distribution of confidence among all coalitions of the considered conditions in the subset {(gastric_juice=medium),(HCL_conc.=low)}

Shapley value for single conditions φ(gastric_juice=*medium*)=0.0942;

φ((HCL_conc.=*low*) =0.908

Evaluating conditions in ACL rule

if (sex = female) (Y1 < 2.75) (PCL = [3.71,4.13)) *then* (no ACL) conf. = 1.0

Sex	Y1	PCL	Banzhaf	Shapley	Mobius	conf.
Ø	Ø	V	0.43535	0.49575	0.28571	0.2857
Ø		Ø	0.24207	0.30246	0.04651	0.0465
Ø	\checkmark	V	0.53015	0.53015	0.1766	0.5241
\checkmark	Ø	Ø	0.14139	0.1591	0.1452	0.1452
\checkmark	Ø	\checkmark	0.1135	0.1135	-0.2316	0.2923
\checkmark	\checkmark	Ø	0.1734	0.1734	-0.1034	0.1486
\checkmark	\checkmark	\checkmark	0.72476	0.72476	0.72476	1

Evaluating conditions in a set of rules

- The set of rules $R = \bigcup_{j=1}^{k} R(K_j)$, where R(Kj) a set of rules having as a consequence class Kj
- A given set of conditions Γ_f occur in many rules
- *FM_r*(Γ_f) denote an evaluation of its contribution to the confidence of rule *r*
- The global contribution of \(\Gamma_f\) in a rule set \(R\) with respect to class \(Kj\) is calculated as:

 $G_{Kj}(\Gamma_j) = \sum_{r \in R(Kj)} FM_r(\Gamma_f) \cdot \sup(r) - \sum_{s \in \neg R(Kj)} FM_s(\Gamma_f) \cdot \sup(s)$

- Conditions Γ_f are ranked according to $G_{Kj}(\Gamma_f) \rightarrow$ identify the most characteristic combinations of conditions for rules from a given class
- Computational costs \rightarrow start from the smallest sets of cond.

An interest in condition (a7=0) in a set of several rules It occurs in following rules with conf=1: R1 if $(a3=1) \land (a7=0) \land (a3=1)$ then (D=1) sup 1 R2 if $(a4=1) \land (a7=0)$ then (D=1) sup 45 R5 if $(a4=0) \land (a7=0)$ then (D=2) sup 7

(Möbius representation of (a7=0)) in R1, R2 m=0.939 and in R5 m=0.184

A global contribution of (a7=0)

- (D=1) 0.939×1 + 0.939 × 45 = 43.194
- (D=2) 0.184 ×7 = 1.288

Finally $G_{D=1}(a7=0) = 43.194 - 1.288 = 41.906$

Analysis of conditions in buses rules

Table 1. Rankings of best conditions according to evaluation measures calculated for "buses" rules

busses in a good technical condition Möbius Shapley Banzhaf							
condition	value	condition	value	condition	value		
comp-press=high	214.34	comp-press=high	116.91	comp-press=high	116.91		
torque=high	163.36	torque=high	163.36	torque=high	163.36		
blacking=low	161.33	blacking=low	87.86	blacking=low	87.86		
oil cons.=low	132.36	oil cons.=low	70.88	oil cons.=low	70.80		
MaxSpeed=high	122.66	MaxSpeed=high	63.71	MaxSpeed=high	63.71		
busses in a bad technical condition							
Möbius		Shapley		Banzhaf			
condition	value	condition	value	condition	value		
torque=low	48.33	torque=low	29.17	torque=low	29.17		
blacking=high	46.70	comp-press=low	29.00	comp-press=low	29.00		
comp-press=low	29.00	blacking=high	27.98	blacking=high	28.06		
oil-cons.=high	27.00	oil-cons.=high	27.00	oil-cons.=high	27.00		
summ-cons.=high	26.67	horsepower=low	26.00	horsepower=low	26.66		
horsepower=low	26.66	MaxSpeed=low	25	MaxSpeed=low	25		

Pairs of conditions - much lower evaluations e.g. (horsepower=average) and (oil consumption=low) 0.166

□ Previous analysis → "good" conditions: high compression pressure, torque, max-speed and low blacking components. Opposite values → characteristic for bad technical conditions. Blacking components in the exhaust gas and oil consumption more important than fuel consumption.

