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Outline 

§  Transactions 

§  Frequent itemsets  

§  Subset Property 

§  Association rules 

§  Applications 
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Association rules 

§  Transaction data 

§  Market basket analysis 

§  {Cereal, Milk} → Bread [sup=5%, conf=80%]  

§  Association rule: 
„80% of customers who buy cereal and milk also buy 
bread and 5% of customers buy all these products 
together” 

TID Produce 
1   MILK, BREAD, EGGS 
2   BREAD, SUGAR 
3   BREAD, CEREAL 
4   MILK, BREAD, SUGAR 
5   MILK, CEREAL 
6   BREAD, CEREAL 
7   MILK, CEREAL 
8   MILK, BREAD, CEREAL, EGGS 
9   MILK, BREAD, CEREAL 

 

Association means co-
occurrence, not causality! 
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Frequent Pattern Analysis and Associations 

§  Frequent pattern: a pattern (a set of items, subsequences, substructures, 
etc.) that occurs frequently in a data set  

§  First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context 
of frequent itemsets and association rule mining 

§  Motivation: Finding inherent regularities in data 

§  What products were often purchased together? —  Beer and diapers?! 

§  What are the subsequent purchases after buying a PC? 

§  What kinds of DNA are sensitive to this new drug? 

§  Can we automatically classify web documents? 

§  Applications 

§  Basket data analysis, cross-marketing, catalog design, sale campaign analysis, 
Web log (click stream) analysis, and DNA sequence analysis. 
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Transactions Example 
 

TID Produce 
1   MILK, BREAD, EGGS 
2   BREAD, SUGAR 
3   BREAD, CEREAL 
4   MILK, BREAD, SUGAR 
5   MILK, CEREAL 
6   BREAD, CEREAL 
7   MILK, CEREAL 
8   MILK, BREAD, CEREAL, EGGS 
9   MILK, BREAD, CEREAL 
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Transaction database: Example, 1 
 

TID Products 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 

 

ITEMS: 
 
A = milk 
B= bread 
C= cereal 
D= sugar 
E= eggs 

Instances = Transactions 
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Transaction database: Example, 2 
 

TID A B C D E 
1 1 1 0 0 1 
2 0 1 0 1 0 
3 0 1 1 0 0 
4 1 1 0 1 0 
5 1 0 1 0 0 

6 0 1 1 0 0 
7 1 0 1 0 0 
8 1 1 1 0 1 
9 1 1 1 0 0 

 

TID Products 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 

 

Attributes converted to binary flags 
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Definitions 
§  Item: attribute=value pair or simply value 

§  usually attributes are converted to binary flags for 
each value, e.g. product=“A” is written as “A” 

§  Itemset I : a subset of possible items 
§  Example: I = {A,B,E}  (order unimportant!) 

§  k-itemset 
§ An itemset that contains k items 

§  Transaction: (TID, itemset) 
§  TID is transaction ID 
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Support and Frequent Itemsets 
§  Support of an itemset  

§  sup(I ) = no. of transactions  
t  that support  (i.e. contain) I 

§  e.g. I={A,B,E} and TID8 {A,B,C,E} 

§  In the exemplary database:   

§  sup ({A,B,E}) = 2, sup ({B,C}) = 4 

§  Support could be also expressed as a fraction 

§   s ({B,C}) = 4/9 

§  Frequent itemset I is one with at least the minimum 
support count  

§  sup(I ) >= minsup 

TID Products 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 
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SUBSET PROPERTY (Agrawal et al..) 

§ Every subset of a frequent set is frequent! 

