
Zespoły klasyfikatorów 
Ensembles, Multiple Classifiers 

JERZY STEFANOWSKI 
Instytut Informatyki 
Politechnika Poznańska 
2009 – update 2020 



Outline of the presentation 
1.  Introduction 
2.  Why do multiple classifiers work?  

3.  Stacked generalization – combiner 

4.  Bagging approach 

5.  Boosting 

6.  Feature ensemble and Random Forest 

7.  Pairwise coupling 

8.  Other approaches 

 
Wykład anglojęzyczny – based on my lecture slides for 
Ph.D Spring School / Catania-Troina 



Machine Learning and Classification 
Classification  - assigning a decision class label to a set of objects 
described by a set of attributes 

Set of learning examples S =                                 
for  some unknown classification function f :   y = f(x) 
xi =<xi1,xi2,…,xim> example described by m attributes 
 y – class label; value drawn from a discrete set of classes {Y1,…,YK}    

{ }nn yyy ,,,,,, 2211 xxx !

Learning set 
S   <x,y> 

Learning  
algorithm LA 

Classifier 
      C 

<x,?> 

classification 
<x,y> 



Why could we integrate classifiers? 
•  Typical research → create and evaluate a single learning 

algorithm; compare performance of some algorithms. 
•  Empirical observations or applications → a given algorithm 

may outperform all others for a specific subset of problems  
•  There is no one algorithm achieving the best accuracy for all 

situations!  [No free lunch] 
•  A complex problem can be decomposed into multiple sub-

problems that are easier to be solved. 
•  Growing research interest in combining a set of learning 

algorithms / classifiers into one system 

„Multiple learning systems try to exploit the local 
different behavior of the base learners to enhance 
the accuracy of the overall learning system” 
   - G. Valentini, F. Masulli 



Multiple classifiers - definitions 

•  Multiple classifier – a set of classifiers whose individual 
predictions are combined in some way to classify new 
examples. 

•  Various names: ensemble methods, committee, classifier 
fusion, combination, aggregation,… 

•  Integration should improve predictive accuracy. 

CT 

Classifier 
      C1 

... example x Final decision y 



Multiple classifiers – review studies 

•  Relatively young research area – since the 90’s 
•  A number of different proposals or application studies 
•  Some review papers or book: 

•  L.Kuncheva, Combining Pattern Classifiers: Methods and 
Algorithms, 2004 (large review + list of bibliography). 

•  T.Dietterich, Ensemble methods in machine learning, 2000. 
•  J.Gama, Combining classification algorithms, 1999.  
•  G.Valentini, F.Masulli, Ensemble of learning machines, 

2001 [exhaustive list of bibliography]. 
•  J.Kittler et al., On combining classifiers, 1998. 
•  J.Kittler et al. (eds), Multiple classifier systems, Proc. of 

MCS Workshops, 2000, … ,2003. 
•  See also many papers by L.Breiman, J.Friedman, 

Y.Freund, R.Schapire, T.Hastie, R.Tibshirani,  



Próba polskiego tłumaczenia 

Ensemble – zespół klasyfikatorów / rodzina 
Multiple classifiers – klasyfikatory wielokrotne 



Learning Ensembles 
•  Learn multiple alternative definitions of a concept using 

different training data or different learning algorithms! 
•  Combine decisions of multiple definitions, e.g. using 

weighted voting. 
Training Data 

Data1 Data m Data2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Learner1 Learner2 Learner m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model1 Model2 Model m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model Combiner  Final Model 



Multiple classifiers – why do they work? 

•  How to create such systems and when they may perform 
better than their components used independently?  

•  Combining identical classifiers is useless!  

•  Conclusions from some studies (e.g. Hansen&Salamon90, 
Ali&Pazzani96):  
Member classifiers should make uncorrelated errors with 
respect to one another; each classifier should perform better 
than a random guess.  

A necessary condition for the approach to be useful is 
that member classifiers should have a substantial level of 
disagreement, i.e., they make  error independently with 
respect to one another 



Improving performance with respect to a single classifier 

•  An example of binary classification (50% each class), classifiers have 
the same error rate and make errors independently; final classification 
by uniform voting → the expected error of the system should decrease 
with the number of classifiers 



Diversification of classifiers - intuition 
Two classifiers are diverse, if they make different errors on a 

new object 

Assume a set of three classifiers {h1,h2,h3} and a new object x 
•  If all are identical, then when h1(x) is wrong, h2(x) and h3(x) 

will be also wrong (making the same decision) 

•  If the classifier errors are uncorrelated, then when h1(x) is 
wrong, h2(x) and h3(x) may be correct → a majority vote will 
correctly classify x! 



