

Buffer Manager

Buffer Management

The database buffer is the mediator between the basic
file system and the tuple oriented file system. The buffer
manager’s task is to make the pages addressable in main
memory and to coordinate the writing of pages to disk
with the log manager and the recovery manager. It
should also minimize the number of actual disk accesses
for doing that.

1 Functional Principles of the Database Buffer

Each relation is can be mapped onto many files (each
file containing data from one relation only). Each file is
viewed as a set of equal-sized pages. All the database
access modules (responsible for providing associative
access, implementing joins, etc.) operate on the basis of
page abstractions. Each tuple is located by specifying
the identifier of the page in which it is stored, and the
offset within that page. A page identifier has the
following structure:

typedef struct
 (FILENO fileno; /*file to which the page

 belongs
 unsigned int pageno; /* page number in the

 file
) PAGEID, *PAGEIDP;

The page numbers grow monotonically, starting from 0,
within each file. Each page of that file system is the
contents of the block with the same number in the
corresponding basic file.

The database access modules reference their objects by
addresses that are tuples of the type (PAGEID, offset).
For executing instructions on such objects, however,
these objects must be located in some process’s virtual
memory. Moving pages between a disk and the buffer
pool is the buffer manager’s basic function.

The buffer manager administers a segment in virtual
memory, which is partitioned into portions of the equal
size called frames. We assume that each frame can hold
exactly one page.

• Buffer per file
• Buffer per page size
• Buffer per file type

The database buffer can be declared as a simple data
structure:

What is the difference between a conventional file
buffer and a database buffer?

1. The caller is not returned a copy of the requested page

into his address space; he gets back an address of the
page in the buffer manager’s domain (to avoid
anomalies, like ‘lost update”).

2. As a consequence of a page request, other pages
(probably not related to the transaction issuing the
request) can be written. If the page is modified the
buffer manager is informed, but it will essentially
decide by its own criteria when the modified page is
written out to disk.

The buffer manager provides:

• Sharing. Pages are made addressable in the buffer

pool, which is an area of shared virtual memory
accessible to all processes that run the database code.

• Addressability. Each access module is returned an
address in the buffer pool, denoting the beginning of
the frame containing the requested page.

• Semaphore protection. Many processes can request
accesses to the same page at the same time; the buffer
manager gives them the same frame address. The
synchronization of these parallel accesses in order to
preserve serializability is not the buffer manager
problem. It has only to provide a semaphore per page
that can be used for implementing e.g. locking
protocol.

• Durable storage. The access modules inform the
buffer manager if their page access has modified the
page, however, the page is written out to disk by the
buffer manager, probably, at a time when update
transaction is already committed.

All service requests to the buffer manager refer (via
pointer) to a buffer access control block that is declared
as follows:

typedef struct
 (PAGEID pageid; /*id of page in file
 PAGEPTR pageaddr; /*base address of

page in buffer pool
this entry is set by
buffer manager

 int index; /*record within page
 semaphore* pagesem; /*pointer to the

semaphore for the
page

 Boolean modified; /*flag – modified
page

 Boolean invalid; /*flag – destroyed
page

) BUFFER_ACC_CB, *BUFFER_ACC_CB;

The control block tells the caller what he has to know
for accessing the requested page in the buffer. Both
modified and invalid flags are initialized to FALSE. It
may happen that for some reason the caller fails to
function properly. The transaction must be aborted, and
the buffer manager must be informed that the page
contains the garbage. this is indicated by setting the flag
to TRUE.

The call that fills in the buffer access control block is
defined by the following function:

Boolean bufferfix (PAGEID pageid, LOCK_MODE

mode, BUFFER_ACC_CBP*
address);

/*returns TRUE if the page could be allocated, FALSE
/*otherwise, if it is allocated the address of the first byte
/*of the page header in the buffer pool is returned in
/*BUFFER_ACC_CB. The fix count is increased by 1.
/*The semaphore protecting the page is acquired in the
/*requested mode (shared or exclusive).

To provide the correct access to frames, database
systems typically use the FIX-USE-UNFIX protocol.

FIX . The client requests access to a page using the

bufferfix interface. The page is fixed in the buffer,
that is, it is not eligible for replacement.

USE. The client uses the page with the guarantee that

the pointer to the frame containing the page will
remain valid.

UNFIX . The client explicitly waives further usage of the

frame pointer, that is, it tells the buffer manager that
it no longer wants to use that page. The buffer
manager can therefore unfix the page, which means
that the page is eligible for replacement.

The interface for unfixing a page is defined as follows:

Boolean bufferunfix (BUFFER_ACC_CBP);
/*returns TRUE if the page could be unfixed, otherwise
/*FALSE. If the unfix is possible, the fix counter is
/*decreased y 1. If the transaction has multiple fixes on
/*the page, it must issue the corresponding number of
/*unfix operations.

Several concurrent transactions can share concurrent
access to a buffer page at the same time. In that case,
each transaction is given the same pointer to the buffer
pool, and each transaction fixes the page. If one
transaction unfixes the page, the page does not become
eligible for replacement.

Al modules operating at the buffer interface must
strictly follow the FIX-USE-UNFIX protocol, with the
additional requirements of keeping the duration of a fix
as short as possible (even if a module knows that it
might need access to a page again later on).

The FIX-USE-UNFIX operations are among the most
frequently used primitives in a database system, and
thus should be very fast.

Two additional operations are needed during normal
processing.

Boolean emptyfix(PAGEID pageid, LOCK_MODE

mode, BUFFER_ACC_CBP*
address);

/*returns TRUE if the page could be allocated, FALSE
/*otherwise. The function requests empty page to be
/*allocated in buffer. The identifier of the empty page
/*has to be provided by the caller. The buffer manager
/*returns a pointer to the buffer access CB like
/*bufferfix.

