
Odkrywanie reguł klasyfikacyjnych
bezpośrednio z danych

JERZY STEFANOWSKI
Institute of Computing Sciences

Poznań University of Technology
TPD wykład ZED, 2008

Źródła
• Wykład częściowo oparty na moim wykładzie

szkoleniowym dla COST Action Spring School on
Data Mining and MCDA – Troina 2008 oraz
wcześniejszych wystąpieniach konferencyjnych.

• Proszę także przeczytać stosowane rozdziały z
mojej rozprawy habilitacyjnej – dostępna na
stronie WWW.

Indukcja reguł decyzyjnych
• Podstawowa idea - reguły poszukuje się

bezpośrednio z danych

• potencjalnie większa zrozumiałość wiedzy

• ale więcej różnych podejść:
 opis danych z wykorzystaniem minimalnego zbioru

reguł o dobrych własnościach.
 poszukiwanie bardziej wyczerpujących zbiorów reguł

o dobrych własnościach interpretacyjnych

• więcej parametrów do sterowania w metodach
indukcji reguł

Rules - preliminaries
• Rules → popular symbolic representation of knowledge

derived from data;
• Natural and easy form of representation → possible

inspection by human and their interpretation.

• Standard form of rules
IF Conditions THEN Class

• Other forms: Class IF Conditions; Conditions → Class
Example: The set of decision rules induced from PlaySport:

if outlook = overcast then Play = yes

if temperature = mild and humidity = normal then Play = yes

if outlook = rainy and windy = FALSE then Play = yes

if humidity = normal and windy = FALSE then Play = yes

if outlook = sunny and humidity = high then Play = no

if outlook = rainy and windy = TRUE then Play = no

How to learn decision rules?

• Typical algorithms based on the scheme of a sequential
covering and heuristically generate a minimal set of rule
covering examples:
• see, e.g., AQ, CN2, LEM, PRISM, MODLEM, Other ideas – PVM,

R1 and RIPPER).

• Other approaches to induce „richer” sets of rules:
• Satisfying some requirements (Explore, BRUTE, or modification

of association rules, „Apriori-like”).

• Based on local „reducts” → boolean reasoning or LDA.

• Specific optimization, eg. genetic approaches.

• Transformations of other representations:

• Trees → rules.

• Construction of (fuzzy) rules from ANN.

Polski wątek – prof. Ryszard Michalski
• Father of Machine Learning and rule induction

Trochę więcej o „ojcach założycielach”
• J.Carbonel, R.Michalski, T.Mitchell

Covering algorithms

• A strategy for generating a rule set directly from data:

• for each class in turn find rule set that covers all instances in
it (excluding instances not in the class).

• The main procedure is iteratively repeated for each class.

• Positive examples from this class vs. negative examples.

• This approach is called a covering approach because at
each stage a rule is identified that covers some of the
instances.

• A sequential approach.

• For a given class it conducts in a stepwise way a general
to specific search for the best rules (learn-one-rule) guided
by the evaluation measures.

Original covering idea (AQ, Michalski 1969, 86)
for each class Ki do

Ei := Pi U Ni (Pi positive, Ni negative example)

RuleSet(Ki) := empty

repeat {find-set-of-rules}

find-one-rule R covering some positive examples

and no negative ones

add R to RuleSet(Ki)

delete from Pi all pos. ex. covered by R

until Pi (set of pos. ex.) = empty

Find one rule:

Choosing a positive example called a seed.

Find a limited set of rules characterizing
the seed → STAR.

Choose the best rule according to LEF criteria.

+ +

+
+ +
+

+

+
++ +

+ -

-

-

- -
- -

-

-

-
-

-
-

Another variant – CN2 algorithm
• Clark and Niblett 1989; Clark and Boswell 1991

• Combine ideas AQ with TDIDT (search as in AQ, additional evaluation
criteria or pruning as for TDIDT).

• AQ depends on a seed example

• Basic AQ has difficulties with noise handling
• Latter solved by rule truncation (pos-pruning)

• Principles:

• Covering approach (but stopping criteria relaxed).

• Learning one rule – not so much example-seed driven.

• Two options:
• Generating an unordered set of rules (First Class, then

conditions).
• Generating an ordered list of rules (find first the best condition

part than determine Class).

General schema of inducing minimal set of rules

• The procedure conducts a general to specific (greedy) search
for the best rules (learn-one-rule) guided by the evaluation
measures.

• At each stage add to the current condition part next elementary
tests that optimize possible rule’s evaluation (no backtracking).