Dietterich’s reasons why multiple classifier may work better… 



Why do ensembles work? 

Dietterich(2002) showed that ensembles overcome three problems: 
•  The Statistical Problem arises when the hypothesis space is too large 

for the amount of available data. Hence, there are many hypotheses with 
the same accuracy on the data and the learning algorithm chooses only 
one of them! There is a risk that the accuracy of the chosen hypothesis is 
low on unseen data!  

•  The Computational Problem arises when the learning algorithm cannot 
guarantee finding the best hypothesis.  

•  The Representational Problem arises when the hypothesis space does 
not contain any good approximation of the target class(es). 



Multiple classifier may work better than a single classifier 
•  The diagonal decision boundary may be difficult for individual 

classifiers, but may be approximated by ensemble averaging. 
•  Decision boundaries constricted by decision trees → 

hyperplanes parallel to the coordinate axis - „staircases”. 

•  By averaging a large number of „staircases” the diagonal 
boundary can be approximated with some accuracy. 



Combing classifier predictions 
•  Intuitions: 

•  Utility of combining diverse, independent opinions in 
human decision-making 

•  Voting vs. non-voting methods 
•  Counts of each classifier are used to classify a new 

object 
•  The vote of each classifier may be weighted, e.g., by 

measure of its performance on the training data. 
(Bayesian learning interpretation). 

•  Non-voting → output classifiers (class-probabilities or 
fuzzy supports instead of single class decision) 
•  Class probabilities of all models are aggregated by 

specific rule (product, sum, min, max, median,…) 
•  More complicated → extra meta-learner 



Group or specialized decision making 

•  Group (static) – all base classifiers are consulted 
to classify a new object. 

•  Specialized / dynamic integration – some base 
classifiers performs poorly in some regions of the 
instance space 

•  So, select only these classifiers whose are 
„expertised” (more accurate)  for the new object 



Dynamic voting of sub-classifiers 

Change the way of aggregating predictions from sub-
classifiers! 

•  Standard → equal weight voting. 

Dynamic voting: 

•  For a new object to be classified: 
•  Find its h-nearest neighbors in the original learning set. 

•  Reclassify them by all sub-classifiers. 

•  Use weighted voting, where a sub-classifier weight 
corresponds to its accuracy on the h-nearest neighbors. 



Diversification of classifiers 
•  Different training sets (different samples or splitting,..) 
•  Different classifiers (trained for the same data) 

•  Different attributes sets  

         (e.g., identification of speech or images) 

•  Different parameter choices  

    (e.g., amount of tree pruning, BP parameters, number 
 of neighbors in KNN,…) 

•  Different architectures (like topology of ANN) 

•  Different initializations 



Different approaches to create multiple systems  

•  Homogeneous classifiers – use of the same 
algorithm over diversified data sets  

•  Bagging (Breiman)  

•  Boosting (Freund, Schapire)  

•  Multiple partitioned data  

•  Multi-class specialized systems, (e.g. ECOC pairwise 
classification) 

•  Heterogeneous classifiers – different learning 
algorithms over the same data 

•  Voting or rule-fixed aggregation 

•  Stacked generalization or meta-learning 



Stacking – generalizacja stosowa 



Stacked generalization [Wolpert 1992] 
•  Use meta learner instead of averaging to combine predictions of 

base classifiers 

•  Predictions of base learners (level-0 models) are used as input for 
meta learner (level-1 model) 

•  Method for generating base classifiers  usually apply different 
learning schemes 

•  Hard to analyze theoretically! 



The Combiner - 1  

Chan & Stolfo : Meta-learning. 
•  Two-layered architecture: 

•  1-level – base classifiers. 

•  2-level – meta-classifier. 

•  Base classifiers created by applying the different 
learning algorithms to the same data. 

Learning alg. 1 

Training 
data 

Learning alg. 2 

Learning alg. k 

… 

Base classifier 1 

Base classifier 2 

Base classifier k 

… 

1-level 

Meta-level 

Different algorithms! 



