
 1

Multiversion Database
Systems

and

Multiversion Concurrency

Control

 2

Monoversion database systems

• Update_in_place (disks) – it violates accounting practice that

has been observed for centuries. It destroys data (the old
version), and if data has value, then update_in_place destroys
value.

• Degree of concurrency – problem of the so called audit
transaction.

S: T1: r(x) T2: r(x, y) T2: w(x, y) T2: c T1: r(y) T1: c

The schedule is not serializable in monoversion’s environment.

Compatibility matrix:

operation

operation

read(x) write(x)

read(x) 4 −
write(x) − −

 3

Multiversion data item

There have been several proposals for systems in which
data items are never altered; rather, a data item is
considered to have a history.

A data item is not updated but evolves as information is
added. The process consists in creating a new value and
appending it to the data item history as the data item’s
current value. Such a data item is called a multiversion
data item.

A multiversion data item can be defined as follows (a sequence
of versions):

 x = (n, (v0, v1, ..., vk))
where vi denotes an i-th version of the data item x (a value)

A multiversion data item can be also defined as follows (a
history):

 x = (n, (v0[to, t1]), (v1[t1, t2]), ..., (vk[tk, *]))

where v0, v1, ..., vk is a sequence of values of consecutive
versions, and to, t1, t2, tk is an increasing time sequence.

 4

This is interpreted as follows: between time to and t1, the
data item x had value v0. At time t1 it was updated to
value v1, and at time tk the most recent update was made.

Each transaction is assigned a time at which it ran, that is,
a time at which all its reads and writes are interpreted.

Reading a data item, transaction T, assigned to run at time
t3, gets the value of the data item at that time.

Example:

S: T1: r(x) T2: r(x, y) T2: w(x, y) T2: c T1: r(y) T1: c

Assume that at the beginning data items x and y have the
following histories:

 x = (x0); y = (y0)

The schedule is not serializable in a monoversion database
system; however, it is correct if both data items x and y
are multiversioned.

The equivalent serial schedule is the following:

 Sserial: T1: r(x, y) T1: c T2: r(x, y) T2: w(x, y) T2: c

 5

Multiversion Schedule

A multiversion schedule mvs of a set of transactions τ is a triple:

mvs(τ) = (Tmvs (τ) , pmvs , h),
where:

; 0

 =)(.1 fi TTT
iT

mvsT UUC
τ

τ
∈

;

 .2 C pp

τ∈
⊇

iT
imvs

3. h : mvsT → mvsT is a function that maps each read
operation {ri(x) ∈ mvsT (τ)} into a write operation {wj(x) ∈

mvsT (τ)}, in such a way that for each read operation r i(x)
∈ mvsT (τ), if h(ri(x)) = wj(x), then wj(x) pmvs r i(x).

According to the monoversion serializability criterion, a
given concurrent monoversion schedule is correct if it is
equivalent to a serial monoversion schedule.

Is it possible to extend this definition for
multiversion schedules?

 6

Example:

Assume that DB consists of a single data item x. Assume
initially that x=(x0=1000).
Given 3 transactions increasing the value of x by 1000 –
Ti = { x= x + 1000}, i=1, 2, 3.

Consider the following serial schedule of T1, T2, and T3.

Sserial: T1: r(x0) T1: w(x0+1000) T1: c

T2: r(x0) T2: w(x0+1000) T2: c
T3: r(x0) T3: w(x0+1000) T3: c

The final DB state is the following:

 x = (x0, x1, x2, x3)

where x0=1000; x1=2000; x2=2000; x3=2000

The multiversion serial schedule is incorrect!

 7

Standard serial multiversion schedule

A serial multiversion schedule mvs(τ) is standard if each
read operation Ti : r(x) accesses the version of a data item
x created by the last write operation Tj : w(x) preceding Ti
: r(x). In other words, a serial multiversion schedule is
standard if there is no such write operation Tk : w(x) that
the following condition is fulfilled:

h(Ti : r(x)) pmvs Tk : w(x) pmvs Ti : r(x)

Multiversion serializability criterion

A multiversion schedule mvs(τ) of a set of
transactions τ is multiversion serializable
(correct) if it is equivalent to any standard serial
multiversion schedule of the set of transactions τ.

 8

Multiversion Two-Phase Locking
Algorithm

(two-version data model)

The concept of multiversion 2PL is broader than the
concept of monoversion 2PL.

Each transaction initiated in the system and each version
of a data item is certified or uncertified. When a
transaction begins, it is uncertified. Similarly, each new
version prepared in the transaction’s workspace is
uncertified.