§ A: Example: Suppose {A,B} is frequent. Since 
each occurrence of A,B includes both A and B, 
then both A and B must also be frequent 

§ Similar argument for larger itemsets 

§ Almost all association rule algorithms are based 
on this subset property 
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Association Rules 

§ Association rule R :  Itemset1 => Itemset2 

§  Itemset1, 2  are disjoint and Itemset2 is non-empty 

§ meaning: if transaction includes Itemset1  then it also 
has Itemset2 

§ Examples 

§ A,B => E,C 

§ A => B,C  
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From Frequent Itemsets to Association Rules  

§ Q: Given frequent set {A,B,E}, what are 
possible association rules?  

§  A => B, E 

§  A, B => E 

§  A, E => B 

§  B => A, E 

§  B, E => A 

§  E => A, B  

§  __ => A,B,E (empty rule), or true => A,B,E 
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Rule Support and Confidence 

§  Suppose R :  I => J  is an association rule 
§  sup (R) = sup (I ∪ J) is the support count  

§  support of itemset I ∪ J (should be both I and J) 

§  conf (R) = sup(R) / sup(I) is the confidence of R 
§  fraction of transactions with I ∪ J that have J 

§  Supports could be also expressed in a relative form as 
fractions 

§  Association rules with minimum support and count are 
sometimes called “strong” rules  
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Mining Association Rules—an Example 

For rule A ⇒ C: 

support = support({A}∪{C}) = 2 trans =50% 

confidence = support({A}∪{C})/support({A}) = 

= 2/3 =66.6% 

Min. support  2 / 50% 
Min. confidence 50% 

Transaction-id Items bought 

10 A, B, C 

20 A, C 

30 A, D 

40 B, E, F 

Frequent pattern Support 

{A} 75% 

{B} 50% 

{C} 50% 

{A, C} 50% 
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Classification vs Association Rules 

Classification Rules 

§ Focus on one target field 

§ Specify class in all cases 

§ Measures: Accuracy 

Association Rules 

§ Many target fields 

§ Applicable in some cases 

§ Measures: Support, 
Confidence, Lift 
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Association Rules Example, 1  

§ Q: Given frequent set {A,B,E}, 
what association rules have 
minsup = 2 and minconf= 50% ? 

     A, B => E  : conf=2/4 = 50% 

           

TID List of items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 
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Association Rules Example, 2 

§  Q: Given frequent set {A,B,E}, what 
association rules have minsup = 2 and 
minconf= 50% ? 

     A, B => E  : conf=2/4 = 50% 

     A, E => B  : conf=2/2 = 100% 

     B, E => A  : conf=2/2 = 100% 

     E => A, B  : conf=2/2 = 100% 

Don’t qualify 

   A =>B, E : conf=2/6 =33%< 50% 

    B => A, E : conf=2/7 = 28% < 50% 

    __ => A,B,E : conf: 2/9 = 22% < 50% 

      

TID List of items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 

 



19 

Find Strong Association Rules  

§ A rule has the parameters minsup and minconf: 
§  sup(R) >= minsup and conf (R) >= minconf 

§ Problem: 

§ Find all association rules with given minsup and 
minconf 

§ How could we discover such rules? 
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Brute force approach? 

§ List all possible association rules 

§ Compute the support and confidence for each 
rule 

§ Prune rules that fail the minsup and minconf 
thresholds 

⇒  Computationally prohibitive! 

However, how to list all possible association rules? 
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Mining Association Rules → 
decomposing the problem 

Example of Rules: 
 

{Milk,Diaper} → {Beer} (s=0.4, c=0.67) 
{Milk,Beer} → {Diaper} (s=0.4, c=1.0) 
{Diaper,Beer} → {Milk} (s=0.4, c=0.67) 
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)  
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)  
{Milk} → {Diaper,Beer} (s=0.4, c=0.5) 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Observations: 
•  All the above rules are binary partitions of the same itemset:  

 {Milk, Diaper, Beer} 

•  Rules originating from the same itemset have identical support but 
  can have different confidence 

•  Thus, we may decouple the support and confidence requirements! 
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Decomposing Mining Association Rules 

§  Two-step approach:  

