
Association rules
Reguły asocjacyjne i zbiory częste

Lecturer: JERZY STEFANOWSKI

Institute of Computing Sciences

Poznan University of Technology

Poznan, Poland

Master Course ITI/ISWD

Update for 2016 / 2020

Acknowledgments:

This lecture is based on the following resources -
slides:
G.Piatetsky-Shapiro: Association Rules and
Frequent Item Analysis.
and partly on two lectures
J.Han: Mining Association Rules in Large Databases;
Tan, Steinbach, Kumar: Introduction to Data Mining
and my other notes.

Wykład będzie używał slajdów w języku angielskim

3

Outline

§  Transactions

§  Frequent itemsets

§  Subset Property

§  Association rules

§  Applications

4

Association rules

§  Transaction data

§  Market basket analysis

§  {Cereal, Milk} → Bread [sup=5%, conf=80%]

§  Association rule:
„80% of customers who buy cereal and milk also buy
bread and 5% of customers buy all these products
together”

TID Produce
1 MILK, BREAD, EGGS
2 BREAD, SUGAR
3 BREAD, CEREAL
4 MILK, BREAD, SUGAR
5 MILK, CEREAL
6 BREAD, CEREAL
7 MILK, CEREAL
8 MILK, BREAD, CEREAL, EGGS
9 MILK, BREAD, CEREAL

Association means co-
occurrence, not causality!

5

Frequent Pattern Analysis and Associations

§  Frequent pattern: a pattern (a set of items, subsequences, substructures,
etc.) that occurs frequently in a data set

§  First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context
of frequent itemsets and association rule mining

§  Motivation: Finding inherent regularities in data

§  What products were often purchased together? — Beer and diapers?!

§  What are the subsequent purchases after buying a PC?

§  What kinds of DNA are sensitive to this new drug?

§  Can we automatically classify web documents?

§  Applications

§  Basket data analysis, cross-marketing, catalog design, sale campaign analysis,
Web log (click stream) analysis, and DNA sequence analysis.

6

Transactions Example

TID Produce
1 MILK, BREAD, EGGS
2 BREAD, SUGAR
3 BREAD, CEREAL
4 MILK, BREAD, SUGAR
5 MILK, CEREAL
6 BREAD, CEREAL
7 MILK, CEREAL
8 MILK, BREAD, CEREAL, EGGS
9 MILK, BREAD, CEREAL

7

Transaction database: Example, 1

TID Products
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

ITEMS:

A = milk
B= bread
C= cereal
D= sugar
E= eggs

Instances = Transactions

8

Transaction database: Example, 2

TID A B C D E
1 1 1 0 0 1
2 0 1 0 1 0
3 0 1 1 0 0
4 1 1 0 1 0
5 1 0 1 0 0

6 0 1 1 0 0
7 1 0 1 0 0
8 1 1 1 0 1
9 1 1 1 0 0

TID Products
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

Attributes converted to binary flags

9

Definitions
§  Item: attribute=value pair or simply value

§  usually attributes are converted to binary flags for
each value, e.g. product=“A” is written as “A”

§  Itemset I : a subset of possible items
§  Example: I = {A,B,E} (order unimportant!)

§  k-itemset
§ An itemset that contains k items

§  Transaction: (TID, itemset)
§  TID is transaction ID

10

Support and Frequent Itemsets
§  Support of an itemset

§  sup(I) = no. of transactions
t that support (i.e. contain) I

§  e.g. I={A,B,E} and TID8 {A,B,C,E}

§  In the exemplary database:

§  sup ({A,B,E}) = 2, sup ({B,C}) = 4

§  Support could be also expressed as a fraction

§  s ({B,C}) = 4/9

§  Frequent itemset I is one with at least the minimum
support count

§  sup(I) >= minsup

TID Products
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

11

SUBSET PROPERTY (Agrawal et al..)

§ Every subset of a frequent set is frequent!

§ A: Example: Suppose {A,B} is frequent. Since
each occurrence of A,B includes both A and B,
then both A and B must also be frequent

§ Similar argument for larger itemsets

§ Almost all association rule algorithms are based
on this subset property

12

Association Rules

§ Association rule R : Itemset1 => Itemset2

§  Itemset1, 2 are disjoint and Itemset2 is non-empty

§ meaning: if transaction includes Itemset1 then it also
has Itemset2

§ Examples

§ A,B => E,C

§ A => B,C

13

From Frequent Itemsets to Association Rules

§ Q: Given frequent set {A,B,E}, what are
possible association rules?