Evaluating conditions in ACL rules

- Diagnosing an anterior cruciate ligament (ACL) rupture in a knee on the basis of magnetic resonance (MR) images (Slowinski K. et al.)
- □ 140 patients described by 6 attributes
 - age, sex and body side and MR measurements (X, Y and PCL index).
- Patients classified into two classes "1" (with ACL lesion 100) and "2" (without ACL - 40).
- □ LEM2 rule induction algorithm \rightarrow 15 rules (1- 4 elementary conditions with different support, few possible rules).
- \Box Clinical discussion \rightarrow MR measurements are the most important.
 - In particular PCL< 3.23 (patients with ACL), PCL \ge 4.53 (without ACL)
 - Other PCL values → combinations with two other attributes age or sex indicate classes.
 - Age below 16.5 years (so children or youth) characteristic for class (without ACL lesion).
 - ACL injury more frequent for men (sportsmen)!

ACL \rightarrow minimal set of rules

rule 1. *if* (PCLINDEX < 3.225) *then* Class1 [26, 65%] rule 2. if (AGE=[16.5,35)) (PCLINDEX=[3.225,3.71)) then Class1 [6, 15%] rule 3. if (SEX=MALE) (SIDE=RIGHT) (PCLINDEX=[3.225,3.71)) then Class1 [3, 7.5%] rule 4. if (AGE=[16.5,35)) ∧ (PCLINDEX=[3.71,4.125)) ∧ (X≥14.5) then Class1 [2, 5%] rule 5. if (X=[8.5,11.75)) \lapha (PCLINDEX=[4.125,4.535)) \lapha (SEX=MALE) then Class1 [1, 2.5%] rule 6. if $(X=[8.5,11.75)) \land (PCLINDEX=[3.225,3.71)) \land (AGE \ge 35)$ then Class1 [2, 5%] rule 7. if (PCLINDEX=[3.71,4.125)) \land (X=[8.5,11.75)) \land (SEX=1) then Class1 [1, 2.5%] rule 8. if (PCLINDEX>4.535) then Class2 [75, 75%] rule 9. if (SEX=FEMALE) \lappa (PCLINDEX=[4.125,4.535)) then Class2 [10,10%] rule 10. if (PCLINDEX=[3.71,4.125)) \land (AGE> 35) then Class2 [6,6%] rule 11. if (X=[11.75,14.5)) \lapha (Y=[2.75,3.75)) \lapha (SEX=FEMALE) then Class2 [8, 8%] rule 12. if (SIDE=LEFT) \land (X=[11.75,14.5)) \land (Y=[2.75,3.75)) then Class2 [7, 7%] rule 13. if (PCLINDEX=[3.225,3.71)) \land (AGE> 35) \land (SEX=MALE) then Class2 [2, 2%] rule 14. if (AGE<16.5) then Class2 [14, 14%] rule 15.if (PCLINDEX=[3.225,3.71)) \land (Y=[3.75,4.75)) \land (AGE> 35) \land (SIDE=LEFT) then Class2 [1,1%]

Evaluating conditions in ACL rules

With ACL				Without ACL			
Möbius Shapley		Möbius		Shapley	,		
PCL < 3.23	18.57	PCL < 3.23	18.57	PCL ≥ 4.53	21.42	PCL ≥ 4.53	21.42
PCL∈[3.23,3.7)	4.87	PCL∈[3.23,3.7)	5.06	Age < 16.5	4.0	Age < 16.5	4.0
(Age∈[16.5,35] & (PCL ∈[3.7,4.1)	1.58	Age∈[16.5,35)	1.63	Sex=female	3.23	Sex=female	2.85
(X1≥14.5) & (PCL ∈[3.7,4.1)	0.54	(X1≥14.5) & (PCL ∈[3.7,4.1)	0,92	PCL∈[4.13,4.5)	2.22	Y1∈[2.75,3.75)	1.84
X1 ∈[8.5,11.8)	0.52	Age∈[16.5,35 & (PCL ∈[3.7,4.1)	0.86	(Age≥35] & (PCL ∈[3.7,4.1)	1.78	(Age≥35] & (PCL ∈[3.7,4.1)	1.78
Sex=male	0.44	Sex=male	0.83	X1∈[11.8,14.5) PCL∈[3.23,3.7)	1.31	X1∈[11.8,14.5)	1.53
Age∈[16.5,35)	0.34	Y1<2,75 & (PCL ∈[3.7,4.1)	0.67	Y1∈[2.75,3.75)	1.28	PCL∈[4.13,4.53	1.48

