Classes of process failures

[ Crashes ]

Omissions

5 Crashes&recoveries )

Arbitrary

Figure 2.2. Failure modes of a process



Module:
Name: FairLossPoint ToPointLinks (ip2p).

Events:
Request: { fip2pSend, dest, m }: Used to request the transmission of
message 1 to process dest.
Indication: { fip2pDeliver, src, m ): Used to deliver message m sent by
Process Src.

Properties:

FLL1: Fair [oss: If a message m is sent infinitely often by process p; to
process p;, and neither p; nor p; crash, then m is delivered an infinite
number of times by p;.

FLL2: Finite duplication: If a message m is sent a finite number of times
by process ps to process p;, then m cannot be delivered an infinite number
of times by p;.

FLL3: No creation: If a message m is delivered by some process p;, then
m has been previously sent to p; by some process p.

Module 2.1 Interface and properties of fair-lossy point-to-point links.



Module:
Name: StubbornPointToPointLink (sp2p).

Events:
Request: { sp2pSend, dest, m ): Used to request the transmission of mes-
sage m to process dest.
Indication:{ spZpDeliver, src, m ): Used to deliver message m sent by
PrOCess Sre.

Properties:

SL1: Stubborn delivery: Let p; be any process that sends a message m. to
a correct process p;. If p; does not crash, then p; delivers m an infinite
number of times.

SL2: No creation: If a message m is delivered by some process p;, then m
was previously sent to p; by some process p;.

Module 2.2 Interface and properties of stubborn point=to=point links.



Algorithm 2.1 Stubborn links using fair-loss links.

Implements:
StubbornPoint ToPointLink (sp2p).

Uses:
FairLossPoint ToPointLinks (p2p).

upon event { sp2pSend, dest, m ) do
while (true) do
trigger { fip2pSend, dest, m );

upon event { fipZpDeliver, stc, m } do
trigger { sp2pDeliver, src, m );




Module:
Name: PerfectPoint ToPointLink (pp2p).
Events:

Request: { pp2pSend, dest, m ): Used to request the transmission of
message m to process dest.

Indication:{ pp2pDeliver, sre, m ): Used to deliver message m sent by
ProCess SIc.
Properties:

PL1: Reliable delivery: Let p; be any process that sends a message m. to
a process p;. If neither p; nor p; crashes, then p; eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If a message m is delivered by some process p;, then
m was previously sent to p; by some process ps.

Module 2.3 Interface and properties of perfect point=to=point links.



Algorithm 2.2 Perfect links using stubborn links.

Implements:
PerfectPoint ToPointLinks (pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event { Init } do
delivered := @;

upon event { pp2pSend, dest, m ) do
trigger ( sp2pSend, dest, m };

upon event { sp2pDeliver, src, m ) do
if m & delivered then
delivered := delivered U{m};
trigger { pp2pDeliver, src, m );




Partially synchronous systems

e System that eventually 1s synchronous (without
stating when exactly).

« System that might not always be synchronous and
there 1s no bound on the period during which it 1s
asynchronous.

* System characterized by periods during which 1t
1s synchronous, and some of these periods are long
enough for an algorithm to terminate its execution.



Module:

Name: PerfectFailureDetector (P).
Events:

Indication: { crash, p; }: Used to notify that process p; has crashed.
Properties:

PFD1: Strong completeness: Eventually every process that crashes is per-
manently detected by every correct process.

PFD2: Strong accuracy: No process is detected by any process before it
crashes.

Module 2.4 Interface and properties of the perfect failure detector.,



Algorithm 2.3 Perfect failure detector with perfect links and timeouts.

Implements:

PerfectFailureDetector (P).

Uses:
PerfectPoint ToPointLinks (pp2p).

upon event { Init ) do
alive := ITI;
suspected 1= §;

upon event { TimeDelay » do
WPEEH .
if p; € alive and p; & suspected then
suspected = suspected U{p;};
trigger { crash, p; );
alive = i

Vp.em : trigger { pp2pSend, p;, [DATA, heartbeat] );

upon event { ppZpDeliver, sve, [DATA, heartbeat] ) do
alive := alive U {src};




Module:
Name: EventuallyPerfectFailureDetector (7).

