Association rules

Reguły asocjacyjne i zbiory częste

Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Master Course ITI/ISWD Update for 2016 / 2020

Acknowledgments:

This lecture is based on the following resources - slides:

- G.Piatetsky-Shapiro: Association Rules and
- Frequent Item Analysis.
- and partly on two lectures
- J.Han: Mining Association Rules in Large Databases; Tan, Steinbach, Kumar: Introduction to Data Mining and my other notes.

Wykład będzie używał slajdów w języku angielskim

Outline

- Transactions
- Frequent itemsets
- Subset Property
- Association rules
- Applications

Association rules

- Transaction data
- Market basket analysis

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

- {Cereal, Milk} \rightarrow Bread [sup=5%, conf=80%]
- Association rule: "80% of customers who buy cereal and milk also buy bread and 5% of customers buy all these products together"

Association means cooccurrence, not causality!

Frequent Pattern Analysis and Associations

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Transactions Example

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

Transaction database: Example, 1

TID	Products			
1	A, B, E			
2	B, D			
3	B, C			
4	A, B, D			
5	A, C			
6	B, C			
7	A, C			
8	A, B, C, E			
9	A, B, C			

ITEMS:

Instances = Transactions

A = milk

B= bread

C= cereal

D= sugar

E = eggs

Transaction database: Example, 2

Attributes converted to binary flags

TID	Products			
1	A, B, E			
2	B, D			
3	B, C			
4	A, B, D			
5	A, C			
6	B, C			
7	A, C			
8	A, B, C, E			
9	A, B, C			

TID	Α	В	С	D	Ε
1	1	1	0	0	1
2	0	1	0	1	0
3	0	1	1	0	0
4	1	1	0	1	0
5	1	0	1	0	0
6	0	1	1	0	0
7	1	0	1	0	0
8	1	1	1	0	1
9	1	1	1	0	0

Definitions

- Item: attribute=value pair or simply value
 - usually attributes are converted to binary *flags* for each value, e.g. **product="A"** is written as **"A"**
- Itemset I : a subset of possible items
 - Example: I = {A,B,E} (order unimportant!)
- k-itemset
 - An itemset that contains k items
- Transaction: (TID, itemset)
 - TID is transaction ID

Support and Frequent Itemsets

- Support of an itemset sup(I) = no. of transactions t that support (i.e. contain) I e.g. I={A,B,E} and TID8 {A,B,C,E} In the exemplary database:
 - $sup({A,B,E}) = 2, sup({B,C}) = 4$
- Support could be also expressed as a fraction
 - $s({B,C}) = 4/9$
- Frequent itemset I is one with at least the minimum support count
 - sup(I) >= minsup

TID	Products			
1	A, B, E			
2	B, D			
3	B, C			
4	A, B, D			
5	A, C			
6	B, C			
7	A, C			
8	A, B, C, E			
9	A, B, C			

SUBSET PROPERTY (Agrawal et al..)

• Every subset of a frequent set is frequent!

- A: Example: Suppose {A,B} is frequent. Since each occurrence of A,B includes both A and B, then both A and B must also be frequent
- Similar argument for larger itemsets
- Almost all association rule algorithms are based on this subset property

Association Rules

- Association rule R : Itemset1 => Itemset2
 - Itemset1, 2 are disjoint and Itemset2 is non-empty
 - meaning: if transaction includes *Itemset1* then it also has *Itemset2*
- Examples
 - A,B => E,C
 - A => B,C

From Frequent Itemsets to Association Rules

- Q: Given frequent set {A,B,E}, what are possible association rules?
 - A => B, E
 - A, B => E
 - A, E => B
 - B => A, E
 - B, E => A
 - E => A, B
 - = __ => A,B,E (empty rule), or true => A,B,E

Rule Support and Confidence

- Suppose R : I => J is an association rule
 - sup (R) = sup (I \cup J) is the support count
 - support of itemset I ∪ J (should be both I and J)
 - conf (R) = sup(R) / sup(I) is the confidence of R
 - fraction of transactions with $I \cup J$ that have J
 - Supports could be also expressed in a relative form as fractions
- Association rules with minimum support and count are sometimes called "*strong*" rules

Mining Association Rules—an Example

Transaction-id	Items bought
10	А, В, С
20	A, C
30	A, D
40	B, E, F

Min. support 2 / 50% Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \Rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 2 trans = 50%

confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) =

= 2/3 =66.6%

Classification vs Association Rules

Classification Rules

- Focus on one target field
- Specify class in all cases
- Measures: Accuracy

Association Rules

- Many target fields
- Applicable in some cases
- Measures: Support, Confidence, Lift

Association Rules Example, 1

 Q: Given frequent set {A,B,E}, what association rules have minsup = 2 and minconf= 50% ?

