
 1

Concurrency Control
Algorithms

 2

Concurrency Control Techniques

There are three basic concurrency control techniques
that are used to ensure isolation of transactions:

1. Locking algorithms – to ensure serializability this

approach employs the technique of locking data
items to prevent transactions from accessing the
data items concurrently
• two-phase locking algorithm (2PL)

2. Timestamp ordering algorithms – to ensure
serializability this approach employs timestamps;
the serializability order corresponds to the order of
transaction timestamps.

3. Optimistic algorithms – to ensure serializability
this approach apply the concept of validation of a
transaction after it executes its operations.

 3

Locking techniques for concurrency
control

A lock is a variable associated with a data item in the
database and describe the status of that data item with
respect to possible operations that can be applied to
the item.

Generally, there is one lock for each data item.

A data item can have three states:
• data item is non-locked 0
• data item is read-locked R (share-locked S)
• data item is write-locked W (exclusive-locked X)

Three additional operations must be included in the
transaction when locking is used:

• Read-lock data item (LR(x))
• Write-lock data item (LW(x))
• Unlock data item (UNL(x))

The above operations must be implemented as
indivisible units.

 4

Compatibility of locks

Two lock requests are compatible if they allow
concurrent access to the same data item.

R

W

R � −
W − −

Convertibility of locks

R

W

R � −
W � �

• transaction upgrade the lock
• transaction downgrade the lock

lock
requested

current
 lock

lock
requested

current
 lock

 5

Locking implementation
Data structure:

data tid lock data tid lock queue
x1 T1 W x1 T2 R 1
x2 T1 R x1 T3 W 2
x2 T2 R x2 T4 W 1
x3 T2 W

Operations: LOCK, R_lock, W_lock, Unlock

LOCK(X, tid) → {0, R, W}

R_lock(X, tid) begin
B: if (LOCK(X, tid) = 0 or LOCK(X, tid) = R)

then LOCK(X, tid) ← R;
else begin

< insert into queue(X) and wait until lock manager
wakes up the transaction>;

go to B;
end;

end R_lock;

W_lock(X, tid) begin
B: if LOCK(X, tid) = 0

then LOCK(X, tid) ← W;
else begin

< insert into queue(X) and wait until lock manager
wakes up the transaction>;

go to B;
end;

end W_lock;

 6

Unlock(X, tid) begin
if LOCK(X, tid) = W

then begin
LOCK(X, tid) ← 0;
< wake up one of the waiting transactions, if any >;

end;
else if LOCK(X, tid) = R

then begin
LOCK(X, tid) ← 0;
if (number_of_read_locks_on_X = 0) then

begin
< wake up one of the waiting transactions, if

any >;
end;

end;
end Unlock;

 7

Locking algorithms

T1 T2
R_lock(T1, Y) R_lock(T2, X)
read(Y) read(X)
unlock(Y) unlock(X)
W_lock(T1, X) W_lock(T2, Y)
read(X) read(Y)
X := X + Y; Y := Y + X;
write(X); write(Y);
unlock(X) unlock(Y)

Initial values:
X = 20, Y = 30

Results of serial schedules of transactions T1 and T2 :
(T1 → T2) : X = 50, Y = 80; (T2 → T1) : X = 70, Y = 50;

Using locks in transactions does not guarantee
serializability of schedules in which the transaction
participate.

 8

Concurrent schedule:

T1 T2
R_lock(T1, Y)
read(Y)
unlock(Y)
 R_lock(T2, X)
 read(X)
 unlock(X)
 W_lock(T2, Y)
 read(Y)
 Y := Y + X;
 write(Y);
 unlock(Y)
W_lock(T1, X)
read(X)
X := X + Y;
write(X);
unlock(X)

Result of the
schedule:
X = 50, Y = 50
(nonserializable
schedule)

 9

Two phase locking algorithm

Basic algorithm:

1. A transaction T must issue the operation R_lock(X, T) or
W_lock(X, T) before any read(X) operation is performed
in T

2. A transaction T must issue the operation W_lock(X, T)
before any write(X) operation is performed in T

3. A transaction T must issue the operation unlock(X, T)
after all read(X) and write(X) operations are completed
in T

Static algorithm: (1., 2., 3.)