Learning the meta-classifier 

•  Predictions of base classifiers on an extra validation set (not directly 
training set – apply „internal” cross validation) with correct class 
decisions → a meta-level training set. 

•  An extra learning algorithm is used to construct a meta-classifiers. 
•  The idea → a meta-classifier attempts to learn relationships 

between predictions and the final decision;  
It may correct some mistakes of the base classifiers. 

Base classifier 1 

Base classifier 2 

Base classifier k 

… 

Va
lid

at
io

n 
se

t 

Meta-level 
training 

set 
Learning alg. 

Meta 
classifier 

Predictions Dec. 
class Cl.1 Cl.2 … Cl.K 

A A … B A 
A B … C B 



The Combiner - 2  

       Classification of a new instance by the combiner 
 
Chan & Stolfo [95/97] : experiments that their combiner 
({CART,ID3,K-NN}→NBayes) is better than equal voting. 

New  
object 

Base classifier 1 

Base classifier 2 

Base classifier k 

… 

1-level 
Meta-level 

attributes 

Meta 
classifier 

predictions 

Final decision 



Comparison of classification accuracy (%) 

Data set K-NN C4.5 MODLEM Combiner 

acl  84.29 85.00 85.00 84.29 

bupa  63.19 62.32 68.10 69.12 

cleveland 52.10 53.14 54.46 55.66 

glass  68.80 65.42 69.63 71.50 
hsv  56.56 51.64 55.74 59.02 

imidasolium 58.21 58.21 60.70 66.67 
… … … … … 

yeast 57.80 52.10 54.30 58.36 

More in Nowaczyk, Stefanowski: On Using Rule Induction in  
Multiple Classifiers with a Combiner Aggregation Strategy. ISDA 2005. 
The highest improvements for hsv, imidasolium, lymphography and yeast 
– data where all single classifiers are rather weaker. 
MODLEM works quite accurate among single classifiers. 



Homogenous Ensembles 
•  Use a single, arbitrary learning algorithm but 

manipulate training data to make it learn multiple 
models. 
•  Data1 ≠ Data2 ≠ … ≠ Data m 
•  Learner1 = Learner2 = … = Learner m 

•  Different methods for changing training data: 
•  Bagging: Resample training data 
•  Boosting: Reweight training data 
•  DECORATE: Add additional artificial training data 
•  Many  others 



Bagging [L.Breiman, 1996] 

•  Bagging = Bootstrap aggregation  
•  Generates individual classifiers on bootstrap samples of the 

training set 

•  As a result of the sampling-with-replacement procedure, 
each classifier is trained on the average of 63.2% of the 
training examples. 

•  For a dataset with N examples, each example has a 
probability of 1-(1-1/N)N of being selected at least once in the 
N samples. For N→∞, this number converges to (1-1/e) or 
0.632 [Bauer and Kohavi, 1999] 

•  Bagging traditionally uses component classifiers of the 
same type (e.g., decision trees), and combines prediction 
by a simple majority voting across. 



Bootstrap sampling 



More about „Bagging” 
Bootstrap aggregating – L.Breiman [1996] – classification  
Could be applied with regression tress / mean of outputs 

input S – learning set, T – no. of 
bootstrap samples, LA – learning 
algorithm 

output C* - multiple classifier 

for i=1 to T do 

begin 

   Si:=bootstrap sample from S; 

   Ci:=LA(Si); 

end; 

∑ = == T
i iy yxCxC 1

* ))((argmax)(



Bagging Empirical Results 

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

Data Single Bagging Decrease 

waveform 29.0 19.4 33% 

heart 10.0 5.3 47% 

breast cancer 6.0 4.2 30% 

ionosphere 11.2 8.6 23% 

diabetes 23.4 18.8 20% 

glass 32.0 24.9 22% 

soybean 14.5 10.6 27% 

Misclassification error rates [Percent] 



Bagging – how does it work? 
•  Related works – experiments Breiman [96], Quinlan 

[96], Bauer&Kohavi [99]; Conclusion – bagging 
improves accuracy for decision trees.  

•  The perturbation in the training set due to the 
bootstrap re+sampling causes different base 
classifiers to be built, particularly if the classifier is 
unstable 

•  Breiman says  that this approach works well for 
unstable algorithms: 
•  Whose major output classifier undergoes major changes 

in response to small changes in learning data. 