Events:
Indication: { suspect, p; ): Used to notify that process py is suspected to
have crashed.

Indication: { restore, p; »: Used to notify that process py is not suspected
ANYINOTE.

Properties:
EPFD1: Eventwal strong completeness: Eventually, every process that
crashes is permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

Module 2.5 Interface and properties of the evenially perfect failure detector.



Algorithm 2.4 Eventually perfect failure detector with perfect links and timeouts.

Implements:
EventuallyPerfectFailureDetector (OP).

Uses:
PerfectPoint ToPointLinks (pp2p).

upon event { Init } do
alive = IT;
suspected :=

upon event { TimeDelay ) do
.?}:IEEH .
if p; & alive then
suspected = suspected U {p;};
trigger { crash, p; );
else
if p; € suspected then
suspected = suspected \ {p:};
TimeDelay := TimeDelay + A;
trigger { restore, p; };
alive =
.‘i"pEEiT . tl‘iE.E:GI‘ ‘: ppzps‘fﬂd: D, [D“"T“"': llﬂ&]’tbﬂﬂ.t] };

upon event { ppZpDeliver, sve, [DATA, heartbeat] » do
alive 1= alive U {src};




Module:
Name: EventualLeaderDetector (£2).

Events:
Indication: { trust, p; ): Used to notify that process p; is trusted to be
leader.

Properties:

CD1: Eventuad aocumacy: There is a time after which every correct process
tTusts some correct prooess.

CD2: Eventwal agreement: There is a time after which no two correct
processes trust different processes.

Module 2.6 Interface and properties of the eventual leader detector.



Algorithm 2.5 Eventually leader election with crash-recovery processes, stubborn
links and Gimeouts .

Implements:
EventualLeaderDetector ({2).

Uses:
StubbornPoint ToPointLinks (Ap2p).

upon event { Init } do
leader == pi;
possible == IT;
epoch = 0

upon event { Recovery } do
retrieve(epoch);
epoch := epoch + 1;
store(epoch);

upon event { TimeDelay } do
if leader # select{possible) then
TimeDelay := TimeDelay 4 A;
leader := select(possible);
if {leader} # 0 then
trigger { trust, leader );
possible := @;
Vp.em @ trigger { sp2pSend, p;, [DATA, heartbeatepoch] };

upon event { fip2pDeliver; sve, [DATA, heartbeat,epc] ) do
passible := possible U {(sre epe)};




Specific system models

« Fail-stop model. Processes execute deterministic
algorithms, unless they possibly crash and stop
executing any computation, links are perfect, and
there available the perfect failure detector.

 Fail-silent model. Processes execute deterministic
algorithms, unless they possibly crash and stop
executing any computation, links are perfect.



Specific system models

* Fail-noisy model. Processes execute deterministic
algorithms, unless they possibly crash and stop
executing any computation, links are perfect, and
moreover there available the eventually perfect
failure detector.

 Randomized model. Processes may use a random
oracle to choose among several steps to execute.



Module:
Name: BestEffortBroadcast (beb).

Events:
Request: { bebBroadcast, m }: Used to broadcast message m to all pro-
CESSES.

Indication: { bebDeliver, src, m ): Used to deliver message m broadcast
by process sre.
Properties:

BEB1: Best-effort validity: For any two processes p; and p;. If p; and p;
are correct, then every message broadcast by p; is eventually delivered by
;-

BEB2: No duplication: No message is delivered more than once.

BEB3: Ne creation: If a message m. is delivered by some process p;, then
m was previously broadcast by some process p;.

Module 3.1 Interface and properties of best=effort broadcast.



Algorithm 3.1 Basic Broadcast.

Implements:

BestEffortBroadcast (beb).

Uses:
PerfectPoint ToPointLinks (pp2p).

upon event { hebBroadcast, m } do
\";'(I:IEEH .
trigger { pp2pSend, pi,m };

upon event { pp2pDeliver, p;,m » do
trigger { bebDeliver, p;,m );




bhebBroadcast

M

% hebDeliver

Pa

\\E‘H“ bebDeliver
P
\ R bebl eliver
™

" hebDeliver
Figure 3.1. Sample execution of Basic Broadcast algorithm.




