
Degrees of Isolation

Every transaction has three characteristics:
diagnostics_size, access_mode, and isolation_level.

Diagnostics_size:

The diagnostics_size determines the number of error
condition that can be recorded for the transaction.

Access_mode:

There are two access_modes: READ ONLY and
READ WRITE.

If the access_mode is READ ONLY, the transaction
is not allowed to modify the database. Thus INSERT,
DELETE, UPDATE and CREATE statements cannot
be executed. For transactions with READ ONLY
access_mode, only shared locks need to be obtained,
thereby increasing concurrency.

If we have to execute one of commands INSERT,
DELETE, UPDATE or CREATE, the access_mode
should be set to READ WRITE.

Isolation_levels

Most systems do not provide automatically
serializability!!
• Implementors did not understand the issues
• Implementors make a compromise between correctness

and performance and provide options called levels of
isolation (or degrees of isolation)

The isolation_level controls the extent to which a
given transaction is exposed to the actions of other
transactions executing concurrently. By choosing one
of four possible isolation_level settings, a user can
obtain greater concurrency at the cost of increasing
the transaction’s exposure to other transaction’s
uncommitted changes.

In SQL-92 the isolation levels are:

• READ UNCOMMITTED
• READ COMMITTED
• REPEATABLE READ
• SERIALIZABLE

Isolation_levels

• SERIALIZABLE – this isolation level ensures that T

reads only the changes made by committed transactions,
that no value read or writtten by T is changed by any
other transaction until t is complete.

In terms of lock-based implementation, a
SERIALIZABLE means that the lock algorithm is two-
phase and well formed.

• REPEATABLE READ - this isolation level ensures that
T reads only the changes made by committed
transactions, that no value read or writtten by T is
changed by any other transaction until t is complete.
However, T could experience the phantom phenomenon.

In terms of lock-based implementation, a
REPEATABLE READ means that the lock algorithm is
two-phase and well formed.
A REPEATABLE READ uses the same locking protocol
as a SERIALIZABLE transaction except that it does not
do index locking – it locks only individual objects - not
sets of objects.

Isolation levels

• READ COMMITTED (cursor stability) - this isolation

level ensures that T reads only the changes made by
committed transactions, that no value writtten by T is
changed by any other transaction until t is complete.
However, a value read by T may well be modified by
another transaction while T is in progress, and T is
exposed to the phantom phenomenon.

In terms of lock-based implementation, a READ
COMMITTED means that the lock algorithm is two-
phase with respect to write locks and well formed with
respect to reads. In other words, all shared locks obtained
by T are released immediately.

• READ UNCOMMITTED (browse)- T can read changes
made to an object by an ongoing transaction. Moreover,
the object can be changed further while T is in progress,
and T is exposed to the phantom phenomenon.

In terms of lock-based implementation, a READ
UNCOMMITTED means a transaction T obtains write
locks before writing data items, and holds these locks
until the end, but does not obtain shared locks before
reading data items.

READ UNCOMMITTED is allowed only for read-only
transactions – a transaction is required to have an access
mode of READ ONLY.

Isolation levels

Isolation
Level

Dirty
Read

Unrepeatable
Read

Phantom

READ
UNCOMMITTED

maybe maybe maybe

READ
COMMITTED

no maybe maybe

REPEATABLE
READ

no no maybe

SERIALIZABLE no no no

Why READ COMMITTED is called
sometimes Cursor Stability?

exec sql select balance
into :balance
from account
where account_id=:id;

balance=balance+10;

exec sql update account

set balance=:balance
where account_id=:id;

exec sql declare cursor c for

select balance
from account
where account_id=:id;

exec sql open cursor c
exec sql fetch c into :balance
balance=balance+10;

exec sql update account

set balance=:balance
where current of cusor c;

exec sql close c;

• Most SQL-systems keep a shared lock on the

record currently addressed by a cursor.

The isolation and access-mode can be set using the
SET TRANSACTION command. The following
command declares the current to be SERIALIZABLE
and READ ONLY:

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