•  Bagging can be expected to improve accuracy if the 
induced classifiers are uncorrelated! 



Why does bagging work and may hurt? 
Bagging reduces variance by voting/ averaging, thus 
reducing the overall expected error 

•  Usually, the more classifiers the better but … 

•  In the case of classification there are pathological 
situations where the overall error might increase 

•  For smaller training samples and too stable classifiers … 



Experiments with rules 
•  The single use of the MODLEM induced classifier is 

compared against bagging classifier (composed of rule 
sub-classifiers ‑ also induced by MODLEM)  

•  Comparative studies on 18 datasets. Predictive accuracy 
evaluated by 10-fold cross-validation (stratified or random)  

•  An analysis of the change parameter T (number of sub-
classifiers) on the performance of the bagging classifier  



Comparing classifiers 

Classification accuracy [%] – average over 10 f-c-v with standard 
deviations;  Asterik – difference is not significant α =0.05 



Bias-variance decomposition 

•  Theoretical tool for analyzing how much specific 
training set affects performance of a classifier 
•  Total expected error of the prediction: bias + variance  

•  The bias of a classifier is the expected error of the classifier 
due to the fact that the classifier is not perfect 

•  The variance of a classifier is the expected error due to the 
particular training set used 

•  Often (trade off): 
•  low bias  => high variance 

•  low variance  => high bias 



Why does bagging work and may hurt? 
•  Bagging reduces variance by voting/ averaging, 

thus reducing the overall expected error 

•  Usually, the more classifiers the better but … 

•  In the case of classification there are pathological 
situations where the overall error might increase 

•  For smaller training samples and too stable 
classifiers … 



Boosting 
•  Originally developed by computational learning theorists to 

guarantee performance improvements on fitting training 
data for a weak learner that only needs to generate a 
hypothesis with a training accuracy greater than 0.5 
(Schapire, 1990). 

•  Revised to be a practical algorithm, AdaBoost, for building 
ensembles that empirically improves generalization 
performance (Freund & Shapire, 1996). 

•  Examples are given weights. At each iteration, a new 
hypothesis is learned and the examples are reweighted to 
focus the system on examples that the most recently 
learned classifier got wrong. 



Boosting [Schapire 1990; Freund & Schapire 1996] 

•  In general takes a different weighting schema of resampling than 
bagging. 

•  Freund & Schapire: theory for “weak learners” in late 80’s 
•  Weak Learner: performance on any train set is slightly better than 

chance prediction 

•  Schapire has shown that a weak learner can be converted into a 
strong learner by changing the distribution of training examples 

•  Iterative procedure:  

•  The component classifiers are built sequentially, and examples that 
are misclassified by previous components are chosen more often 
than those that are correctly classified! 

•  So, new  classifiers are influenced by performance of previously 
built ones. New classifier is encouraged to become expert for 
instances classified incorrectly by earlier classifier. 

•  There are several variants of this algorithm – AdaBoost the most 
popular (see also arcing). 



A graphical toy illustration 



AdaBoost 
•  Weight all training examples equally (1/n) 
•  Train model (classifier) on train sample Di 

•  Compute error ei of model on train sample  Di 

•  A new training sample Di+1 is produced by decreasing the weight 
of those examples that were correctly classified (multiple by  
ei/(1-ei))), and increasing the weight of the misclassified examples 

•  Normalize weights of all instances. 

•  Train new model on re-weighted train set 
•  Re-compute errors on weighted train set 

•  The process is repeated until (# iterations or error stopping) 

•  Final model: weighted prediction of each classifier 

•  Weight of class predicted by component classifier log(ei/(1-ei)) 



Classifications	(colors)	and		
Weights	(size)	after	1	iteration	
Of	AdaBoost	

3	iterations	
20	iterations	

from	Elder,	John.		From	Trees	to	
Forests	and	Rule	Sets	-	A	Unified	
Overview	of	Ensemble	Methods.		2007.	



Różnice w przetwarzaniu danych 



Learning with Weighted Examples 
•  Generic approach is to replicate examples in the training 

set proportional to their weights (e.g. 10 replicates of an 
example with a weight of 0.01 and 100 for one with weight 
0.1). 