Module:
Name: (regular)ReliableBroadcast (rb).

Events:
Request: { rbBroadcast, m }: Used to broadcast message m.
Indication: { rbDeliver, src,m }: Used to deliver message m broadcast by
ProCess Src.

Properties:

RB1: Validity: If a correct prooess p; broadcasts a message m, then py
eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: Ne creation: If a message m is delivered by some process p;, then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process ps,
then ‘m is eventually delivered by every correct process p;.

Module 3.2 Interface and properties of reliable broadcast.



Algorithm 3.2 Lazy reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event { Init ) do
delivered := 0
correct 1= IT;
Vp, e = from[pi] := @;

upon event { rhBroadcast, m } do
trigger ( bebBroadcast, [DATA, self, m] );

upon event { bebDeliver, p;, [DATA, 8m, m] } do
if m ¢ delivered then
de].wered delivered U {m}

tri { rbDeliver, sm, m };
i; = from[p;] U {[sm, m]}
if o & correct then
trigger { bebBroadcast, [DATA, 8m, m] );

upon event { crash, p; ) do
correct := correct \ {p;}
forall [s,,,m] € from[p;]: do
trigger { bebBroadcast, [DATA, Sm, m] };




Algorithm 3.3 Eager reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:

BestEffortBroadcast (beb).

upon event { Init } do
delivered := O

upon event { rbBroadcast, m ) do
delivered := delivered U {m}
trigger ( rbDeliver, self, m );
trigger ( bebBroadcast, [DATA, self, m] );

upon event { bebDeliver, p;, [DATA, $m, m] ) do
if ‘m & delivered do
delivered := delivered U {m}
trigger { rhDeliver, &m,m );
trigger { bebBroadcast, [DATA, $m, m] );




//‘ rhlehwer
i
BT

rhlelver ™

(a) (b)

gure 3.2. Sample executions of eager reliable broadcast.



Module:
Name: UniformReliableBroadcast (urb).
Events:

{ urbBroadcast, m ), { urbDeliver, src,m }, with the same meaning and
interface as in regular reliable broadcast.

Properties:
RB1-RB3: Same as in regular reliable broadcast.
URBA4: Uniform Agreement: If a message m. is delivered by some process

i (whether correct or faulty), then m is also eventually delivered by every
other correct process py.

Module 3.3 Interface and properties of uniform reliable broadcast.



Algorithm 3.4 All-ack uniform reliable broadcast.

Implements:

UniformReliableBroadcast (urb).

Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct C ackm ) A (m € delivered);

upon event { Init ) do
delivered := forward ==
correct 1= II;
ackm = 0, Vm;

upon event { urbBroadcast, m ) do
forward := forward U {m}
trigger { bebBroadcast, [DATA, self, m] );

upon event { bebDeliver, p;, [DATA, 8m, m] ) do
ackm = ackm U {p;}
if ‘m ¢ forward do
forward := forward U {m};
trigger { bebBroadcast, [DATA, 8m, m] };

upon event { crash, p; ) do
correct := correct \ {p:};

upon (canDeliver(m)) do
delivered := delivered U {m};
trigger ( urbDeliver, sm.m. };




rhBroadcast

4 a
s [/
Thl Mliver
yLr ~
; hl deliver
P y 7
£, :
:,r, \ & ThDeliver
™M

Figure 3.3. Sample execution of uniform reliable broadcast.



gorithm 3.5 Majority-ack uniform reliable broadcast.

ﬁplmnents:

UniformReliableBroadcast (urb).

- i H

BestEffortBroadcast (beb).

netion canDeliver(m) returns boolean is
return (Jack:,| > N/2) A (m & delivered);
Except for the function above, and the non-use of the // perfect failure detector, same as Algorithm 3.




(a) (b)

Figure 3.4. Ack implosion and ack tree.