Procedure Sequential covering (Kj Class; A attributes; E examples,
τ - acceptance threshold);
begin

R := ∅; {set of induced rules}
r := learn-one-rule(Yj Class; A attributes; E examples)
while evaluate(r,E) > τ do
begin

R := R ∪ r;
E := E \ [R]; {remove positive examples covered by R}
r := learn-one-rule(Kj Class; A attributes; E examples);

end;
return R
end.

A simple covering algorithm

• Generates a rule by adding tests that maximize
rule’s accuracy

• Similar to situation in decision trees: problem of
selecting an attribute to split on

• But: decision tree inducer maximizes overall purity

• Each new term reduces

rule’s coverage:

space of
examples

rule so far

rule after
adding new
term

Evaluation of candidates in Learning One Rule

• When is a candidate for a rule R treated as “good”?
• High accuracy P(K|R);
• High coverage |[P]I = n.

• Possible evaluation functions:
• Relative frequency:

• where nK is the number of correctly classified examples form
class K, and n is the number of examples covered by the rule →
problems with small samples;

• Laplace estimate:
Good for uniform prior distribution of k classes

• m-estimate of accuracy: (nK (R)+mp)/(n(R)+m),

where nK is the number of correctly classified examples, n is the
number of examples covered by the rule, p is the prior probablity of
the class predicted by the rule, and m is the weight of p (domain
dependent – more noise / larger m).

kRn
RnK
+
+

)(
1)(

)(
)(

Rn
RnK

Other evaluation functions of rule R and class K

Assume rule R specialized to rule R’
• Entropy (Information gain and others versions).

• Accuracy gain (increase in expected accuracy)

P(K|R’) – P(K|R)

• Many others

• Also weighted functions, e.g.

))|()|((
)(
)'(),('' RKPRKP
Rn
RnRRWAG

K

K −⋅=

))|(log)|((log
)(
)'(),(2

'
2

' RKRK
Rn
RnRRWIG

K

K −⋅=

MODLEM − Algorithm for rule induction

• MODLEM [Stefanowski 98] generates a minimal set of rules.
• Its extra specificity – handling directly numerical attributes

during rule induction; elementary conditions, e.g. (a ≥ v),
(a < v), (a ∈ [v1,v2)) or (a = v).

• Elementary condition evaluated by one of three measures:
class entropy, Laplace accuracy or Grzymala 2-LEF.

obj. a1 a2 a3 a4 D
x1 m 2.0 1 a C1 if (a1 = m) and (a2 ≤ 2.6) then (D = C1) {x1,x3,x7}
x2 f 2.5 1 b C2 if (a2 ∈ [1.45, 2.4]) and (a3 ≤ 2) then (D = C1)
x3 m 1.5 3 c C1 {x1,x4,x7}
x4 f 2.3 2 c C1 if (a2 ≥ 2.4) then (D = C2) {x2,x6}
x5 f 1.4 2 a C2 if (a1 = f) and (a2 ≤ 2.15) then (D = C2) {x5,x8}
x6 m 3.2 2 c C2
x7 m 1.9 2 b C1
x8 f 2.0 3 a C2

Procedure Modlem

Set of positive examples

Looking for the best rule

Testing conjunction

Finding the most discrimantory
single condition

Extending the conjunction

Testing minimality

Removing covered examples

Find best condition

Preparing the sorted value list

Looking for the best cut point
between class assignments

Testing each candidate

Return the best evaluated condition

An Example (1)

Class (Decision = r)
E = {1, 2, 6, 7, 12, 14, 17}

List of candidates
(Age=m) {1,6,12,14,17+; 3,8,11,16-}
(Age=sr) {2,7+; 5,9,13-}
(Job=u) {1,6+; 11-}
(Job=p) {2+, 3,4,8,9,13,15,16-}
(Job=b) {7,12,14,17+; ∅}
(Pur=K) {1,17+; ∅}
(Pur=S) {2+;13,15-}
{Pur=W} {6+, 9-}
{Pur=D} {7,14+; 4,8,10,11-}
{Pur=M} {12+;5,16-}

rK8000bm17
dM37005pm16
dS500021pst15
rD7000bm14
pS250017psr13
rM10000bm12
pD15000um11
pD11000est10
dW160011psr9
pD14003pm8
rD6000bsr7
rW7000um6
pM160014psr5
dD230016pst4
dM26004pm3
rS14002psr2
rK5000um1

Dec.PurposeIncomePeriodJobAgeNo.