Subsets of conditions \rightarrow characteristic description of both diagnostic classes; PCL index with extreme intervals definitely the most important + its other values occur in some pairs, e.g (Age \in [16.5,35]) & (PCL \in [3.7,4.1)

Sex and age - young men (often sportsmen)

Evaluating conditions in ACL rules

- Rankings of conditions with respect to Shapley and Banzhaf values top elements are the same.
- Top ranking with Möbius representation small re-ordering but PCL also dominates
- Pairs of conditions are higher evaluated than in the previous case
- Support for profiles of ACL patients
 - MR measurements are the most important
 - Patients with ACL
 - PCL< 3.23 ; (Age \in [16.5,35]) & (PCL \in [3.7,4.1)
 - Sex=male and $X1 \in [8.5, 11.8)$
 - Patients without ACL
 - PCL ≥ 4.53
 - Other MR measurements → combinations with two other attributes age or sex indicate classes.
 - Age below 16.5 years (so children or youth) or (age = much older) are characteristic for (without ACL)
- Profiles consistent with the earlier analyses and clinical knowledge

Highly selective vagotomy rules

Highly selective vagotomy (HSV) - laparoscopic surgery for perforated Duodenal Ulcer Disease.

- An attempt to determine indications for surgery treatment;
 - 122 patients described by 11 pre-operating attributes and assigned to 4 target class
 - 44 rules (1- 5 conditions)
- **Focus on describing characteristic profiles of patients**
- The previous results, e.g. very good prediction class 1)
 - long or medium duration of the disease,
 - without complications of ulcer or acute haemorrhage from ulcer,
 - medium or small volume of gastric juice per 1 hour (basic secretion),
 - medium volume of gastric juice per 1 hour under histamine,
 - high HCl concentration under histamine.

Evaluating conditions in HSV rules - class 1 (good)

Möbius		Shapley		Banzhaf	
Cond	Value	Cond	Value	Cond	Value
A6=2	2,34	A6=2	3,85	A6=2	4,01
A9=3	2,31	A4=1	3,41	A4=1	3,57
A4=2	1,89	A4=2	3,16	A4=2	3,08
A4=1	1,58	A9=3	2,59	A9=3	2,72
A2=2	1,27	A2=2	1,65	A2=2	1,88

Möbius	Möbius		/	Banzhaf	
Cond	Value	Cond Value		Cond	Value
A4=1 & A6=2	2,62	A4=1 & A6=2	2,82	A4=1 & A6=2	2,83
A4=1 & A8=1	1,95	A4=1 & A8=1	1,95	A4=1 & A8=1	1,95
A2=2 & A6=2	1,89	A5=2 & A6=1	1,49	A5=2 & A6=1	1,49
A2=2 & A9=3	1,53	A3=3 & A7=2	1,18	A3=3 & A7=2	1,18
A5=2 & A6=1	1,49	A2=2 & A6=2	1,01	A2=2 & A6=2	1,01

Attributes: A2 - age; A4 - complications of ulcer; A6 - volume of gastric juice per h; A9 - HCL concentration after histamine; A5 - HCL concentration; A3 duration of disease

Subsets of conditions \rightarrow closer to single conditions

HSV -patient class profiles

- □ Very good result of HSV (class 1)
 - without complications of ulcer or acute haemorrhage from ulcer,
 - medium or small volume of gastric juice per 1 hour (basic secretion),
 - medium volume of gastric juice per 1 hour under histamine,
 - <u>high HCl concentration under</u> <u>histamine</u>
 - / no medium duration of disease
- Satisfactory result of HSV (class 2)
 - long or medium duration of disease,
 - <u>multiple haemorrhages</u>,
 - medium or small volume of gastric juice per 1 hour (basic secretion),
 - medium volume of gastric juice per 1 hour under histamine,
 - medium or low HCl concentration under histamine