Module:
Name: Probabilistic Broadcast (pb).
Events:

Request: { phBroadcast, m ): Used to broadcast message m to all pro-
CESSES,

Indication: { phDeliver, src, m ): Used to deliver message m broadcast
by process sre.
Properties:

PB1: Probabilistic validity: There is a given probability such that for any
p; and p; that are correct, every message broadcast by p; is eventually
delivered by p; with this probability.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a message m is delivered by some process p;, then
m was previously broadcast by some process p;.

Module 3.7 Interface and properties of probabilistic broadcast.



(a) (h)

Figure 35. Gossip Dissemination.




Algorithm 3.9 Eager Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:

unreliablePoint ToPointLinks (up2p).

upon event { Init } do
delivered := i;

function pick-targets (fanout) returns set of processes do
targets := f;
while | targets | < fanout do
candidate := random (IT);
if candidate € targets A candidate # self then
targets := targets U { candidate };
return targets;

procedure gossip (msg) do
forall t € pick-targets (fanout) do

trigger { up2pSend, t, msg );

upon event { phBroadcast, m ) do
gossip ([GOSSIP, 8, m, maxrounds—1]);

upon event { up2pDeliver, p;, [GOSSIP, sm, m, 1] ) do
if ‘'m ¢ delivered then
delivered := delivered U {m}
trigger { pbDeliver, 8m.m );
if v > 0 then gossip ([GOssIP, 8m, m, r —1]);




Implements:
ProbabilisticBroadcast: (pb).

Uses:
UnreliablePoint ToPointLinks (up2p), UnreliableBroadcast (unb).

upon event { Init ) do
Vp,err delivered[p;] := 0; Isn := 0; pending := §; stored = @;

procedure deliver-pending (s) do
V= [DATA, 8, 3, 8ny] in pending such that sn. = delivered[s]+1 do
delivered[s] := delivered[s]4+1; pending := pending \ { [DATA, s, x.8n,]};
trigger { pbDeliver, s,z };

procedure gossip (msg) do
forall t € pick-targets (fanout) do

trigger { up2pSend, t, msg );

upon event { phBroadcast, m ) do
Isn := lsn+1;
trigger ( unBroadcast, [DATA, self, m, Lsn] );

upon event { unDeliver, p;, [DATA, $m, m, snm) ) do
if random > store~threshold then stored := stored U { [DATA, 8m, m.8nm] 5
if st = delivered[s,mH-1 then
delivered[sn,] := delivered[sp ]4-1;
tri,g:g:er { pb.DE'.HVE"I, Sm, };

pending := pending U { [DATA, $m, m., snm] 1
¥ seqnb € [sm — 1, delivered[s,,]41] do
gossip ([REQUEST, self. sm, seqnb, maxrounds—11);

else

upon event { up2pDeliver, p;, [REQUEST, Py, Sm, Sftm, 1] } do
if [DATA, 8m, ™, 8Nym] € stored then
trigger { upp2pSend, pi, [DATA, S$m, m, snm] };
else if r > 0 then gossip ([REQUEST, p%, Sms Stim, T — 1]);

upon event { up2pDeliver, p;, [DATA, 8m, m, snm] ) do
if anm, = delivered[s,]+1 then
delivered[s,] := delivered[s,]+1;
trigger { pbDeliver, 8m,m );
deliver-pending (sm);

pending := pending U { [DATA, sm, m, snm] };

else



- TR Rt RS A AR AR TR AR SR T TR AT s S Rl

Implements:
Probabilistic Partial Membership (ppm).

Uses:

unreliablePoint ToPointLinks (up2p).

upon event { Init } do
view := set of known group members;
subs := @; unsubs := @;

every T units of time do
for 1 to fanout do
target := random (view);
trigger { upp2pSend, target, [GOSSIP, subs, unsubs] ;

upon { ppmJoin } do
subs = subs U { self };

upon { ppmLeave } do
unsubs := unsubs U { self };

upon event { up2pDeliver; p;, [GossIP, s, u] ) do
view 1= view \ u;
view == view U s\ { self };
unsubs := unsubs U u;
subs == subs U s\ { self };
//trim variables
while | view | > viewsz do
target := random (view);
view := view \ { target };
subs := subs U { target };
while | unsubs | > unsubssz do unsubs := unsubs \ { random(unsubs) };

while | subs | > subssz do subs := subs \ { random(subs) };



Module:
Name: (regular) Consensus (c).
Events:
Request: { cPropose, v ): Used to propose a value for consensus.