1.  Frequent Itemset Generation 

–  Generate all itemsets whose support ≥ minsup 

2.  Rule Generation 

–  Generate high confidence rules from each frequent itemset, 
where each rule is a binary partitioning of a frequent itemset 

§  Frequent itemset generation is still 
computationally expensive 
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Frequent Itemset Generation 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 
are 2d possible 
candidate itemsets 
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Frequent Itemset Generation? 
§  Brute-force approach:  

§  Each itemset in the lattice is a candidate frequent itemset 

§  Count the support of each candidate by scanning the 
database 

§  Match each transaction against every candidate 

§  Complexity ~ O(NMw) => Expensive since M = 2d !!! 

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions List of
Candidates

M

w



25 

Finding Frequent Itemsets → Apriori 
§  Before generating rules → first, find all frequent itemsets 

– however in appropriate way using extra pruning 
properties. 

§  Let us consider ideas proposed by Agrawal et al.. 

§  Start by finding one-item sets (easy) 

§  Q: How? 

§  A: Simply count the frequencies of all items 
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Apriori finding itemsets: next level 

§ Apriori algorithm (Agrawal & Srikant 94)  

§ Idea: use one-item sets to generate two-item 
sets, two-item sets to generate three-item sets, … 

§  If (A B) is a frequent item set, then (A) and (B) have to 
be frequent item sets as well! 

§  In general: if X is frequent k-item set, then all (k-1)-
item subsets of X are also frequent 

⇒  Compute k-item set by merging (k-1)-item sets 
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Reducing Number of Candidates 
§  Apriori principle: 

§  If an itemset is frequent, then all of its subsets must 
also be frequent! 

§  Apriori principle holds due to the following property 
of the support measure: 

§  Support of an itemset never exceeds the support of its 
subsets 

§  This is known as the anti-monotone property of support 

)()()(:, YsXsYXYX ≥⇒⊆∀
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Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned 
supersets 
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Apriori: A Candidate Generation-and-test 
Approach - Summary 
§  Any subset of a frequent itemset must be frequent 

§  if {beer, diaper, nuts} is frequent, so is {beer, diaper} 

§  Every transaction having {beer, diaper, nuts} also contains {beer, 
diaper}  

§  Apriori pruning principle: If there is any itemset which is 
infrequent, its superset should not be generated/tested! 

§  Method:  
§  generate length (k+1) candidate itemsets from length k frequent 

itemsets, and 

§  test the candidates against DB 

§  The performance studies show its efficiency and scalability 

§  Agrawal & Srikant 1994, Mannila, et al. 1994 
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Apriori – trick of using lexicographic 
order in generating (K+1)  itemsets 
§  Given: five three-item sets 

(A B C), (A B D), (A C D), (A C E), (B C D)

§  Lexicographic order improves efficiency! 
Create Ck from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1 

§  Candidate four-item sets: 
   (A B C D)  Q: OK? 

A: yes, because all 3-item subsets are frequent 

(A C D E)  Q: OK? 

A: No, because (C D E) is not frequent 



31 

The Apriori Algorithm—An Example 

Database TDB 

1st scan 

C1 
L1 

L2 

C2 C2 
2nd scan 

C3 L3 3rd scan 

Tid Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 
{A, B} 1 
{A, C} 2 
{A, E} 1 
{B, C} 2 
{B, E} 3 
{C, E} 2 

Itemset sup 
{A, C} 2 
{B, C} 2 
{B, E} 3 
{C, E} 2 

Itemset 

{B, C, E} 
Itemset sup 
{B, C, E} 2 
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The Apriori Algorithm 

§  Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 
L1 = {frequent items}; 
for (k = 1; Lk !=∅; k++) do begin 
     Ck+1 = candidates generated from Lk; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1                            
that are contained in t 

    Lk+1  = candidates in Ck+1 with min_support 
    end 
return ∪k Lk; 
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How to Generate Candidates? 