§  A => B, E

§  A, B => E

§  A, E => B

§  B => A, E

§  B, E => A

§  E => A, B

§  __ => A,B,E (empty rule), or true => A,B,E

14

Rule Support and Confidence

§  Suppose R : I => J is an association rule
§  sup (R) = sup (I ∪ J) is the support count

§  support of itemset I ∪ J (should be both I and J)

§  conf (R) = sup(R) / sup(I) is the confidence of R
§  fraction of transactions with I ∪ J that have J

§  Supports could be also expressed in a relative form as
fractions

§  Association rules with minimum support and count are
sometimes called “strong” rules

15

Mining Association Rules—an Example

For rule A ⇒ C:

support = support({A}∪{C}) = 2 trans =50%

confidence = support({A}∪{C})/support({A}) =

= 2/3 =66.6%

Min. support 2 / 50%
Min. confidence 50%

Transaction-id Items bought

10 A, B, C

20 A, C

30 A, D

40 B, E, F

Frequent pattern Support

{A} 75%

{B} 50%

{C} 50%

{A, C} 50%

16

Classification vs Association Rules

Classification Rules

§ Focus on one target field

§ Specify class in all cases

§ Measures: Accuracy

Association Rules

§ Many target fields

§ Applicable in some cases

§ Measures: Support,
Confidence, Lift

17

Association Rules Example, 1

§ Q: Given frequent set {A,B,E},
what association rules have
minsup = 2 and minconf= 50% ?

 A, B => E : conf=2/4 = 50%

TID List of items
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

18

Association Rules Example, 2

§  Q: Given frequent set {A,B,E}, what
association rules have minsup = 2 and
minconf= 50% ?

 A, B => E : conf=2/4 = 50%

 A, E => B : conf=2/2 = 100%

 B, E => A : conf=2/2 = 100%

 E => A, B : conf=2/2 = 100%

Don’t qualify

 A =>B, E : conf=2/6 =33%< 50%

 B => A, E : conf=2/7 = 28% < 50%

 __ => A,B,E : conf: 2/9 = 22% < 50%

TID List of items
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

19

Find Strong Association Rules

§ A rule has the parameters minsup and minconf:
§  sup(R) >= minsup and conf (R) >= minconf

§ Problem:

§ Find all association rules with given minsup and
minconf

§ How could we discover such rules?

20

Brute force approach?

§ List all possible association rules

§ Compute the support and confidence for each
rule

§ Prune rules that fail the minsup and minconf
thresholds

⇒  Computationally prohibitive!

However, how to list all possible association rules?

21

Mining Association Rules →
decomposing the problem

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Observations:
•  All the above rules are binary partitions of the same itemset:

 {Milk, Diaper, Beer}

•  Rules originating from the same itemset have identical support but
 can have different confidence

•  Thus, we may decouple the support and confidence requirements!

22

Decomposing Mining Association Rules

§  Two-step approach:

1.  Frequent Itemset Generation

–  Generate all itemsets whose support ≥ minsup

2.  Rule Generation

–  Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

§  Frequent itemset generation is still
computationally expensive

23

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

24

Frequent Itemset Generation?
§  Brute-force approach:

§  Each itemset in the lattice is a candidate frequent itemset

§  Count the support of each candidate by scanning the
database

§  Match each transaction against every candidate

§  Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions List of
Candidates

M

w

25

Finding Frequent Itemsets → Apriori
§  Before generating rules → first, find all frequent itemsets

– however in appropriate way using extra pruning
properties.

§  Let us consider ideas proposed by Agrawal et al..

§  Start by finding one-item sets (easy)

§  Q: How?

§  A: Simply count the frequencies of all items

26

Apriori finding itemsets: next level

§ Apriori algorithm (Agrawal & Srikant 94)

§ Idea: use one-item sets to generate two-item
sets, two-item sets to generate three-item sets, …

§  If (A B) is a frequent item set, then (A) and (B) have to
be frequent item sets as well!