Indication: { cDecide, v ): Used to indicate the decided value for consen-
Sls.

Properties:
C1: Termdnation: Every correct process eventually decides some value.

C2: Validity: If a process decides v, then v was proposed by some process.
C3: Integrity: No process decides twice.
C4: Agreement: No two correct processes decide differently.

Module 5.1 Interface and properties of consensus.



. ™ e ™ 2

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event { Init } do
corvect := correct-=last-round = II;
proposal-set := correct-this-round := (;
decided := L;

ronnd = 1;

upon event { crash, p; ) do
correct := correct \{p:};

upon event { cPropose;, v } do
proposal-set == {v};
trigger { bebBroadcast, [MYSET, round, proposal-set] );

upon event { bebDeliver, p;, [MYSET, round, set] ) do
correct=this-round := correct-this-round U {p:};
proposal-set := proposal-set U set;

upon correct C correct=this-round do
round := round +1;
if (correct=this-round = correct=last=round) A (decided = L) then
trigger { cDecide, min (proposal-set) };
trigger { bebBroadcast, [DECIDED, round, min (proposal=set)] };
else
correct=last=round := correct-this-round;
correct-this-round := §;
trigger { bebBroadcast, [MYSET, round, proposal-set] };

upon event { bebDeliver, p;, [DECIDED, round, v] } A (decided = L) do
decided := w;
trigger { cDecide, v );
trigger { bebBroadcast, [DECIDED, round + 1, min (proposal=set)] };



round 1 round 2
cPropose (3)

e
CPI‘Op\ZSE (5) W cDec-.ideé (3=min(3,5,8.7))
2 ®

CPrOpose (8)

C'PI‘OpOS-E' (7) % (5.8 7) \\%Decide (3)

R
(5,8 7) ¢Decide (3)

igure 5.1. Sample execution of the flooding consensus algorith:



4 Al LULElll sl LJd LALLM R AL Ly RS AL AL

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event { Init } do

suspected 1=
round = 1;
proposal = nil;

for i =1 to N do psetfi] == py;
for i =1 to N do delivered[round] := false;
for i =1 to N do broadcast[round] := false;

upon event { crash, p; ) do

suspected := suspected U{p;};

upon event { cPropose, v } do
proposal = v;

upon (psetfround] = self) A (proposal # nil) A (broadcast[round] = false) do
trigger ( cDecide, proposal );
trigger broadcast[round] := true;
trigger { bebBroadcast, proposal };

upon (peet[round] € suspected) V (delivered[round] = true) do
round = round + 1;

upon event { bebDeliver, pset[round],value } do
if selfiid > round then
proposal = value;
delivered[round] = true;



roundl = round2 . round 3.  round 4

cPropose (3)

P X:k. Y%

cPropose (5)

cDeicide (5)

Pz —e o

chp\zse (8) \ \ \ \ cDiecide (5)

P3 ® (5) .\QE

cProp\iSE'- (7) \ \ \ cDecide (5)
P4 @ *

(3) (5) i

Figure 5.2. Sample execution of hierarchical consensus.



Module:
Name: UniformConsensus (uc).
Events:

{ wcPropose, v ), { ucDecide, v }: with the same meaning and interface of
the consensus interface.

Properties:
C1-C3: from consensus.

C4%: Uniform Agreement: no two processes decide differently..

Module 5.2 Interface and properties of uniform consensus.