An Example (2)

• Numerical attributes: Income

(Income < 1050) {1,6,7,12,14,17+;∅}
(Income < 1250) {1,6,7,12,14,17+;10-}

(Income < 1450) {1,2,6,7,12,14,17+;8,10-}

Period
(Period < 1) {1,6,7,14,17+;10,11-}

(Period < 2.5) {1,2,6,7,12,14,17+;10,11-}

500 5000250016001500140011001000600 700 800 2300 2600 3700

1+ 7+ 6+
14+

17+ 12+ 10- 2+
8-

11- 9-
5-

4- 13- 3- 10- 15-

Example (3) - the minimal set of induced rule

1. if (Income<1050) then (Dec=r) [6]

2. if (Age=sr) and (Period<2.5) then (Dec=r) [2]

3. if (Period∈[3.5,12.5)) then (Dec=d) [2]

4. if (Age=st) and (Job=p) then (Dec=d) [3]

5. if (Age=m) and (Income∈[1050,2550)) then (Dec=p) [2]

6. if (Job=e) then (Dec=p) [1]

7. if (Age=sr) and (Period≥12.5) then (Dec=p) [2]

• For inconsistent data:

• Approximations of decision classes (rough sets)

• Rule post-processing (a kind of post-pruning) or extra testing
and earlier acceptance of rules.

Mushroom data (UCI Repository)
• Mushroom records drawn from The Audubon Society Field

Guide to North American Mushrooms (1981).
• This data set includes descriptions of hypothetical samples

corresponding to 23 species of gilled mushrooms in the Agaricus
and Lepiota Family. Each species is identified as definitely
edible, definitely poisonous, or of unknown edibility.

• Number of examples: 8124.
• Number of attributes: 22 (all nominally valued)
• Missing attribute values: 2480 of them.
• Class Distribution:

-- edible: 4208 (51.8%)

-- poisonous: 3916 (48.2%)

MOLDEM rule set (Implemented in WEKA)
=== Classifier model (full training set) ===

Rule 1.(odor is in: {n, a, l})&(spore-print-color is in: {n, k, b, h, o, u, y, w})&(gill-size = b)
=> (class = e); [3920, 3920, 93.16%, 100%]

Rule 2.(odor is in: {n, a, l})&(spore-print-color is in: {n, h, k, u}) => (class = e); [3488,
3488, 82.89%, 100%]

Rule 3.(gill-spacing = w)&(cap-color is in: {c, n}) => (class = e); [304, 304, 7.22%,
100%]

Rule 4.(spore-print-color = r) => (class = p); [72, 72, 1.84%, 100%]
Rule 5.(stalk-surface-below-ring = y)&(gill-size = n) => (class = p); [40, 40, 1.02%,

100%]
Rule 6.(odor = n)&(gill-size = n)&(bruises? = t) => (class = p); [8, 8, 0.2%, 100%]
Rule 7.(odor is in: {f, s, y, p, c, m}) => (class = p); [3796, 3796, 96.94%, 100%]

Number of rules: 7
Number of conditions: 14

Approaches to Avoiding Overfitting

• Pre-pruning: stop learning the decision rules
before they reach the point where they
perfectly classify the training data

• Post-pruning: allow the decision rules to
overfit the training data, and then post-prune
the rules.

Applying rule set to classify objects
• Matching new object description x to condition parts of

rules.

• Either object’s description satisfies all elementary
conditions in a rule, or not.

IF (a1=L) and (a3≥ 3) THEN Class +

x → (a1=L),(a2=s),(a3=7),(a4=1)

• Two ways of assining x to class K depending on the set
of rules:

• Unordered set of rules (AQ, CN2, PRISM, LEM)

• Ordered list of rules (CN2, c4.5rules)

Applying rule set to classify objects
• The rule set are ordered into priority decision list!

Another way of rule induction – rules are learned by first
determining Conditions and then Class (CN2)

Notice: mixed sequence of classes K1,…, K in a rule list
But: ordered execution when classifying a new instance: rules

are sequentially tried and the first rule that ‘fires’ (covers the
example) is used for final decision

Decision list {R1, R2, R3, …, D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in input data)

Priority decision list (C4.5 rules)

Specific solution RIPPER (Mushroom data)

Learning ordered set of rules
• RuleList := empty; Ecur:= E

• repeat
• learn-one-rule R
• RuleList := RuleList ++ R
• Ecur := Ecur - {all examples covered by R}

(Not only positive examples !)