§  In general: if X is frequent k-item set, then all (k-1)-
item subsets of X are also frequent

⇒  Compute k-item set by merging (k-1)-item sets

27

Reducing Number of Candidates
§  Apriori principle:

§  If an itemset is frequent, then all of its subsets must
also be frequent!

§  Apriori principle holds due to the following property
of the support measure:

§  Support of an itemset never exceeds the support of its
subsets

§  This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀

28

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned
supersets

29

Apriori: A Candidate Generation-and-test
Approach - Summary
§  Any subset of a frequent itemset must be frequent

§  if {beer, diaper, nuts} is frequent, so is {beer, diaper}

§  Every transaction having {beer, diaper, nuts} also contains {beer,
diaper}

§  Apriori pruning principle: If there is any itemset which is
infrequent, its superset should not be generated/tested!

§  Method:
§  generate length (k+1) candidate itemsets from length k frequent

itemsets, and

§  test the candidates against DB

§  The performance studies show its efficiency and scalability

§  Agrawal & Srikant 1994, Mannila, et al. 1994

30

Apriori – trick of using lexicographic
order in generating (K+1) itemsets
§  Given: five three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

§  Lexicographic order improves efficiency!
Create Ck from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

§  Candidate four-item sets:
 (A B C D) Q: OK?

A: yes, because all 3-item subsets are frequent

(A C D E) Q: OK?

A: No, because (C D E) is not frequent

31

The Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2
2nd scan

C3 L3 3rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset

{B, C, E}
Itemset sup
{B, C, E} 2

32

The Apriori Algorithm

§  Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1
that are contained in t

 Lk+1 = candidates in Ck+1 with min_support
 end
return ∪k Lk;

33

How to Generate Candidates?

§  Suppose the items in Lk-1 are listed in an order

§  Step 1: self-joining Lk-1
insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 <
q.itemk-1

§  Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

34

Generating Association Rules

§  Two stage process:

§  Determine frequent itemsets e.g. with the Apriori
algorithm.

§  For each frequent item set I
§  for each subset J of I

§  determine all association rules of the form: I - J => J

§  Is it efficient?

§  Main idea used in both stages : subset property

35

Rule Generation

§  Given a frequent itemset I, find all non-empty
subsets J ⊂ I such that I-J →J satisfies the
minimum confidence requirement

§  If {A,B,C,D} is a frequent itemset, candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB,

§  If |I| = k, then there are 2k – 2 candidate
association rules (ignoring I → ∅ and ∅ → I)

36

Rule Generation
§  How to efficiently generate rules from frequent

itemsets?
§  In general, confidence does not have an anti-

monotone property
 c(ABC →D) can be larger or smaller than c(AB →D)

§  But confidence of rules generated from the same
itemset has an anti-monotone property

§  e.g., L = {A,B,C,D}:

 c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)
§  Confidence is anti-monotone w.r.t. number of items on the
RHS of the rule

37

Rule Generation for Apriori
Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low
Confidence
Rule

38

Rule Generation for Apriori
Algorithm

§  Candidate rule is generated by merging two rules that
share the same prefix
in the rule consequent

§  join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

§  Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC

39

Example: Generating Rules
from an Itemset

§  Frequent itemset from golf data:

§  Seven potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False and Play = Yes

4/4

4/6

4/6

4/7

4/8

4/9

4/12

40

Rules for the weather data

§  Rules with support > 1 and confidence = 100%:

§  In total: 3 rules with support four, 5 with support
three, and 50 with support two

Association rule Sup. Conf.

1 Humidity=Normal Windy=False ⇒Play=Yes 4 100%

2 Temperature=Cool ⇒Humidity=Normal 4 100%

3 Outlook=Overcast ⇒Play=Yes 4 100%

4 Temperature=Cold Play=Yes ⇒Humidity=Normal 3 100%

...

58 Outlook=Sunny Temperature=Hot ⇒Humidity=High 2 100%

41

How to Count Supports of Candidates?

§  Why counting supports of candidates a problem?