A, B => E : conf=2/4 = 50%

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B , C

Association Rules Example, 2

• Q: Given frequent set {A,B,E}, what association rules have minsup = 2 and minconf= 50% ?

A, B => E : conf=2/4 = 50%

- A, E => B : conf=2/2 = 100%
- B, E => A : conf=2/2 = 100%
- E => A, B : conf=2/2 = 100%

Don't qualify

A =>B, E : conf=2/6 =33%< 50% B => A, E : conf=2/7 = 28% < 50% ___ => A,B,E : conf: 2/9 = 22% < 50%

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

Find Strong Association Rules

• A rule has the parameters *minsup* and *minconf*.

sup(R) >= minsup and conf (R) >= minconf

Problem:

- Find all association rules with given *minsup* and *minconf*
- How could we discover such rules?

Brute force approach?

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds
- ⇒ Computationally prohibitive!

However, how to list all possible association rules?

Mining Association Rules \rightarrow decomposing the problem

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements!

Decomposing Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation?

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database
 Transactions

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Finding Frequent Itemsets → Apriori

- Before generating rules → first, find all frequent itemsets

 however in appropriate way using extra pruning
 properties.
- Let us consider ideas proposed by Agrawal et al..
- Start by finding one-item sets (easy)
- *Q: How?*
- A: Simply count the frequencies of all items

Apriori finding itemsets: next level

- Apriori algorithm (Agrawal & Srikant 94)
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is frequent k-item set, then all (k-1)item subsets of X are also frequent

 \Rightarrow Compute *k*-item set by merging (*k*-1)-item sets

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent!
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Apriori: A Candidate Generation-and-test Approach - Summary

- Any subset of a frequent itemset must be frequent
 - if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - generate length (k+1) candidate itemsets from length k frequent itemsets, and
 - test the candidates against DB
- The performance studies show its efficiency and scalability
- Agrawal & Srikant 1994, Mannila, et al. 1994

Apriori – trick of using lexicographic order in generating (K+1) itemsets

• Given: five three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

Lexicographic order improves efficiency!

Create C_k from $L_{k-1} p$, $L_{k-1} q$

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Candidate four-item sets:

(A B C D) **Q: OK?**

A: yes, because all 3-item subsets are frequent

(A C D E) Q: OK?

A: No, because (C D E) is not frequent

The Apriori Algorithm—An Example

The Apriori Algorithm

Pseudo-code:

 C_k : Candidate itemset of size k

 L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \end{cases}$

increment the count of all candidates in C_{k+1} that are contained in t

 L_{k+1} = candidates in C_{k+1} with min_support end

return $\cup_k L_k$;

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

```
insert into Ck
```

```
select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub>
```

```
from L<sub>k-1</sub> p, L<sub>k-1</sub> q
```

```
where p.item<sub>1</sub>=q.item<sub>1</sub>, ..., p.item<sub>k-2</sub>=q.item<sub>k-2</sub>, p.item<sub>k-1</sub> < q.item<sub>k-1</sub>
```

Step 2: pruning

```
forall itemsets c in C<sub>k</sub> do
```

```
forall (k-1)-subsets s of c do
```

```
if (s is not in L_{k-1}) then delete c from C_k
```

Generating Association Rules

- Two stage process:
 - Determine frequent itemsets e.g. with the Apriori algorithm.
 - For each frequent item set I
 - for each subset J of I
 - determine all association rules of the form: I J => J
- Is it efficient?
 - Main idea used in both stages : subset property

Rule Generation

- Given a frequent itemset I, find all non-empty subsets J ⊂ I such that I-J →J satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABD →C,	ACD \rightarrow B,	$BCD \to A,$
$B \rightarrow ACD$,	C →ABD,	D →ABC
$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \rightarrow AD$,
CD →AB,		
	ABD →C, B →ACD, AC → BD, CD →AB,	$ABD \rightarrow C$, $ACD \rightarrow B$, $B \rightarrow ACD$, $C \rightarrow ABD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $CD \rightarrow AB$,

• If |I| = k, then there are $2^k - 2$ candidate association rules (ignoring $I \rightarrow \emptyset$ and $\emptyset \rightarrow I$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

 But confidence of rules generated from the same itemset has an anti-monotone property

• e.g.,
$$L = \{A, B, C, D\}$$
:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
 CD=>AB

 join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC

 Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Example: Generating Rules from an Itemset