§  Suppose the items in Lk-1 are listed in an order 

§  Step 1: self-joining Lk-1  
insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < 
q.itemk-1 

§  Step 2: pruning 
forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck 
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Generating Association Rules 

§  Two stage process: 

§  Determine frequent itemsets e.g. with the Apriori 
algorithm. 

§  For each frequent item set  I   
§  for each subset J  of I 

§  determine all association rules of the form:  I - J => J 

§  Is it efficient? 

§  Main idea used in both stages : subset property 
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Rule Generation 

§  Given a frequent itemset I, find all non-empty 
subsets J ⊂ I such that I-J →J satisfies the 
minimum confidence requirement 

§  If {A,B,C,D} is a frequent itemset, candidate rules: 

ABC →D,  ABD →C,  ACD →B,  BCD →A,  
A →BCD,  B →ACD,  C →ABD,  D →ABC 
AB →CD,  AC → BD,  AD → BC,  BC →AD,  
BD →AC,  CD →AB,   
 

§  If |I| = k, then there are 2k – 2 candidate 
association rules (ignoring I → ∅ and ∅ → I) 
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Rule Generation 
§  How to efficiently generate rules from frequent 

itemsets? 
§  In general, confidence does not have an anti-

monotone property 
 c(ABC →D) can be larger or smaller than c(AB →D) 

§  But confidence of rules generated from the same 
itemset has an anti-monotone property 

§  e.g., L = {A,B,C,D}: 
  
  c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD) 
§  Confidence is anti-monotone w.r.t. number of items on the 
RHS of the rule 
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Rule Generation for Apriori 
Algorithm 

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules 

Low 
Confidence 
Rule 
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Rule Generation for Apriori 
Algorithm 

§  Candidate rule is generated by merging two rules that 
share the same prefix 
in the rule consequent 

§  join(CD=>AB,BD=>AC) 
would produce the candidate 
rule D => ABC 

§  Prune rule D=>ABC if its 
subset AD=>BC does not have 
high confidence 

BD=>ACCD=>AB

D=>ABC
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Example: Generating Rules  
from an Itemset 

§  Frequent itemset from golf data: 

§  Seven potential rules: 

Humidity = Normal, Windy = False, Play = Yes (4)

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False and Play = Yes

4/4

4/6

4/6

4/7

4/8

4/9

4/12
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Rules for the weather data 

§  Rules with support > 1 and confidence = 100%: 

§  In total: 3 rules with support four, 5 with support 
three, and 50 with support two 

Association rule Sup. Conf.

1 Humidity=Normal Windy=False ⇒Play=Yes 4 100%

2 Temperature=Cool ⇒Humidity=Normal 4 100%

3 Outlook=Overcast ⇒Play=Yes 4 100%

4 Temperature=Cold Play=Yes ⇒Humidity=Normal 3 100%

... ... ... ... ...

58 Outlook=Sunny Temperature=Hot ⇒Humidity=High 2 100%
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How to Count Supports of Candidates? 

§  Why counting supports of candidates a problem? 

§  The total number of candidates can be very huge 

§   One transaction may contain many candidates 

§  Method: 

§  Candidate itemsets are stored in a hash-tree 

§  Leaf node of hash-tree contains a list of itemsets and counts 

§  Interior node contains a hash table 

§  Subset function: finds all the candidates contained in a 
transaction 
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Factors Affecting Complexity 
§  Choice of minimum support threshold 

§   lowering support threshold results in more frequent itemsets 

§   this may increase number of candidates and max length of frequent 
itemsets 

§  Dimensionality (number of items) of the data set 
§   more space is needed to store support count of each item 

§   if number of frequent items also increases, both computation and I/O 
costs may also increase 

§  Size of database 
§   since Apriori makes multiple passes, run time of algorithm may increase 

with number of transactions 

§  Average transaction width 
§   transaction width increases with denser data sets 

