

HASH-BASED INDEXING

The basic idea of hashing is to use a hashing function,
which maps values in a search field into a range of bucket
numbers to find the page on which a desired data entry
belongs. The basic Static External Hashing scheme
suffers from the problem of long overflow chains, which
can affect performance.

Hash-based indexing techniques cannot support range
searches. Tree-based indexing techniques can support
range searches efficiently and are almost as good as hash-
based indexing for equality selections. Thus many
commercial systems choose to support only tree-based
indexes. Nonetheless, hashing techniques prove to be very
useful in implementing relational operations such as joins.

1. STATIC HASHING

The pages containing the data can be viewed as collection
of buckets, with one primary page and possibly
additional overflow pages per bucket. A file consists of
buckets 0 through N-1, with one primary page per bucket
initially.

0

1

2

N - 1

h

h(key) mod N

key

Primary bucket pages Overflow pages

Figure 6.1 Static Hashing

• To search for a data entry, we apply a hash function h
to identify the bucket to which it belongs and then
search this bucket. To speed the search of a bucket, we
can maintain data entries in sorted order by search key
value.

• In order to insert a data entry, we use the hash function

to identify the correct bucket and then put the data entry
there. If there is no space for this data entry, we allocate
a new overflow page, put the data entry on this page,
and add this page to overflow chain of the bucket.

• To delete a data entry, we use the hashing function to

identify the correct bucket, locate the data entry by
searching the bucket, and then remove it. If this data
entry is the last in a overflow page, the overflow page is
removed from the overflow chain of the bucket and
added to a list of free pages.

• Since the number of buckets in a static hashed file is
known when the file is created, the primary pages can
be stored on successive disk pages. Thus a search
ideally requires just one disk I/O, and insert and delete
operations require two I/Os (read and write the page),
although the cost could be higher in the presence of
overflow pages.

• As the file grows, long overflow chains can develop.

Since searching a bucket requires searching all pages in
its overflow chain, performance deteriorates.

• The main problem with Static Hashing is that the

number of buckets is fixed. If a file shrinks greatly, a lot
of space is wasted, if a file grows a lot, long overflow
chains develop, resulting in poor performance. One
alternative is to periodically ‘rehash’ the file to restore
the ideal situation (no overflow chains, about 80%
occupancy). However, rehashing takes time and the
index cannot be used while rehashing is in progress.

2. EXTENDIBLE HASHING

Idea: to overcome the problem with inserting a new data
entry into a full bucket, use a directory of pointers to
buckets, and double the size of number of buckets by
doubling just the directory and splitting only the bucket
that overflowed.

Example:

4

2

12 32 16

1

2

5 21

10

2

15

2

7 19

2

DIRECTORY

DATA PAGES

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH

GLOBAL DEPTH

Data entry r
with h(r)=32

00

01

10

11

Figure 6.2 Example of an Extendible Hashed File

The directory consists of an array of size 4, with each
element being a pointer to a bucket. To locate a data entry,
we apply a hash function to the search field and take the
last two bits of its binary representation to get a number
between 0 and 3. The pointer in this array position gives
us the desired bucket; we assume that each bucket can
hold four data entries. Thus to locate a data entry (e.g. 13)
with hash value 5 (binary 101), we look at directory
element 01 and follow the pointer to the data page (bucket
B).

Let us consider insertion of a data entry into a full bucket.
Consider the insertion of data entry 20 (binary 10100).
Looking at directory element 00, we are led to bucket A,
which is already full. We must first split the bucket by
allocating a new bucket and redistributing the contents
(including the new entry to be inserted) across the old
bucket and its ‘split image’. To redistribute entries across
the old bucket and its split image, we consider the last
three bits of h(r); the last two bits are 00, indicating a data
entry that belongs to one of these two buckets, and the
third bit discriminates between these buckets. The
redistribution of entries is illustrated in Figure 4.

Figure 6.3 After Inserting Entry r with h(r)=13

4

2

12 32 16

1

2

5 21 13

10

2

15

2

7 19

2

DIRECTORY

DATA PAGES

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH

GLOBAL DEPTH

00

01

10

11

Notice a problem that we must now resolve - we need
three bits to discriminate between two of our data pages
(A and A2), but the directory has only enough slots to
store all two-bit patterns.