•  Most algorithms can be enhanced to efficiently incorporate 
weights directly in the learning algorithm so that the effect 
is the same (e.g. implement the 
WeightedInstancesHandler interface in WEKA). 

•  For decision trees, for calculating information gain, when 
counting example i, simply increment the corresponding 
count by wi rather than by 1. 



Boosting vs. Bagging with C4.5 [Quinlan 96] 



Bias-variance decomposition 

•  Theoretical tool for analyzing how much specific 
training set affects performance of a classifier 
•  Total expected error of the prediction: bias + variance  

•  The bias of a classifier is the expected error of the classifier 
due to the fact that the classifier is not perfect 

•  The variance of a classifier is the expected error due to the 
particular training set used 

•  Often (trade off): 
•  low bias  => high variance 

•  low variance  => high bias 



Bauer & Kohavi bias variance decomposition 



Bagging vs. boosting 



Boosting vs. Bagging 

•  Bagging doesn’t work so well with stable models. 
Boosting might still help. 

•  Boosting might hurt performance on noisy datasets 
and with outliers. Bagging doesn’t have this 
problem. 

•  On average, boosting may help more than bagging, 
but it is also more common for boosting to hurt 
performance. 

•  In practice bagging almost always helps.  

•  Bagging is easier to parallelize. 



DECORATE (Melville & Mooney, 2003) 

•  Change training data by adding new artificial 
training examples that encourage diversity in the 
resulting ensemble. 

•  Improves accuracy when the training set is small, 
and therefore resampling and reweighting the 
training set has limited ability to generate diverse 
alternative hypotheses. 



Feature-Selection Ensembles 
Some problems – quite many features (attributes) 

Key idea: Provide a different subset of the input features in 
each call of the learning algorithm. 

Example: Venus&Cherkauer (1996) trained an ensemble 
with 32 neural networks. The 32 networks were based on 8 
different subsets of 119 available features and 4 different 
algorithms. The ensemble was significantly better than any 
of the neural networks! 

see also Random Subspace Methods by Ho. 

For each training set – randomly select a subset of 
attributes / do not change examples/ and train classifiers 

Ho’s proposal : p = 50% of m attributes 



Random forests [Breiman] 

Motivations:  Bagging improves classifiers but bootstraps may 
be not sufficiently diversified + how to handle highly 
dimensional data 
Idea: De-correlate the components trees by randomly perturbing 
each tree. 
•  At every level, choose a random subset of the attributes (not 

examples) q << m and choose the best split among those 
attributes. 

•  Breiman q = sgrt(m) for classification trees and m/3 for 
regression tress 

•  Combined with  bootstrap selecting examples like basic bagging. 

•  A final decision – (majority) voting 



Random forest pseudo-code 
input S – learning set (n), T – no. of bootstrap samples, LA – learning algorithm 

output C* - multiple classifier 

for i=1 to T do 

begin 

   Si:=bootstrap sample from S – n examples ; 

  Ci:= learn tree from Si with extra conditions 

       for each node 

 In each node select q out of the m input attributes uniformly at random 

 Choose the best split test among q attributes and split tree 

       until a stopping condition (may be max depth) 

end; 

 

Lub średnia predykcji dla wersji drzew regresji  

∑ = == T
i iy yxCxC 1

* ))((argmax)(



Breiman,	Leo	(2001).	"Random	Forests".	Machine	Learning	45	(1),	5-32		



The n2 classifier for multi-class problems 

•  Specialized approach for multi-class difficult problems. 
•  Decompose a multi-class problem into a set of two-class 

sub-problems. 

•  Combine them to obtain the final classification decision 

•  The idea based on pairwise coupling  by Hastie T., 
Tibshirani R [NIPS 97] and J.Friedman 96. 

•  The n2 version proposed by Jacek Jelonek and Jerzy 
Stefanowski  [ECML 98]. 

•  Other specialized approaches: 
•  One-per-class,  

•  Error-correcting output codes. 



•  The problem is to classify objects into a set of n decision 
classes (n>2) 

•  Some problems may be difficult to be learned (complex 
target concepts with non-linear decision boundaries). 

•  An example of three-class problem, where pairwise 
decision boundaries between each pairs of classes are 
simpler.  