Frequent itemset from golf data:

Humidity = Normal, Windy = False, Play = Yes (4)

Seven potential rules:

If	Humidity = Normal and Windy = False then Play = Yes	4/4
If	Humidity = Normal and Play = Yes then Windy = False	4/6
If	Windy = False and Play = Yes then Humidity = Normal	4/6
If	Humidity = Normal then Windy = False and Play = Yes	4/7
If	Windy = False then Humidity = Normal and Play = Yes	4/8
If	Play = Yes then Humidity = Normal and Windy = False	4/9
If	True then Humidity = Normal and Windy = False and Play = Yes	4/12

Rules for the weather data

Rules with support > 1 and confidence = 100%:

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒Play=Yes	4	100%
2	Temperature=Cool	\Rightarrow Humidity=Normal	4	100%
3	Outlook=Overcast	⇒Play=Yes	4	100%
4	Temperature=Cold Play=Yes	\Rightarrow Humidity=Normal	3	100%
• • •	•••	•••	•••	•••
58	Outlook=Sunny Temperature=Hot	\Rightarrow Humidity=High	2	100%

 In total: 3 rules with support four, 5 with support three, and 50 with support two

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a *hash-tree*
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Association Rule Mining

Bottleneck of Frequent-pattern Mining with Apriori

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1 i_2 \dots i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100^2} + \dots + \binom{1}{100^0} = 2^{100} 1 = 1.27 \times 10^{30} !$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?
- Another algorithms → FP Tree and GROWTH

FP-Growth vs. Apriori: Scalability With the Support Threshold

Beyond Binary Data

Hierarchies

- drink → milk → low-fat milk → Stop&Shop low-fat milk
 ...
- find associations on any level

Sequences over time

46

Multiple-level Association Rules

- Items often form hierarchy
- Flexible support settings: Items at the lower level are expected to have lower support.

Figure 1: A taxonomy for the relevant data items

- Transaction database can be encoded based on dimensions and levels
- explore shared multi-level mining
 - uniform support

Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets

Rules at lower levels of the hierarchy are overly specific

e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread

Quantitative Association Rules

ID	Age	Salary	Maritial Status	NumCars
100	44	30 000	married	2
200	55	45 000	married	3
300	45	50 000	divorced	1
400	34	44 000	single	0
500	45	38 000	married	2
600	33	44 000	single	2

Sample Rules	Support	Confidence
age:4455> and < status: married> ==> <numcars:2></numcars:2>	50%	100%
<numcars: 01=""> ==> <married: no=""></married:></numcars:>	33%	66,70%

Handling Continuous Attributes

- Different kinds of rules:
 - Age \in [21,35) \land Salary \in [70k,120k) \rightarrow Buy
 - Salary∈[70k,120k) ∧ Buy → Age: μ =28, σ =4
- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

Weka associations

File: weather.nominal.arff MinSupport: 0.2

🌺 weka.gui.GenericC	bjectEditor
weka.associations.Aprior	i 🗸
About	
Finds association rules.	More
metricType	Confidence 👻
lowerBoundMinSupport	0.2
minMetric	0.9
upperBoundMinSupport	1.0
removeAllMissingCols	False 💌
significanceLevel	-1.0
delta	0.05
numRules	10
Open Save	OK Cancel

Weka associations: output

🌺 Weka Knowledge	Explorer	<u> </u>	
Preprocess Classify (Cluster Associate Select attributes Visualize		
Associator			
Apriori -N 10 -T 0 -C 0.9	-D 0.05 -U 1.0 -M 0.2 -S -1.0		
Start Stop	Associator output		
Save Output	Size of set of large itemsets L(2): 26		
Result list	Size of set of large itemsets L(3): 4		
22:29:06 - Apriori 22:29:53 - Apriori	Best rules found:		
	<pre>1. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1) 2. temperature=cool 4 ==> humidity=normal 4 conf:(1) 3. outlook=overcast 4 ==> play=yes 4 conf:(1) 4. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1) 5. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1) 6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1) 7. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1) 8. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1) </pre>		
22:29:06: Started Weka.a 22:29:06: Finished weka	associations.Apriori		
22:29:53: Started weka.associations.Apriori			
22:29:53: Finished weka	.associations.Apriori		
Status			
ок		×0	

Case study of using association rules

See D.Larose: Discovering Knowledge in Data.

- Analyse the description of discovering interesting association rules from legal databases (Australia analysis of problems with immigrates) – chapter 1
- You can also study smaller cases in chapter 10

References: Apriori and related ...

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- See others ...

Any questions, remarks?