4. A transaction has to lock all data items it accesses before
the transaction begins execution by predeclaring ikts
read and write set.

time

locks commit
point

growing phase shrinking
phase

 10

Example:

T1 T2
R_lock(T1, Y)
read(Y)
W_lock(T1, X)
 R_lock(T2, X)
read(X) (wait)
X := X + Y; (wait)
write(X); (wait)
unlock(Y) (wait)
unlock(X) (wait)
 read(X)
 W_lock(T2, Y)
 read(Y)
 Y := Y + X;
 write(Y);
 unlock(X)
 unlock(Y)

 11

Deadlock

T1 T2
R_lock(T1, Y)
read(Y)
 R_lock(T2, X)
 read(X)

 W_lock(T2, Y)
W_lock(T1, X) (wait)

(wait) (wait)
(wait) (wait)

dead lock

Possible approaches:

• deadlock prevention
• deadlock detection

 12

Deadlock prevention

Deadlock prevention protocols use the concept of
transaction timestamp - TS(T), which is unique identifier
assigned to each transaction at its initiation. Suppose that
transaction Ti tries to lock an item X, but is not able to
because X is already locked in incompatible mode by some
other transaction Tj. The rules followed by these protocols
are as follows;

•••• wait-die:

if TS(Ti) < TS(Tj) (Ti is older than Tj)
then Ti is allowed to wait;
otherwise abort Ti and restart it later with the same
timestamp

•••• wound-wait:
if TS(Ti) < TS(Tj) (Ti is older than Tj)
then abort Tj (Ti wounds Tj) and restart it later with the
same timestamp
otherwise Ti is allowed to wait;

 13

 Deadlock detection

Waits-For Graph

T1

T3

T2

x

y z

Deadlocks tend to be rare and typically involve very
few transactions. So, it may be better to detect and
solve deadlocks aa they arise.

♦ The WFG is periodically checked for cycles. A

deadlock is resolved by aborting a transaction that
is on a cycle and releasign its locks

♦ The timeout mechanism: if a transaction has been

waiting too long for a lock (miss the timeout), we
can assume that it is deadlock cycle and resolve it.

 14

Deadlock Detection Procedure

The lock data structures can be used to build the
WFG. Each lock L has two lists, the granted list and
the waiting list. Both lists have the form ((Ti, mi),...),
where each Ti is a transaction and each mi is a lock
mode. The edge Ti → Tj should be added to the
WFG if:
• transaction Tj is in granted list and transaction Ti is

in waiting list
• transaction Tj is ahead of Ti in waiting list, and
• modes mi and mj are incompatible.

Transaction
wait list

T1

T2

T3

Lock
lists

T2: W

T1: R T1: R

T4: R

T2: W

T3: W

T1

T4

T2

T3

WFG

 15

No waiting approach to deadlock

Another group of protocols that prevent deadlock do
not require timestamps:
•••• no waiting (NW): if a transaction is unable to

obtain a lock, it is immediately aborted and then
restarted after a certain time delay without
checking whether a deadlock will actually occur or
not.

•••• cautious waiting (CW): A transaction tries to lock
a data item but is unable to obtain a lock. If Tj is
not blocked (not waiting for some other locked
data items) then Ti is blocked and allowed to wait,
otherwise abort Ti.

No waiting approach may lead to the following
phenomena:

♦ Dynamic deadlock (livelock)

♦ Infinite restarting

 16

Additional Issues

♦ The Convoy Phenomenon:

A transaction T holds a heavily used lock. An
operating system with preemptive scheduling
startegy will suspend T. Until T is resumed, every
other transaction that needs this lock is queued. Such
queue is called convoy.
Convoy can become very long and once formed
tends to be stable. Convoys are one of the drawbacks
of building a DBMS on top of a general-purpose
operating system with preemptive scheduling.
(see Log manager)

♦ Latches

Each DBMS support short-duration locks called
latches. Setting a latch before reading or writing a
page ensures that the physical read or write operation
is atomic; otherwise two read/write operations may
conflict if the object being locked do not correspond
to disk pages. Latches are unset immediately after the
physical read or write operation is completed.

 17

Phantom Problem

We have considered a database as a set of a fixed and
independent data objects.

select *
from emp
where eyes=”blue” and hair=”red”;

 delete from emp

where eyes=”blue” and hair=”red”;

Suppose an individual record-locking scheme is
used.
♦ How to prevent someone else from inserting a new,

blue-eyed, red-haired emp?
♦ It is easy to demonstrate that concurrent execution

of two transactions is not serializable.

Such new or deleted records are called phantoms –
records that either appear or disappear from relations.

There is no pure record-locking solution for
phantoms

 18

Multiple-Granularity Locking

• A lock hierarchy

 Database

 Relations

 Tuples

Phantoms raise the issue of the lock unit, the data
aggregates that are locked to insure isolation (databases,
relations, tuples, fields, etc.):

database

Relation A Relation B Relation C

 19

Lock Unit

The choice of lock granule presents a trade-off
between concurrency and overhead:
♦ Concurrency control is maximized by a fine

locking granule (record-level locking)
♦ A fine locking is costly for a complex transactions

accessing a large number of granules – the large
transaction would have to acquire and maintain a
lock on each granule

♦ A corse locking granule (e.g.) relation is
convenient for complex transactions, but it would
discriminate the small transactions that want to
access just a tiny part of the relation.