Whenever a page that was modified in the buffer pool
by a successful transaction is to be replaced, it must be
forced to durable storage, before it can be removed from
the buffer pool. Since the basic file system is not
accessible to the higher-level modules, they cannot issue
a write operation. This has to be done by the buffer
manager, so, there must be an interface for telling him
about it.

Boolean flush (BUFFER_ACC_CBP);
/*returns TRUE if the page was written to the file,
/*otherwise FALSE. The page is written to its block in
/*the file. The modified flag is set to FALSE, and the
/*page remains in the buffer. This function can be called
/*by any client. The buffer manager will acquire a
/*shared semaphore on the page while writing it.

2 Logging and Recovery from the Buffer’s
Perspective

The buffer manager is completely autonomous in
handling the incoming requests. The decision which
(modified) page and when write out to disk is left to the
buffer manager. The buffer manager may apply LRU
buffering to optimize overall system performance. Is it
true?

It is true when we are talking about “normal” (non-
transactional) file buffer. However, in a transactional
system, the buffer manager must make sure not to
violate the ACID properties, this requires some
synchronization with both the log manager and the
transaction manager.

Each time the page is written out to disk after
modification, the old state of that page is lost. On the
other hand, if a transaction modifies a page and then
commits, and the buffer manager has not yet written that
page to disk, a subsequent crash will leave a file system
with the old (invalid) page.

Therefore, if the buffer manager decides to write out a
modified page belonging to an incomplete transaction,
atomicity can be violated; if it does not write out the
modified page of a committed transaction, durability
can be violated.

The buffer manager’s rule in preserving transaction
atomicity and durability

State of
transaction

Page A Page B State of the
 database

Aborted In buffer
(old)

In buffer
(old)

Consistent
(old)

Aborted In buffer
(old)

On disk
(new)

Inconsistent

Aborted On disk
(new)

In buffer
(old)

Inconsistent

Aborted On disk
(new)

On disk
(new)

Inconsistent

Committed In buffer
(old)

In buffer
(old)

Inconsistent

Committed In buffer
(old)

On disk
(new)

Inconsistent

Committed On disk
(new)

In buffer
(old)

Inconsistent

Committed On disk
(new)

On disk
(new)

Consistent
(new)

At the time of crash, a page is either “in buffer” or “on
disk”. If “in buffer”, then after the crash only the old
state is available. If “on disk”, then after the crash only
the new state is available.

If the transaction T modifies two pages, A and B, and if
there are completely autonomous decisions by the
buffer manager, then any of the eight constellations
shown above can occur.

In order to guarantee the correct execution of recovery
during restart, the buffer manager and the log manager
have to exchange information at run time that indicates
whether a given log entry should be applied to a page in
the database. The simplest way to do this is to assign a
state identifier or version number to a page and to
record with each log entry the value of the state
identifier of the page to which it refers. During
recovery, the state of the page found on disk can then be
compared with the state recorded with the log entry. To
this purpose we use the log sequence numbers (LSN).

There are three rules governing the interaction between
the buffer manager, the log manager, and the recovery
manager that take care of the LSN dependencies: the fix
rule, the write-ahead-log rule, and the force-at-commit
rule. One should keep in mind, however, that these rules
essentially constraint the buffer manager’s autonomy of
when to write which page to disk.

Some buffer managers restrict themselves to a smaller
class of protocols either to simplify the implementation
or to optimize system performance.

Steal versus No-Steal Buffer Management

A page with modifications by an uncommitted
transaction is a dirty page until either commit or
rollback processing for that transaction has been
completed. The buffer manager can either distinguish
dirty pages from clean pages when deciding which page
to remove from the buffer pool, or it can ignore the
update status of a page.

In the later case, the buffer manager uses a steal policy,
which means pages can be written out to disk even if the
transaction having modified the pages is still active.

The alternative is the no-steal policy, in which case all
dirty pages are retained in the buffer pool until the final
outcome of the transaction has been determined.

Advantages:

The steal policy implies that rollback of a transaction
requires access to pages on disk in order to reestablish
their old state.

With the no-steal policy, no page on disk ever has to be
touched when rolling back a transaction. Consequently,
no log information for UNDO procedure will be needed.
Roll back of a transaction during normal processing is
also facilitated by the no-steal policy since all pages
modified by such a transaction are simply marked
“invalid” by the buffer manager. The problem with this
policy is the size of the buffer pool + necessity of page
locking.

Force versus No-Force Buffer Management

Force versus no-force concerns writing of clean pages
from the buffer pool. The simple question here is: who
decide, and when, that a modified page is written out to
disk? There are two basic approaches:

Force policy. At phase 1 of a transaction’s commit,

the buffer manager locates all pages modified by
that transaction and writes the pages to disk.

No-force policy. This is the liberal counterpart. A page,

whether modified or not, stays in the buffer as long
as it is still needed. Only if it becomes the
replacement victim it will be written to disk.

Advantage of the force policy – it avoids any REDO
recovery during restart. If transaction is successfully
committed, then, by definition, all its modified pages
must be on disk.

Why not use it as a standard buffer management policy?

Because of “hotspot” pages.

The force policy simplifies restart, because no work
needs to be done for transactions that committed before
the crash – it avoids REDO. The price for that is
significantly more I/O for frequently modified pages.
Another drawback is that a transaction will not be
completed before the last write has been executed
successfully, and the response time may be increased
significantly as a consequence. With no-force policy,
the only synchronous write operation goes to the log,
and the volume of data to be written is usually about
two orders of magnitude less.