Solving multi-class problems 



The n2-classifier  
It is composed of (n2-n)/2 base binary classifiers  

(all combinations of pairs of n classes).  

•  discrimination of each pair of the classes (i,j), where  
i,j ∈[1.. n], i≠j, by an independent binary classifier Cij  

•  The specificity of training binary classifier Cij - only 
examples from two classes i,j.  

•  classifier Cij yields binary  
classification (1 or 0),  
classifiers Cij and Cji  
are equivalent  

   Cji(x) = 1 - Cij(x)  

nn-11 p2 q

1

2

p

q

n-1
n

0
0
0

0
0
0

1 1 1 1 1 1

0

1

1
?

1
?

1
?

1
?

1
?

1
?

...

...

... ......

...



Final classification decision of the n2-classifier  
•  For an unseen example x, a final classification of the n2-

classifier is a proper aggregation of predictions of all base 
classifiers Cij(x)  

•  Simplest aggregation - find a class that wins the most 
pairwise comparison 

•  The aggregation could be extended by estimating  
credibility of each base classifier  
(during learning phase) Pij 

•  Final classification decision - a weighted majority rule: 

•  choose such a decision class „i” that maximizes:   

P C xij
j i j

n

ij⋅
= ≠
∑
1,

( )



Performance of n2 classifier based on decision trees 

Data set Classification 
accuracy  DT     (%) 

Classification 
accuracy n2    (%) 

Improvement 
n2 vs. DT   (%) 

Automobile  85.5  ± 1.9  87.0  ± 1.9  1.5*  

Cooc  54.0  ± 2.0  59.0  ± 1.7  5.0  

Ecoli  79.7  ± 0.8  81.0  ± 1.7  1.3  

Glass   70.7  ± 2.1  74.0  ± 1.1  3.3  

Hist  71.3  ± 2.3  73.0  ± 1.8  1.7  

Meta-data  47.2  ± 1.4  49.8  ± 1.4  2.6 

Primary Tumor  40.2  ± 1.5  45.1  ± 1.2  4.9 

Soybean-large  91.9  ± 0.7  92.4  ± 0.5  0.5*
 

Vowel  81.1  ± 1.1  83.7  ± 0.5  2.6 

Yeast  49.1  ± 2.1  52.8  ± 1.8  3.7 



Discussion of experiments with various algorithms 

•  Decision trees → significant better classification for 8  
of all data sets; other differences non-significant 

•  Comparable results for decision rules  
Artificial neural networks → generally better 
classification for 9 of all data sets; some of highest 
improvements but difficulties in constructing networks 

•  However, k-nn does not result in improving 
classification performance of the n2-classier with 
respect to single multi-class instance-based learner! 

•  We proposed an approach to select attribute subsets 
discriminating each pair of classes → it improved a k-nn 
constructed classifier. 



Some Practical Advices [Smirnov] 

If the classifier is unstable (i.e, decision trees) then apply 
bagging! 

If the classifier is stable and simple (e.g. Naïve Bayes) then 
apply boosting! 

If the classifier is stable and very complex (e.g. Neural 
Network) then apply randomization injection! 

If you have many classes and a binary classifier then try 
error-correcting codes! If it does not work then use a 
complex binary classifier! 

 

 



More references 
•  L.Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, 2004 (large review 

+ list of bibliography). 

•  T.Dietterich, Ensemble methods in machine learning, 2000. 

•  R.Polikar, Ensemble based systems in decision making. IEEE Circuit Magazine 2006 

•  David Mease.  Statistical Aspects of Data Mining.  Lecture. 
http://video.google.com/videoplay?
docid=-4669216290304603251&q=stats+202+engEDU&total=13&start=0&num=10&so=
0&type=search&plindex=8 

•  Dietterich, T. G.  Ensemble Learning. In The Handbook of Brain Theory and Neural 
Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press, 2002. 
http://www.cs.orst.edu/~tgd/publications/hbtnn-ensemble-learning.ps.gz 

•  Elder, John and Seni Giovanni.  From Trees to Forests and Rule Sets - A Unified 
Overview of Ensemble Methods.  KDD 2007 http://Tutorial. videolectures.net/
kdd07_elder_ftfr/ 

•  Christopher M. Bishop.  Neural Networks for Pattern Recognition.  Oxford University 
Press.  1995. 



Any questions, remarks? 

? 