Figure 6.4 While Inserting Entry r with h(r)=20

2

32 16

1

2

5 21 13

10

2

15

2

7 19

2

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH

GLOBAL DEPTH

00

01

10

11

4

2

12 20 Bucket A2 (split image of bucket A)

The solution is to double the directory. Elements that
differ only in the third bit from the end are said to
‘correspond’: corresponding elements of the directory
point to the same bucket with the exception of the
elements corresponding to the split bucket. In our
example, bucket 0 was split so, new directory element 000
points to one of the split versions and element 100 points
to the other. The sample file after completing all steps in
the insertion of 20 is shown in Figure 5.

Figure 6.5 After Inserting Entry r with h(r)=20

3

32 16

1

2

5 21 13

10

2

15

2

7 19

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH

GLOBAL DEPTH

000

4

3

12 20 Bucket A2 (split image of bucket A)

001

010

011

100

101

110

111

We observe that the basic technique used in Extendible
Hashing is to treat the result of applying a hash function h
as a binary number and to interpret the last d bits, where d
depends on the size of directory, as an offset into the
directory. The number d is called the global depth of the
hashed file and is kept as part of the header of the file. It is
used every time we need to locate a data entry.

Question: whether splitting a bucket necessitates a
directory doubling?

We now insert 9, it belongs in bucket B; this bucket is
already full. We can deal with this situation by splitting
the bucket and using directory elements 001 and 101 to
point to the bucket and its split image, as shown in Figure
6.

In order to differentiate between these cases, and
determine whether a directory doubling is needed, we
maintain a local depth for each bucket. If a bucket whose
local depth is equal to the global depth is split, the
directory must be doubled.

Figure 6.6 After Inserting Entry r with h(r)=9

3

32 16

1

3

9

10

2

15

2

7 19

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH

GLOBAL DEPTH

000

4

3

12 20 Bucket A2 (split image of bucket A)

001

010

011

100

101

110

111

3

5 21 13 Bucket B2 (split image of bucket B)

Initially, all local depths are equal to the global depth
(which is the number of bits needed to express the total
number of buckets). We increment the global depth by 1
each time the directory doubles. Also, whenever a bucket
is split (whether or not the split leads to a directory
doubling), we increment by 1 the local depth of the split
bucket and assign this same (incremented) local depth to
its (newly created) split image. Intuitively, if a bucket has
local depth l, the hash values of data entries in it agree
upon the last l bits; further, no data entry in any other
bucket of the file has hash value with the same last l bits.
A total of 2d-l directory elements point to a bucket with
local depth l; if d = l, exactly one directory element is
pointing to the bucket, and splitting such a bucket requires
directory doubling.

A final point to note is that we can also use the first d bits
(the most significant bits) instead of the last d (least
significant bits), but in practice the last d bits are used.
The reason is that a directory can be doubled simply by
coping it.

For deletes, the data entry is located and removed. If the
delete leaves the bucket empty, it can be merged with its
split image, although this step is often omitted in practice.
Merging buckets decreases the local depth. If each
directory entry element points to the same bucket as its
split image, we can halve the directory and reduce the
global depth, although this step is not necessary for
correctness.

On the other hand, the directory grows in spurts and
can become large for skewed data distributions (where our
assumption that data pages contain roughly equal numbers
of data entries is not valid). In the context of hashed files,
a skewed data distribution is one in which the
distribution of hashed-values of search field values (rather
than the distribution of search field values themselves) is
skewed (very ‘bursty’ or not uniform). Even if the
distribution of search values is skewed, the choice of a
good hashing function typically yields a fairly uniform
distribution of hash-values; skew is therefore not a
problem in practice.

