
Transaction Processing

Introduction

The state of the fragment of the real world, called
miniworld, is represented by an abstraction, called the 
database, and the transformation of the miniworld is 
mirrored by the execution of a program, called a 
transaction, that transform the database from one 
consistent state into another consistent one.

Introduction
The basic abstraction of transaction processing system may 
be represented as follows. 

mini
world

mini
world

DB

DB’

Change Transaction

Reality
Abstraction

Transaction

A transaction is a collection of operations on the 
physical and abstract application state.

A transaction is a sequence of database operations 
(actions) that transforms a database from one consistent 
state into another one. The actions that can be executed by 
a transaction include readsand writes of database objects. 
In addition to reading and writing, each transaction must 
specify as its final action either commit (i.e. complete 
successfully) or abort (i.e. terminate and undo all the 
actions carried out so far).

Example

Consider an example of a transaction T that transfers an 
amount N from the account A to B.

begin
// withdraw an amount N from account A;
update account

SET balance = balance - N
where id_account = A;

// deposit an amount N on account B;
update account

SET balance = balance + N
where id_account = B;

commit;
end

Problems with writing database 
applications

• Creating inconsistent results. Our application is 
transferring money from one account to another. After the 
first account has had money subtracted from its balance 
and this change has been recorded on disk, the system 
crashes due to a power failure. When the machine back up, 
our application does not remember what logic it was 
executing – the application has destroyed money with the 
single account record update it made.



Problems with writing database 
applications

• Errors of concurrent execution. Concurrent access to the 
same data may lead to database anomalies: inconsistent 
analysis, dirty updates, etc.

• Uncertainty as to when changes become permanent. 
Popular pages remain in memory (buffer) for an extended 
period. After crash, we can only remember what has been 
written to disk – so, all pages remaining in the memory are 
lost.

Transaction Properties

•A(tomicity)C(onsistency)I (solation)D(urability)

A transaction can be considered as a collection of actions 
with the following properties:

• Atomicity . A transaction’s changes to the state are atomic: 
either all happen or none happen. These changes include 
database actions, messages, and actions on external devices. 
Particularly, the property guarantees that a set of updates that
are part of a transaction is atomic. Thus either all updates of a 
transaction occur in the database or none of them occurs (it 
solves the first problem).

Transaction Properties

• Consistency. A transaction is a correct transformation of 
the state. The actions taken as a group do not violate any of 
integrity constraints associated with the state. This requires 
that the transaction be a correct program. Correct execution of 
a transaction transforms a database from one consistent state 
into another.

• Isolation. Transactions are isolated which means that one 
transaction can only affect another as it would if they were 
not concurrent. In other words, even though transactions 
execute concurrently, it appears to each transaction, T, that 
other transactions are executed either before T or after T, but 
not both (it solves the second problem).

Transaction Properties

• Durability . Once a transaction completes successfully, its 
changes to the state survive failures. The property guarantees 
that when the system returns to the program logic after a 
Commit statement, the transaction is guaranteed to be 
recoverable In other words, a transaction is resistant to a crash 
(it solves the third problem).

ACID properties

Example (cont):

begin
// withdraw an amount N from account A;
update account

SET balance = balance - N
where id_account = A;

// deposit an amount N in account B;
update account

SET balance = balance + N
where id_account = B;

commit;
end;

Example (cont):

The transaction is:

• Atomic if we correctly transfer money from A to B;

• Consistent if the money withdrew from A is the same as 
the deposit to B;

• Isolated if the transaction can be unaware of other 
transactions reading or writing accounts A and B 
concurrently (e.g. your spouse making a concurrent debit);

• Durable if, once the transaction is complete, the accounts 
A and B are sure to reflect the withdrawal and deposit.



Transaction’s State Diagram

Active Partially
committed Committed

Faild Terminated

Begin
Transaction

End
Transaction Commit

Abort
Abort

Read
Write

Begin_transaction: begin of the transaction.
Read, Write: read, write operations on the database
End_transaction: end of the transaction:

Commit: commit of the transaction.
Rollback (abort): roll back of the transaction

Logical vs. Physical Transaction

Begin_transaction;

UPDATE employee
SET salary = 1.15 * salary
WHERE work_period > 5;

Read (A);
Write (A);
...
Read (Z);
Write (Z);

COMMIT; Commit;

Physical
transaction

Logical 
transaction

Problems with concurrent execution of 
transactions

• Database inconsistency resulting from a crash of the 
system. Due to the failure (crash) of the system only a part 
of a transaction (part of transaction’s operations) was 
performed.

• Anomalies resulting from the concurrent execution of 
transactions. Interleaving of operations of concurrently 
executed transactions may cause some anomalies.

• Lost of data due to the system crash. Results of committed 
transactions (i.e. transactions that successfully completed) 
stored in the main memory have been lost due to the system 
crash. 

Anomalies of concurrent execution of 
transactions

T2 T1 T2

read(X);
X := X-N;

read(X);
X := X-N;

read(X);
X := X+M;

write(X);
read(X);

write(X);
read(Y);

X := X+M;
write(X);

write(X);
commit; read(Y);

commit;

Y := Y+N;
write(Y);
commit;

abort;

T1

Lost update Dirty read

Anomalies of concurrent execution of 
transactions

sum := 0;

read(X);
X := X-N;
write(X);

read(X);
sum := sum+X;
read(Y);
sum := sum+Y;
commit;read(Y);

Y := Y+N;
write(Y);

T1 T3

Incorrect Summary

Where transactions come from?

•Transactions specify simple failure semantics for 
a computation. 
It is up to the system implementers to provide these properties 
to the application programmers.

The transaction concept is the computer equivalent of 
contract law. If nothing ever goes wrong, contracts are just 
overhead. But if something doesn’t quite work, the contract 
specifies how to clean up the situation.



Where transactions come from?

• Many of the techniques used to achieve ACID properties 
have direct analogies in human systems.

– The notions of atomicity and durability are explicit in 
contract law

– Christian wedding ceremony is the example of two-
phase commit protocol

• There are many examples of systems that tried and failed 
to implement fault-tolerant or distributed computations 
using ad-hoc techniques rather than a transaction concept. 
Now, almost all information systems (99%) are transaction 
processing systems.