A4 Al LLLALIL el L4 LUAALLLLS AL AL AL VARG R Ll ol s A LA

Implements:
UniformConsensus (c);

Uses:
BestEffort Broadcast (beb).
PerfectFailureDetector (P);

upon event { Init ) do
correct == II;
round = 1;
for i =1 to N do set[i] := delivered[i] := @;
proposal-set :=
decided := false;

upon event { crash, p; ) do
correct := correct \{p;};

upon event { ucPropase, v ) do
proposal-set := {v};
trigger ( bebBroadcast, [MYSET, round, proposal-set] );

upon event { bebDeliver, p;, [MYSET, round, newSet] } A (p; € correct) do
set[round] := set[round] U newSet;
delivered[round] := delivered[round] U{p:};

upon (correct C delivered[round]) A (decided = false) do
if round = N then
decided := true;
trigger { ucDecide, min(proposal-set U set[round]) };
else
proposal=set := proposal-set U set[round];
round := round + 1;
trigger { bebBroadcast, [MYSET, round, proposal-set] };



Implements:

UniformConsensus (uc);

Uses:
PerfectPoint ToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast {beb).
PerfectFailureDetector (P);

upon event { Init } do
proposal == decided := L;
round = 1;
suspected := acksset := 0
for i =1 to N do pset[i] == py;

upon event { crash, p; ) do

suspected := suspected U {pi};

upon event { ucPropase, v } do
proposal = wv;

upon (pset[round] = self) A (proposal # L) A (decided = L) do
trigger { bebBroadcast, [PROPOSE, round, proposal] };

upon event { bebDeliver, p;, [PROPOSE, round, v] } do
proposal = v;

trigger { pp2pSend, p;, [ACK, round] };
round := round + 1;

upon event (psetfround] € suspected) do
round = round + 1;

upon event { pp2pDeliver, p;, [ACK, round] } do
ack=set := ack-set U {p;};

upon event (ack-set LU suspected = IT) do
trigger ( rhBroadcast, [DECIDED, propasal] );

upon event { rbDeliver, p;, [DECIDED, v] } A (decided = L) do
decided 1= v;
trigger { ncDecide, v );



Module:
Name: Randomized Consensus (rc).
Events:
Request: { rcPropose, v ): Used to propose a value for consensus.

Indication: { rcDecide, v }: Used to indicate the decided value for con-
SENSUS.

Properties:

RC1: Termination: With probability 1, every correct process decides some
value.

RC2: Validity: If a process decides v, then v was proposed by some process.
RC3: Integrity: No process decides twice.
RC4: Agreemend: No two correct processes decide differently.

Module 5.6 Interface and properties of randomized consensus.



Im-plemmts:
Randomized Consensus (rc);

Uses:
ReliableBroadcast (rh).
BestEffort Broadcast (beb).

upon event { Init } do
decided := L; estimate := L; round = 0;
for i =1 to N do val[i] .= L;
val == i;

upon event { rcPropose, v ) do
trigger { bebBroadcast, [INIVALUE, v] };
estimate := »; round := round +1;
val:= val U {v};
trigger { bebBroadcast, [PHASEL, round, v] );

upon event { bebDeliver, p;, [INIVAL, v] } do
val:= val U {v};

upon event { bebDeliver, p;, [PHASEL 1, v] } do
phasel[r] := phasel[r] @ v;

upon (decided=_L A [phasel[round]| > N/2) do
if 3, : Vr € phaselfround]: z = v then estimate := v;
else estimate 1= L;
trigger { bebBroadcast, [PHASE2, round, estimate] );

upon event { bebDeliver, p;, [PHASE2, r, v] } do
phase2[r] := phase2[r] @ v;

upon (decided=_ A |phase2[round]| > N/2) do

if v # L : ¥z € phasel[round]: z = v then
decided = o
trigger { rbBroadcast, [DECIDED, round, decided] );

else
if Jv € phase2[round]: v # L then estimate = v;
else estimate := random(val);
round := round +1; // start one more round
trigger { rbBroadcast, [PHASE], round, estimate] );

upon event { rbDeliver, p;, [PHASE2, r, v] } do
decided := w;
trigger { rcDecided, decided };



cPropose (1)

1)

X
p1 ® *
cPropose (2
0 (2) @
b2 @ ® g
cPropose (2)
® o2
P3 5

Figure 5.3. Role of randomization.