3. LINEAR HASHING

The scheme utilizes a family of hash functions h0, h1, h2,
... , with the property that each function’s range is twice
that of its predecessor. That is, if hi maps a data entry into
one of M buckets, hi+1 maps a data entry into 2M buckets.
Such a family is typically obtained by choosing a hash
function h and an initial number N of buckets, and
defining hi(value) = h(value) mod (2iN). If N is chosen to
be a power of 2, then we apply h and look at the last di
bits; d0 is the number of bits needed to represent N, and di
= d0 + i. Typically we choose h to be a function that maps
a data entry to some integer.

The idea is best understood in terms of rounds of
splitting. During round number Level, only hash functions
hlevel and hlevel+1 are in use. The buckets in the file at the
beginning of the round are split, one by one from the first
to the last bucket, thereby doubling the number of buckets.
At any given point within a round, therefore, we have
buckets that have been split, buckets that are yet to be
split, and buckets created by splits in this round, as
illustrated in Figure 6.7.

Consider how we search for a data entry with a given
search key value. We apply hash function hlevel, and if this
leads us to one of the unsplit buckets, we simply look
there. If it leads us to one of the split buckets, the entry
may be there or it may have been moved to the new
bucket created earlier in this round by splitting this
bucket; to determine which of these two buckets contains
the entry, we apply hlevel+1.

Figure 6.7 Buckets during a Round in Linear Hashing

Bucket to be split Next

Buckets that existed at the
beginning of this round:
this is range of hLevel

'split image' buckets:
created (through splitting
of other buckets) in this round

Buckets split in this round:
If hLevel(search key value)
is in this range, must use
hLevel+1(search key value)
to decide if entry is in
split image bucket.

We now describe Linear Hashing in more detail. A
counter Level is used to indicate the current round number
and is initialized to 0. The bucket to split is denoted by
Next and is initially bucket 0 (the first bucket). We denote
the number of buckets in the file at the beginning of round
Level by NLevel. We can easily verify that NLevel = N *
2Level. Let the number of buckets at the beginning of round
0, denoted by N0, be N. We show a small linear hashed file
in Figure 6.8. Each bucket can hold four data entries, and
the file initially contains four buckets, as shown in the
figure.

Next=0

31 35 7 11

14 18 10 30

9 25 5

32 44 36

PRIMARY
PAGES

Level=0, N=4

00

01

10

11

000

001

010

011

h0h1

This information is
for illustration only

The actual contents of
the linear hashed file

Figure 6.8 Example of a Linear Hashed File

Data entry r
with h(r)=5

Primary
bucket page

We have considerable flexibility in how to trigger a split,
thanks to the use of overflow pages. We can split
whenever a new overflow page is added, or we can
impose additional conditions based on conditions such as
space utilization. For our examples, a split is ‘triggered’
when inserting a new data entry causes the creation of an
overflow page.

Whenever a split is triggered the Next bucket is split, and
hash function hLevel+1 redistributes entries between this
bucket (say bucket number b) and its split image; the split
image is therefore bucket number b + NLevel. After splitting
a bucket, the value of Next is incremented by 1. In this
example file, insertion of data entry 43 triggers a split.
The file after completing the insertion is shown in Figure
6.9.

At any time in the middle of round Level, all buckets
above bucket Next have been split, and the file contains
buckets that are their split images, as illustrated in Figure
7. Buckets Next through NLevel have not yet been split. If
we use hLevel on a data entry and obtain a number b in the
range Next through NLevel, the data entry belongs to bucket
b. For example, h0(18) is 2; since this value is between
current values of Next (=1) and N1 (=4), this bucket has
not been split.

Next=1

14 18 10 30

9 25 5

32

PRIMARY
PAGES

Level=0

00

01

10

11

000

001

010

011

h0h1

Figure 6.9 After Inserting Record r with h(r)=43

OVERFLOW
PAGES

00 44 36100

4331 35 7 11

However, if we obtain a number b in range 0 through
Next, the data entry may be in this bucket or in its split
image (which is bucket number b + NLevel); we have to use
hLevel+1 to determine which of these two buckets the data
entry belongs to.

For example, h0(32) and h0(44) are both 0. Since Next is
currently equal 1, which indicates a bucket that has been
split, we have to apply h1. We have h1(32) = 0 and h1(44)
= 4. Thus 32 belongs in bucket A and 44 belongs in its
split image, bucket A2.

