Mining Sequence Data

JERZY STEFANOWSKI

Inst. Informatyki PP Wersja dla TPD 2009 "Zaawansowana eksploracja danych"

Outline of the presentation

- 1. Realtionships to mining frequent items
- 2. Motivations for sequence databases and their analysis
- 3. Applications
- 4. Approximate queries and basic techniques
- 5. Classification in data streams
- 6. Clustering
- 7. Conclusions

This lecture is partly based on the following resources - slides: J.Han (data mining book), slides Pinto, Pei, etc. and my other notes.

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- □ Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why is Frequent Pattern or Association Mining an Essential Task in Data Mining?

Foundation for many essential data mining tasks

- Association, correlation, causality
- Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association
- Associative classification, cluster analysis, fascicles (semantic data compression)
- **DB** approach to efficient mining massive data
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc

Sequence Databases and Sequential Pattern Analysis

- $\Box Transaction databases \rightarrow sequence databases$
- **Frequent patterns vs.** (frequent) sequential patterns
 - Finding time-related frequent patterns (frequent subsequences)
- Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, etc.
 - Telephone calling patterns,
 - Weblog click streams
 - DNA sequences and gene structures

Seq. ID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

What Is Sequential Pattern Mining?

Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence database</u>

SID	sequence	
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	
20	<(ad)c(bc)(ae)>	
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
40	<eg(af)cbc></eg(af)cbc>	

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a <u>subsequence</u> of <<u>a(abc)(ac)d(c</u>f)>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential pattern</u>

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable, involving only a small number of database scans
 - be able to incorporate various kinds of user-specific constraints

Studies on Sequential Pattern Mining

Concept introduction and an initial Apriori-like algorithm

- R. Agrawal & R. Srikant. "Mining sequential patterns," ICDE'95
- GSP—An Apriori-based, influential mining method (developed at IBM Almaden)
 - R. Srikant & R. Agrawal. "Mining sequential patterns: Generalizations and performance improvements," EDBT'96
- FreeSpan and PrefixSpan (Han et al.@KDD'00; Pei, et al.@ICDE'01)
 - Projection-based
 - But only prefix-based projection: less projections and quickly shrinking sequences

Vertical format-based mining: SPADE (Zaki00)

A Basic Property of Sequential Patterns: Apriori

A basic property: Apriori (Agrawal & Sirkant'94)

- If a sequence S is not frequent
- Then none of the super-sequences of S is frequent
- E.g, <hb> is infrequent -> so do <hab> and <(ah)b>

Seq. ID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

Given <u>support threshold</u> min_sup =2

GSP—A Generalized Sequential Pattern Mining Algorithm

- **GSP** (Generalized Sequential Pattern) mining algorithm
 - proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- □ Major strength: Candidate pruning by Apriori

Performance on Data Set Gazelle

Motivating Example

Sequential patterns are useful

- "free internet access → buy package 1 → upgrade to package 2"
- Marketing, product design & development
- Problems: lack of focus
 - Various groups of customers may have different patterns
- MD-sequential pattern mining: integrate multi-dimensional analysis and sequential pattern mining

Extensions of mining sequence patterns

Mining sequential patterns in a database of users' activities

- Given a sequence database, where each sequence s is an ordered list of transactions t containing sets of items X ⊆ L, find all sequential patterns with a minimum support.
- An important task for Web usage mining
 - "20% users which access A page, then go to C page and finally select F page"
- Our contribution (R.Ziembinski, J.Stefanowski):
 - Extending a problem into a problem of mining context based sequential patterns.

Extended sequence database

Sequences supporting patterns

□ Given a database *EDS* with sets of context attributes *A*, *C* and their similarity functions, find all maximal sequential patterns among all sequences, which are similar to at least *min_support* sequences in *EDS*.

An example of e-bank customers

Sequence /customer context: Monthly earnings, Martial status, Profession, Age	Sequences: SID1 (4200,married,tech,24)	
Transaction context: Time from money supply, Day of the weak when action done User actions: SD_receive money_TM_transfer	SID2 (4000,married,tech,22	
WM – withdraw money, CD – create time deposit, RD – cancel this deposit	SID3 (1500,single,retired,70	

Examples of patterns:

□ Traditional sequential pattern:

<{TM,CD},{WM},{WM,RD}>

Extended context sequential pattern:

(4000, married, *, *)<(3, *){TM,CD}, (*, Sunday){WM}, (20, *){WM,RD}>

	Sequences:		
	SID1	(2,Friday)	{TM,CD}
	(4200.married.tech.24)	(4,Sunday)	{WM}
	(,,,,,,,,,-	(20,Saturday)	{RD,WM,TM}
	SID2	(3,Tuesday)	{TM,CD,WM
	(4000,married,tech,22)	(7,Sunday)	{WM,CD}
		(20,Saturday)) {RD,WM}
		(1,Tuesday)	{TM,CD}
SID3 (1500,single,retired,70)	SID3	(3,Monday)	{CD,TM,WM
)(10,Monday)	{CD,TM,WM}	
		(16,Sunday)	$\{WM\}$
	•••	•••	