Multiver sion Database
Systems

and

Multiversion Concurrency
Control

Monoversion database systems

Update_in_place (disks) — it violates accounting practice that

has been observed for centuries. It destroys data (the old
version), and if data has value, then update_in_place destroys
value.

Degree of concurrency — problem of the so called audit

transaction.

S:TLir(x) T2:r(x,y) T2:w(x,y) T2:c Tl:r(y)il:c
The schedule is not serializable in monoversion’s environment.

Compatibility matrix:

operation| read(x) | write(x)

operation
read(x) 4 -
write(x) - -

Multiversion data item

There have been several proposals for systems ichwh
data items are never altered; rather, a data item i
considered to havehastory.

A data item is not updated but evolves as inforomats
added. The process consists in creating a new \aide
appending it to the data item history as the degm’s
current value. Such a data item is caliednultiversion
data item.

A multiversion data item can be defined as follows (a sequence
of versions):

x=(n, (), V..., V)

where v denotes an i-th version of the data item x (a value)

A multiversion data item can be also defined as follows (a
history):

x = (n, (P[to, t1]), (V}[t1, t2]), ..., (Ntk, *]))

where ¥, V!, ..., is a sequence of values of consecutive
versions, and to, t1, t2, tk is an increasing tsmquence.

This is interpreted as follows: between time to &hdhe
data item x had value’. At time t1 it was updated to

valuev', and at time tk the most recent update was made.

Each transaction is assigned a time at which itttzat is,
a time at which all its reads and writes are irmetgn.

Reading a data item, transaction T, assigned tattime
t3, gets the value of the data item at that time.

Example:

S:TLir(x) T2:r(x,y) T2:w(x,y) T2:c Tl:r(y)il:c

Assume that at the beginning data items x and ¥ lia&
following histories:

x=(x0); y=(y0)
The schedule is not serializable in a monoversatalthse
system; however, it is correct if both data itemard y
are multiversioned.

The equivalent serial schedule is the following:

Seriai TLi1(X, y) Tlic T2:r(x,y) T2:w(x, y)T2:c

Multiversion Schedule

A multiversion schedule mvsf a set of transactionsis a triple:

VD) = (Tna(1) , <mvs 1),
where:

1. Tmys(:THr-lTiUTo Ut
2. <mVSDTHr—<i X

3. h: Tmvi— Tmve is a function that maps each read
operation £i(x) 0 Tmvs(t)} into a write operationj(x) 0
Tmvs(1)}, in such a way that for each read operatigr)

0 Tmve(), if h(ri(x)) = W;(X), thenw;(x) <mysri(X).

According to the monoversion serializability criter, a
given concurrent monoversion schedule is corredtig
equivalent to a serial monoversion schedule.

Isit possible to extend this definition for
multiver sion schedules?

Example:
Assume that DB consists of a single data item xufes
initially that x=(x0=1000).
Given 3 transactions increasing the value of x 690L—
Ti={x=x+ 1000}, i=1, 2, 3.
Consider the following serial schedule of T1, T2] &i3.
Sseriai T1: 1(x0) T1: w(x0+1000) T1:c

T2:r(x0) T2:w(x0+1000) T2:c

T3:r(x0) T3:w(x0+1000) T3:c
The final DB state is the following:

X = (X0, x1, x2, x3)

where x0=1000; x1=2000; x2=2000; x3=2000

The multiversion serial schedule is incorrect!

Standard serial multiversion schedule

A serial multiversion schedule mug(is standardif each
read operatioffj : r(x) accesses the version of a data item
x created by the last write operatidj: w(x) precedingTi

1 1(x). In other words, a serial multiversion schedule is
standard if there is no such write operafign: w(x) that
the following condition is fulfilled:

h(Ti : r(x)) <mvsTk : W(X) <mvsTi : r(x)

Multiversion serializability criterion

A multiversion schedulemvgt) of a set of
transactions T is multiversion serializable
(correct) if it is equivalent to any standard serial
multiversion schedule of the set of transactions

Multiversion Two-Phase L ocking
Algorithm

(two-version data model)

The concept of multiversion 2PL is broader than the
concept of monoversion 2PL.