Not all insertions trigger a split. If we insert 37 into the
file shown in Figure 6.9, the appropriate bucket has space
for the new data entry. The file after the insertion is shown
in Figure 6.10.

Sometimes, the bucket pointed to by Next (the current
candidate for splitting) is full, and a new data entry should
be inserted in this bucket. In this case a split is triggered,
but we do not need a new overflow bucket.

This situation is illustrated by inserting 29 into file shown
in Figure 6.10. The result is shown in Figure 6.11.

Next=1

14 18 10 30

9 25 5 37

32

PRIMARY
PAGES

Level=0

00

01

10

11

000

001

010

011

h0h1
OVERFLOW

PAGES

00 44 36100

4331 35 7 11

Figure 6.10 After Inserting Record r with h(r)=37

Next=2

14 18 10 30

9 25

32

PRIMARY
PAGES

Level=0

00

01

10

11

000

001

010

011

h0h1
OVERFLOW

PAGES

00 44 36100

4331 35 7 11

Figure 6.11 After Inserting Record r with h(r)=29

01 5 37 29101

When Next is equal to NLevel - 1 and a split is triggered, we
split the last of the buckets that were present in the file at
the beginning of the round Level. The number of buckets
after the split is twice the number at the beginning of the
round, and we start a new round with Level incremented
by 1 and Next reset to 0. Consider the example file in
Figure 6.12, which was obtained from the file of Figure 11
by inserting 22, 66 and 34. Inserting 50 causes a split that
leads to incrementing Level (see Figure 6.13).

66 18 10 34

9 25

32

PRIMARY
PAGES

Level=0

00

01

10

11

000

001

010

011

h0h1
OVERFLOW

PAGES

00 44 36100

4331 35 7 11

01 5 37 29101

10 14 30 22110

Next=3

Figure 6.12 After Inserting Records with h(r)=22, 66 and 34

9 25

32

PRIMARY
PAGES

Level=1

00

01

10

11

000

001

010

011

h0h1
OVERFLOW

PAGES

00 44 36100

01 5 37 29101

10 14 30 22110

Figure 6.13 After Inserting Record r with h(r)=50

11 31 7111

Next=0

5066 18 10 34

43 35 11

In summary, an equality selection costs just one disk I/O
unless the bucket has overflow pages; in practice the cost
on average is about 1.2 disk accesses for reasonably
uniform data distributions. The cost can be considerably
worse - linear in the number of data entries in the file - if
the distribution is very skewed. Inserts require reading and
writing a single page, unless a split is triggered.

The deletion is essentially the inverse of insertion. If the
last bucket in the file is empty, it can be removed and Next
can be decremented. If we wish, we can combine the last
bucket with its split image even when it is not empty,
using some criterion to trigger this merging, in essentially
the same way. The criterion is typically based on the
occupancy of the file, and merging can be done to
improve space utilization.

4. EXTENDIBLE HASHING VERSUS
LINEAR HASHING

We observe that the choice of hashing function is actually
very similar to what goes on in Extendible Hashing - in
effect, moving from hi to hi+1 in Linear Hashing
corresponds to doubling the directory in Extendible
Hashing. Both operations double the effective range into
which key values are hashed; but whereas the directory is
doubled in a single step, moving form hi to hi+1, along
with a corresponding doubling in the number of buckets,
occurs gradually over the course of a round. The new idea
behind Linear Hashing is that a directory can be avoided
by clever choice of the bucket to split. On the other hand,
by always splitting the appropriate bucket, Extendible
Hashing may lead to a reduced number of splits and
higher bucket occupancy.

The disadvantage of Linear Hashing relative to Extendible
Hashing is that space utilization could be lower, especially
for skewed distributions, because the bucket splits are not
concentrated where the data density is highest, as they are
in Extendible Hashing. A directory-based implementation
can improve space occupancy, but it is still likely to be
inferior to Extendible Hashing in extreme cases. We can
address this problem by adjusting the criterion used to
trigger splits; in effect, we can trade off slightly longer
overflow chains for better space utilization.