- Unsatisfactory result of HSV treatment (class 3)
 - medium or short duration of the disease,
 - perforation of ulcer,
 - high or small volume of gastric juice per 1 hour (basic secretion),
 - <u>high volume of gastric juice</u> per 1 hour under histamine,
 - No low HCl concentration under histamine condition in the rankings
- □ Bad result of HSV treatment (class 4)
 - Consistent profile
 - + new condition low HCl concentration under histamine

Working with larger set of rules

- **"ESWL"** urological data
 - Urinary stones treatment by ESWL extracorporeal shock waves lithotripsy
- 500 patients × 33 attributes classified into two classes (imbalanced) - difficult to analyse (Antczak, Kwias et al. 2000)
- □ Explore rule induction algorithm \rightarrow 484 rules (2-7 conditions with different support ≥ 5%, confidence ≥ 0.8).

ESWL rules

- Explore rule induction algorithm \rightarrow 484 rules (2-7 conditions with different support \geq 5%, confidence \geq 0.8).
- Using the set functions we identify:
 - Class $1 \rightarrow 8$ single conditions, 12 pairs
 - (basic dysuric symptoms=1), (crystaluria=1), (location of the concrement=2), (stone size=2), ..., (crystaluria=2)&(proteinurine=1), etc.
 - Class 2 \rightarrow 10 single conditions, 13 pairs
 - (location of the concrement =3), (lumbar region pains=5), (operations in the past=3),..., (crystaluria=3)&(proteinurine=2),..., (cup-concrement=1)&(stone size=2), etc.
- More visible differences in Shapley and Banzhaf rankings; triples less evaluated than single conditions and pairs.

Extensions to improve computability

- Limitations computational for rules having more conditions
 - Both time and memory (to store temporary results)
- Possible heuristic approaches:
 - First filter and reduce the set of rules, then evaluate.
 - Iterative analysis, start from single conditions, pairs and work with smaller sets of conditions
- Modify calculations of measures (approximate them)
 - M.Sikora: Selected methods for decision rule evaluation and pruning (2013)
 - Analyse only single conditions in rules
 - Do not consider all sub-rules (restrict to rules affected by dropping the single condition, or base sub-rules with the single condition)
 - Simpler forms of Baznhaf and Shapley indices

Possible re-using of best conditions in rule constructive induction

Interpretation of rule patterns

Our contribution:

- Evaluating the role of subsets of elementary conditions in rules discovered from data + their interaction and conjoint contribution
- An adaptation of measures based on set functions (not so frequent in ML)
 Medical context:
- Identification of the most important conditions in single rules, sets of rules
- Support for characteristic descriptions of patients from different targets
- Using rules → order of applying diagnostic tests inside rules, complementary tests (use together), redundancy,..

Experimental observations:

- Identified conditions, pairs consistent with previous results (4 case studies)
- Rankings quite similar: Möbius has a wider range, Shapley and Banzhaf nearly the same - differences for larger sets of rules having more conditions

Approximate calculations + other applications

Rules and set functions: Salvatore Greco (University of Catania) and Roman Słowiński (Poznan University of Technology)

S.Greco, R.Slowinski, J.Stefanowski: Evaluating importance of conditions in the set of discovered rules. In RFSDMGC Proc. (2007)

Med. applications: Krzysztof Słowiński, Dariusz Siwiński Andrzej Antczak, Zdzisław Kwias (Poznan Univ. of Medical Sciences) Technical diagnostics: Jacek Żak et al. (PUT)

My master students (PUT)

Bartosz Jędrzejczak (also soft. implementation)

Thank you for your attention

Questions and remarks?

Contact, remarks: <u>Jerzy.Stefanowski@cs.put.poznan.pl</u>

or www.cs.put.poznan.pl/jstefanowski