• until performance(R, Ecur) < ThresholdR

• RuleList := sort RuleList by performance(R,E)

• RuleList := RuleList ++ DefaultRule(Ecur)

CN2 – unordered rule set

Applying unordered rule set to classify objects
• An unordered set of rules → three situations:

• Matching to rules indicating the same class.

• Multiple matching to rules from different classes.

• No matching to any rule.
• An example:
• e1={(Age=m), (Job=p),(Period=6),(Income=3000),(Purpose=K)}

• rule 3: if (Period∈[3.5,12.5)) then (Dec=d) [2]

• Exact matching to rule 3. → Class (Dec=d)
• e2={(Age=m), (Job=p),(Period=2),(Income=2600),(Purpose=M)}

• No matching!

Solving conflict situations
• LERS classification strategy (Grzymala 94)

• Multiple matching
• Two factors: Strength(R) – number of learning examples

correctly classified by R and final class Support(Yi):

• Partial matching
• Matching factor MF(R) and

• e2={(Age=m), (Job=p), (Period=2),(Income=2600),(Purpose=M)}

• Partial matching to rules 2 , 4 and 5 for all with MF = 0.5

• Support(r) = 0.5⋅2 =1 ; Support(d) = 0.5⋅2+0.5⋅2=2

• Alternative approaches – e.g. nearest rules (Stefanowski 95)

• Instead of MF use a kind of normalized distance x to conditions of r

∑ Yifor R rules matching)(RStrength

∑ ⋅Yifor R rules match.partially)()(RStrengthRMF

Some experiments

• Analysing strategies (total accuracy in [%]):

• Comparing to other classification approaches

• Depends on the data

• Generally → similar to decision trees

87.3 90.9 96.4 bearings

90.8 93.5 98.0buses

74.1 82.4 83.8 oncology

67.6 73.6 85.2 lymphograpy

34.4 44.8 53.3 imidasolium

51.2 59.3 67.1 breast cancer

81.082.8 88.9 concretes

59.8 70.5 77.1 hsv2

71.8 79.5 89.4 election

79.2 85.7 87.9 large soybean

exactmultiple all data set

Variations of inducing minimal sets of rules

• Sequential vs. simultaneous covering of data.

• General-to-specific vs. specific-to-general; begin
search from single most general vs. many most
specific starting hypotheses.

• Generate-and-test vs. example driven (as in AQ).

• Pre-pruning vs. post-pruning of rules

• What evaluation functions to use?

• …

Different perspectives of rule application

• In a descriptive perspective

• To present, analyse the relationships between
values of attributes, to explain and understand
classification patterns

• In a prediction/classification perspective,

• To predict value of decision class for new
(unseen) object)

Perspectives are different;
Moreover rules are evaluated in a different ways!

Descriptive requirements to single rules

• In descriptive perspective users may prefer to discover
rules which should be:

• strong / general – high enough rule coverage AS(P|Q) or
support.

• accurate – sufficient accuracy AS(Q|P).

• simple (e.g. which are in a limited number and have short
condition parts).

• Number of rules should not be too high.

• Covering algorithms biased towards minimum set of rules
- containing only a limited part of potentially `interesting'
rules.

• We need another kind of rule induction algorithms!

Explore algorithm (Stefanowski, Vanderpooten)

• Another aim of rule induction

• to extract from data set inducing all rules that satisfy some
user’s requirements connected with his interest (regarding,
e.g. the strength of the rule, level of confidence, length,
sometimes also emphasis on the syntax of rules).

• Special technique of exploration the space of possible
rules:

• Progressively generation rules of increasing size using in the
most efficient way some 'good' pruning and stopping
condition that reject unnecessary candidates for rules.

• Similar to adaptations of Apriori principle for looking
frequent itemsets [AIS94]; Brute [Etzioni]

Explore – some algorithmic details
procedure Explore (LS: list of conditions;

SC: stopping conditions; var R:
set_of_rules);

begin
R ← ∅;
Good_Candidates(LS,R); {LS - ordered
list of c1,c2,..,cn}
Q ← LS; {create a queue Q}
while Q ≠∅ do
begin
select the first conjunction C from Q ;
Q← Q\{C};
Extend(C,LC); {LC - list of extended
conjunctions}
Good_Candidates(LC,R);
Q ← Q∪C; {place all conjunctions from
LC at the end of Q}
end

end.

procedure Extend(C : conjunction, var L : list of
conjunctions);