A certify operation is introduced and a new lock mode –
the certify lock is introduced. Cerify locks are mutually
incompatible.

Any read operation r(x) concerns the last certified version
of a data item x or any uncertified version of this data
item. Any write operation w(x) prepares a new version of
x in the workspace of the transaction. At the end of
transaction execution the transaction and new versions of
data items prepared are being certified. The certification
procedure consists of certify-locking of all data items that
the transaction accessed to write. The Ti certification is

 9

completed when all certify locks are set and the following
conditions are satisfied:

• At the moment of ti’s certification the versions of all
data items read by Ti are certified;

• For each data item x that Ti wrote, all transactions that
read certified versions of x are also certified.

Inorder to satisfy the second condition a certify token is
allocated to each data item x to forbid reading certified
versions of x other than the last one.

Compatibility matrix

Current lock

Requested lock

R

W

C

R 4 4 −
W 4 − −
C − − −

 10

X

T1

T2

T3

T4

X'T4

R
R

R

W

T3

C

X X'T4

new
version replace

i) ii)

Read(x, tid) begin

B: if (LOCK(x, tid) = C)
then begin

< insert into queue(x) and wait (until lock manager wakes
up the transaction)>;

go to B;
end;
else begin
LOCK(x, tid) ← R;
< read x >;
end;

end Read;

 11

Write(x, tid) begin
B: if (LOCK(x, tid) = 0 or LOCK(x, tid) = R)

then begin
LOCK(X, tid) ← W;
< create new version x' >;

end;
else begin

< insert into queue(X) and wait (until lock manager wakes
up the transaction)>;

go to B;
end;

end W_lock;

Certify(x, tid) begin

B: if (number_of_read_locks_on_x = 0) then begin
LOCK(X, tid) ← C;
< replace old version x with x' >;

end;
else begin

< wait (until lock manager wakes up the transaction)>;
go to B;

end;
end Certify;

 12

Example:

S: T1: r(x) T1: r(y) T1: r(z) T2: r(y) T1: w(z) T1:c

T3: r(x) T3: w(y) T2: w(y) T2:c T3: r(z) T3:w(z) T3: c

The schedule is incorrect in monoversion database system due to
cycle

However, the algorithm correctly serialize the operations
and the schedule is multiversion serializable.

T1

T2

T3

 13

Multiversion Timestamp Ordering
Method

x =

y =

z =

x0
T
0

y0
T
0

z0
T
0

x3
T
3

y0
T
0

z1
T
3

x1
T
1

y0
T
0

z0
T
0

y1
T
2

z0
T
0

T1 T2

x2
T
2

T3

Each multiversion data item x=<x0, x1, ..., xn> is
represented by its history:

H(x) = {(Read_TS(x0), Write_TS(x0), ..., (Read_TS(xn),

Write_TS(xn)},

 14

The pair {(Read_TS(xi), Write_TS(xi)} is called a history
of a version xi. A history consists of two timestamps:

•••• Read_TS(xi) – is assigned the largest timestamp of a

completed transaction that read this version; until the
first transaction that has read the version completes, the
timestamp Read_TS(xi) has the value Write_TS(xi).

•••• Write_TS(xi) - is assigned the value of the timestamp of
the transaction that created (wrote) this version.

The history H(x)={(1, 5), (8, 10), (13, 18), (19, 19)}
means that the data item x has four versions (x0, x1, x2,
x3), created at times 1, 8, 13, and 19.

 15

Reed Algorithm

Read(Ti, x) begin

< read xk , such that Write_TS(xk) = max {Write_TS(xj) :
Write_TS(xj) ≤ TS(Ti)} >;

if (Read_TS(xk) < TS(Ti)) then
Read_TS(xk) ← TS(Ti);

end Read;

Write(Ti, x) begin
if (exists xk , such that

Write_TS(xk)≤TS(Ti)≤ Read_TS(xk))
then

< abort Ti and restart it with a new timestamp >;
else begin

< write xk >;
Write_TS(xk), Read_TS(xk) ← TS(Ti);

end;
end Write;

 16

Example:

Consider the execution of four operations performed on a
data item x: two read operations by transactions T1 and
T2, and two write operations by transactions T3 and T4.
Let TS(T1)=3, TS(T2)=11, TS(T3)=15 and TS(T4)=20.

Assume that the history of x is the following:
 H(x)={(1, 5), (8, 10), (13, 18), (19, 19)}