Each transaction initiated in the system and earkion

of a data item iscertified or uncertified When a
transaction begins, it is uncertified. Similarlyach new
version prepared in the transaction’s workspace is
uncertified.

A certify operation is introduced and a new lock med
the certify lock is introduced. Cerify locks are tunaily
incompatible.

Any read operation r(x) concerns the last certifiedsion
of a data item x or any uncertified version of thista
item. Any write operation w(x) prepares a new vansof
x in the workspace of the transaction. At the end of
transaction execution the transaction and new eessof
data items prepared are being certified. The ozatibn
procedure consists of certify-locking of all datiems that
the transaction accessed to write. The Ti certificais

completed when all certify locks are set and tHiefang
conditions are satisfied:

« At the moment of ti's certification the versions aff
data items read by Ti are certified;

« For each data item x that Ti wrote, all transactitimat
read certified versions of x are also certified.

Inorder to satisfy the second condition a certditen is
allocated to each data item x to forbid readingifted
versions of x other than the last one.

Compatibility matrix

\cw
w C

Requested lock
R
W
C

[RENESE:]
N
1

ii) Ts
C
« replace
N
X X'rA

Readx, tid) begin
B: if (LOCK(x, tid) =C)
then begin
< insert into queue(x) and wait (until lock manageakes
up the transaction)>;

go to B;
end;
else begin
LOCK(x, tid) — R;
<read x >;
end;
end Read,;

Write(x, tid) begin
B: if (LOCK(x, tid) =0 or LOCK(x, tid) =R)
then begin
LOCK(X, tid) — W;
< create new version x' >;
end;
else begin
<insert into queue(X) and wait (until lock manageakes
up the transaction)>;
go to B;
end;
end W_lock;

Certify(x, tid) begin
B: if (number_of_read_locks_on_x = 0) then begin
LOCK(X, tid) ~ C;
< replace old version x with x' >;
end;
else begin
< wait (until lock manager wakes up the transac}gn
goto B;
end;
end Certify;

1

Example:

S:TLir(x) T1:r(y) T1:r(z) T2:r(y) T1: w(z¥1l:c
T3:r(x) T3:w(y) T2:w(y) T2:c T3:r(z) T3{m) T3:c

The schedule is incorrect in monoversion databgstem due to
cycle

T2

T1

/\.
k—>T3

However, the algorithm correctly serialize the @pens
and the schedule is multiversion serializable.

Multiversion Timestamp Ordering

Method
T, T, T,
- 0 1
X X-I-U XT]
y= | "
z= z% z%}
Each multiversion data itenx=<xQ, X1, ..., > is

represented by its history:

H(x) = {(Read_TS@), Write_TS(®), ..., (Read_TSf,
Write_TS(%)},

The pair{(Read_TS(@, Write_TS(R} is called aistory

of a version x A history consists of two timestamps:

. Read_TS(¥ — is assigned the largest timestamp of a
completed transaction that read this version; uhgl
first transaction that has read the version coraplehe
timestamp Read_TS(xhas the value Write_TS{x

- Write_TS() - is assigned the value of the timestamp of
the transaction that created (wrote) this version.

The history H(x)={(1, 5), (8, 10), (13, 18), (19, 19)}
means that the data item x has four versions (X0xg,
x3), created at times 1, 8, 13, and 19.

Reed Algorithm

Read(T, x) begin

<read %, such thaWrite_TSx,) = max {Write_TSx) :

Write_TSx) < TS(Tj)} >;
if (Read_T$x) < TS(T;)) then
Read_T®x) ~ TS(T);
endRead

Write(T;, X) begin
if (exists ¥, such that
Write_TSx)<TS(T;)< Read_T$x))
then
< abort T; and restart it with a new timestamp >;
else begin
< write X >;
Write_TSx), Read_T%x) ~ TS(Ti);
end;
endWrite;

Example:

Consider the execution of four operations perforred
data item x: two read operations by transactionsaid
T2, and two write operations by transactions T3 &Ad

Let TS(T1)=3, TS(T2)=11, TS(T3)=15 and TS(T4)=20.

Assume that the history of x is the following:
H(X)={(1, 5), (8, 10), (13, 18), (19, 19)}