{This procedure puts in list L extensions of
conjunction C that are possible candidates
for rules}

begin
Let k be the size of C and h be the highest index

of elementary conditions involved in C;
L← {C∧ch+i where ch+i∈LS and such that all the

k subconjunctions of C ∧ch+i of size k and
involving ch+i belong to Q , i=1,..,n-h}

end
procedure Good_Candidates(LC : ist of

conjunctions, var R - set of rules);
{This procedure prunes list LC discarding:
- conjunctions whose extension cannot give rise

to rules due to SC,
- conjunctions corresponding to rules which are

already stored in R

Various sets of rules (Stefanowski and Vanderpooten 1994)

• A minimal set of rules (LEM2):

• A „satisfactory” set of
rules (Explore):

Descriptive vs. classification properties (Explore)

• Tuning a proper value of
stopping condition SC
(rule coverage) leads to
sets of rules which are
„satisfactory” with respect
to a number of rules,
average rule length and
average rule strength
without decreasing too
much the classification
accuracy.

Our Software (PUT Poznań)
• MODLEM

• Extension of Rose

• New classes in WEKA

• DRSA → 4emka, Jamm, …

More about applications - see

• P.Langley, H.Simon paper in Michalski, Bratko, Kubat
book on Machine Learning and Data Mining

Where to find more?
• T. Mitchell Machine Learning New York: McGraw-Hill, 1997.
• I. H. Witten & Eibe Frank Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations San Francisco: Morgan Kaufmann, 1999.
• Michalski R.S., Bratko I., Kubat M. Machine learning and data mining; J. Wiley. 1998.
• Clark, P., & Niblett, T. (1989). The CN2 induction algorithm.Machine Learning, 3, 261–283.
• Cohen W. Fast effective rule induction. Proc. of the 12th Int. Conf. on Machine Learning

1995. 115–123
• R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multi-purpose incremental learning

system AQ15 and its testing application to three medical domains, Proceedings of i4AAI
1986, 1041-1045, (1986).

• J.W. Grzymala-Busse, LERS-A system for learning from example-s based on rough sets,
In Intelligent`Decision Support: Handbook of Applications and Advances of Rough Sets
Theory, (Edited by R.Slowinski), pp. 3-18

• Michalski R.S.: A theory and methodology of inductive learning. W Michalski R.S,
Carbonell J.G., Mitchell T.M. (red.) Machine learning: An Artificiall Intelligence Approach,
Morgan Kaufmann Publishers, Los Altos (1983),.

• J.Stefanowski: On rough set based approaches to induction of decision rules, w: A.
Skowron, L. Polkowski (red.), Rough Sets in Knowledge Discovery Vol 1, Physica Verlag,
Heidelberg, 1998, 500-529.

• J.Stefanowski, The rough set based rule induction technique forclassification problems, w:
Proceedings of 6th European Conference on Intelligent Techniques and Soft Computing,
Aachen, EUFIT 98, 1998, 109-113.

• J. Furnkranz . Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3–54,
1999.

Where to find more - 2
• P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In

Proceedings of the 5th European Working Session on Learning (EWSL-91), pp. 151–163,
1991.

• Grzymala-Busse J.W.: Managing uncertainty in machine learning from examples.
Proceedings of 3rd Int. Symp. on Intelligent Systems, Wigry 1994 .

• Cendrowska J.: PRISM, an algorithm for inducing modular rules. Int. J. Man-Machine
Studies, 27 (1987), 349-370.

• Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization.
Proc. of the 15th Int. Conf. on Machine Learning (ICML-98) (pp. 144–151).

• J. Furnkranz and P. Flach. An analysis of rule evaluation metrics. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), pp. 202–209,

• S. M. Weiss and N. Indurkhya. Lightweight rule induction. In Proc. of the 17th Int.
Conference on Machine Learning (ICML-2000), pp. 1135–1142,

• J.Stefanowski, D.Vanderpooten: Induction of decision rules in classification and discovery-
oriented perspectives, International Journal of Intelligent Systems, vol. 16 no. 1, 2001, 13-
28.

• J.W.Grzymala-Busse, J.Stefanowski: Three approaches to numerical attribute
discretization for rule induction, International Journal of Intelligent Systems, vol. 16 no. 1,
2001, 29-38.

• P. Domingos. Unifying instance-based and rule-based induction. Machine Learning,
24:141–168, 1996.

• R. Holte. Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11:63–91, 1993.

Any questions, remarks?