§  The total number of candidates can be very huge

§  One transaction may contain many candidates

§  Method:

§  Candidate itemsets are stored in a hash-tree

§  Leaf node of hash-tree contains a list of itemsets and counts

§  Interior node contains a hash table

§  Subset function: finds all the candidates contained in a
transaction

42

Factors Affecting Complexity
§  Choice of minimum support threshold

§  lowering support threshold results in more frequent itemsets

§  this may increase number of candidates and max length of frequent
itemsets

§  Dimensionality (number of items) of the data set
§  more space is needed to store support count of each item

§  if number of frequent items also increases, both computation and I/O
costs may also increase

§  Size of database
§  since Apriori makes multiple passes, run time of algorithm may increase

with number of transactions

§  Average transaction width
§  transaction width increases with denser data sets

§  This may increase max length of frequent itemsets and traversals of hash
tree (number of subsets in a transaction increases with its width)

43

Partitioning
(Navathe et. al VLDB95)

Association Rule Mining

mining association rules
(Agrawal et. al SIGMOD93)

Parallel mining
(Agrawal et. al TKDE96)

Fast algorithm
(Agrawal et. al VLDB94)

Direct Itemset Counting
(Brin et. al SIGMOD97)

Generalized A.R.
(Srikant et. al; Han et. al. VLDB95)

Quantitative A.R.
(Srikant et. al SIGMOD96)

Hash-based
(Park et. al SIGMOD95)

Distributed mining
(Cheung et. al PDIS96)

Incremental mining
(Cheung et. al ICDE96)

Problem extension Better algorithms

Meta-ruleguided
 mining

N-dimensional A.R.
(Lu et. al DMKD’98)

44

Bottleneck of Frequent-pattern Mining
with Apriori

§  Multiple database scans are costly

§  Mining long patterns needs many passes of scanning and
generates lots of candidates
§  To find frequent itemset i1i2…i100

§  # of scans: 100

§  # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0
0) = 2100-1 = 1.27*1030 !

§  Bottleneck: candidate-generation-and-test

§  Can we avoid candidate generation?

§  Another algorithms → FP Tree and GROWTH

45

FP-Growth vs. Apriori: Scalability With the
Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

46

Beyond Binary Data

§ Hierarchies

§ drink à milk à low-fat milk à Stop&Shop low-fat milk
…

§  find associations on any level

§ Sequences over time

§ …

47

Multiple-level Association Rules

§  Items often form hierarchy

§  Flexible support settings:
Items at the lower level are expected
to have lower support.

§  Transaction database can be encoded based on
dimensions and levels

§  explore shared multi-level mining

uniform support

Milk
[support = 10%]

2% Milk
[support = 6%]

Skim Milk
[support = 4%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 3%

reduced support

48

Multi-level Association Rules

§ Why should we incorporate concept hierarchy?

§  Rules at lower levels may not have enough support to
appear in any frequent itemsets

§  Rules at lower levels of the hierarchy are overly
specific
§  e.g., skim milk → white bread, 2% milk → wheat bread,

 skim milk → wheat bread, etc.
are indicative of association between milk and bread

49

Quantitative Association Rules

ID Age Salary Maritial Status NumCars
100 44 30 000 married 2
200 55 45 000 married 3
300 45 50 000 divorced 1
400 34 44 000 single 0
500 45 38 000 married 2
600 33 44 000 single 2

Sample Rules Support Confidence
<age:44..55> and < status: married> ==> <numCars:2> 50% 100%

<NumCars: 0..1> ==> <Married: No> 33% 66,70%

50

Handling Continuous Attributes

§  Different kinds of rules:

§  Age∈[21,35) ∧ Salary∈[70k,120k) → Buy

§  Salary∈[70k,120k) ∧ Buy → Age: µ=28, σ=4

§  Different methods:

§  Discretization-based

§  Statistics-based

§  Non-discretization based

§  minApriori

51

Weka associations
File: weather.nominal.arff
MinSupport: 0.2

52

Weka associations: output

53

Case study of using association rules

§ See D.Larose: Discovering Knowledge in Data.

§ Analyse the description of discovering interesting
association rules from legal databases (Australia
analysis of problems with immigrates) – chapter 1

§ You can also study smaller cases in chapter 10

54

References: Apriori and related …
§  R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.

§  J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
SIGMOD’ 00.

§  H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. KDD'94.

§  A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association
rules in large databases. VLDB'95.

§  J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining
association rules. SIGMOD'95.

§  H. Toivonen. Sampling large databases for association rules. VLDB'96.

§  S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication
rules for market basket analysis. SIGMOD'97.

§  See others …

55

Any questions, remarks?

?