§  This may increase max length of frequent itemsets and traversals of hash 
tree (number of subsets in a transaction increases with its width) 
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Partitioning 
(Navathe et. al VLDB95) 

Association Rule Mining 

mining association rules 
(Agrawal et. al  SIGMOD93) 

Parallel mining 
(Agrawal et. al  TKDE96) 

Fast algorithm 
(Agrawal et. al  VLDB94) 

Direct Itemset Counting 
(Brin et. al  SIGMOD97) 

Generalized A.R. 
(Srikant et. al; Han et. al. VLDB95)  

Quantitative A.R. 
(Srikant et. al  SIGMOD96)  

Hash-based 
(Park et. al  SIGMOD95) 

Distributed  mining 
(Cheung et. al  PDIS96) 

Incremental mining 
(Cheung et. al  ICDE96) 

Problem extension Better algorithms 

Meta-ruleguided 
 mining 

N-dimensional A.R. 
(Lu et. al  DMKD’98)  
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Bottleneck of Frequent-pattern Mining 
with Apriori 

§  Multiple database scans are costly 

§  Mining long patterns needs many passes of scanning and 
generates lots of candidates 
§  To find frequent itemset i1i2…i100 

§  # of scans: 100 

§  # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0
0) = 2100-1 = 1.27*1030 ! 

§  Bottleneck: candidate-generation-and-test 

§  Can we avoid candidate generation? 

§  Another algorithms → FP Tree and GROWTH 
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FP-Growth vs. Apriori: Scalability With the 
Support Threshold 
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Beyond Binary Data 

§ Hierarchies 

§ drink à milk à low-fat milk à Stop&Shop low-fat milk 
… 

§  find associations on any level 

 

§ Sequences over time 

§ … 
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Multiple-level Association Rules 

§  Items often form hierarchy 

§  Flexible support settings:  
Items at the lower level are expected  
to have lower support. 

§  Transaction database can be encoded based on 
dimensions and levels 

§  explore shared multi-level mining 

uniform support 

Milk 
[support = 10%] 

2% Milk  
[support = 6%] 

Skim Milk  
[support = 4%] 

Level 1 
min_sup = 5% 

Level 2 
min_sup = 5% 

Level 1 
min_sup = 5% 

Level 2 
min_sup = 3% 

reduced support 
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Multi-level Association Rules 

§ Why should we incorporate concept hierarchy? 

§  Rules at lower levels may not have enough support to 
appear in any frequent itemsets 

§  Rules at lower levels of the hierarchy are overly 
specific  
§  e.g.,  skim milk → white bread, 2% milk → wheat bread, 

 skim milk → wheat bread, etc. 
are indicative of association between milk and bread 
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Quantitative Association Rules 

ID Age Salary Maritial Status NumCars
100 44 30 000 married 2
200 55 45 000 married 3
300 45 50 000 divorced 1
400 34 44 000 single 0
500 45 38 000 married 2
600 33 44 000 single 2

Sample Rules Support Confidence
<age:44..55> and < status: married>  ==> <numCars:2> 50% 100%

<NumCars: 0..1> ==> <Married: No> 33% 66,70%
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Handling Continuous Attributes 

§  Different kinds of rules: 

§  Age∈[21,35) ∧ Salary∈[70k,120k) → Buy 

§  Salary∈[70k,120k) ∧ Buy → Age: µ=28, σ=4 

§  Different methods: 

§  Discretization-based 

§  Statistics-based 

§  Non-discretization based 

§  minApriori 
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Weka associations 
File: weather.nominal.arff 
MinSupport: 0.2 
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Weka associations: output 
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Case study of using association rules 

§ See D.Larose: Discovering Knowledge in Data. 

§ Analyse the description of discovering interesting 
association rules from legal databases (Australia 
analysis of problems with immigrates) – chapter 1 

§ You can also study smaller cases in chapter 10 
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Any questions, remarks? 

? 