Conclusion: we need a locking protocol that satisfy
all these needs; it should let batch transactions set a
single lock that covers an entire relation, while letting
small interactive transactions lock finer granules.

The idea is to use a fixed set of predicate locks
combined with the hierarchical lock protocol.

 20

Intent lock modes

The idea of hierarchical lock protocol:

Locking a node of the tree (a lock
hierarchy) in some mode implicitly locks all
the descendants of that node in the same
locking mode.

♦ Locking “Relation A” in exclusive lock mode

(write lock mode) implicitly locks in exclusive
mode that relation as well as all tuples below the
“Relation A” node in the lock tree.

♦ To lock a subtree rooted at a certain node without
locking any of the other relations, a transaction
must prevent a shared or exclusive lock from being
set on the root node and on the “Relation A” node.

This is best done by inventing a new mode, called
intent mode, which represents the intention to set
locks at the finer granularity.

 21

Intent lock modes

Intent lock modes:
•••• IR (IS) – a transaction intents to set shared (read)

lock at finer granularity;
•••• IW (IX) - a transaction intents to set exclusive

(write) or shared (read) lock at finer granularity;
•••• RIW (SIX) – a transaction intents to set a coarse

granularity shared lock with intent to set finer
granularity exclusive locks – essentially the union
of R and IR.

Compatibility Matrix for Granular Locks

Granted
 lock

Requested
lock

IR

IW

R

RIW

U

W

IR � � � � − −
IW � � − − − −
R � − � − − −

RIW � − − − − −
U − − � − − −
W − − − − − −

 22

Multiple Granularity Locking
Protocol

1. Acquire locks from root to leaf

2. Release locks from leaf to root

3. To acquire an R mode or IR mode lock on a non-

root node, one parent must be held in IR mode or

higher (one of {IR, IW, RIW, W, U})

4. To acquire an W, U, RIW, or IW mode lock on a

non-root node, all parents must be held in IW

mode or higher (one of {IW, RIW, W, U})

 23

Example:

Three transactions operating on a lock tree using
different lock modes.

T1: IW, T2: IR

database

Relation A Relation B Relation C

T3: R

T1: IW

T1: W T1: R, T2: R
T1: W

T1: W T2: R

T2: R

 24

Update Mode Locks

Update mode locks are introduced to avoid the most
common form of deadlock.

 update emp
 set salary=salary*1.1
 where name=”Morzy”;

• A shared lock on a record is acquired to cover the

read, and then an exclusive lock is requested to
cover subsequent write

• The problem of hotspots – frequently updated

records
• The study of System R showed that virtually all

deadlocks in that system were of this form
• Acquiring a lock in Update lock mode avoids this

read-write form of deadlock.
• Update lock mode is asymmetric

 25

Multiple Granularity Locking
Summary

Six lock modes are defined:

• Intention read (IR) – gives the grantee authority to

explicitly set IR and R mode locks at a finer granularity,
and prevents others from holding write (W, U) on this
node

• Intention write (IW) – gives the grantee authority to
explicitly set IR, IW, R, RIW, U, and W mode locks at a
finer granularity, and prevents others from holding
coarse granularity (R, RIW, W, U) locks on this node

• Read and intention write (RIW) – gives the grantee
read authority to the node and its descendants (the
equivalent of read authority), and prevents others from
holding coarse or update locks (W, U, IW, RIW, R) on
this node or its descendants. In addition, it gives the
grantee authority to explicitly set IW, U, and W mode
locks at a finer granularity.

• Read (R) – gives the grantee read authority to the node
and its descendants, and prevents others from holding
update mode locks (IW, W, RIW) on this node or its
descendants

• Update (U) – gives the grantee read authority to the
node and its descendants, and prevents others from
holding nonshared locks (IW, W, RIW, U, IR) on this
node or its descendants. This mode represents an
intention to update the node in the future. To prevent a

 26

common form of deadlock, it is not compatible with
itself.

• Write (W) – gives the grantee write authority to the
node, and prevents others from holding locks (W, U, R,
RIW, IR, IW) on this node or its descendants. In
addition, it gives the grantee authority to explicitly set
any mode of lock at a finer granularity.

 27

Timestamp Ordering
Concurrency Control

In lock based concurrency control, conflicting
operations of different transactions are ordered by the
order in which locks are obtained. The lock protocol
extends this ordering on operations to transactions
thereby ensuring serializability.

In timestamp ordering concurrency control, a
timestamp ordering is imposed on transactions and
concurrency control algorithm checks that all
conflicting operations occurred in the same order.

Each transaction T is assigned a timestamp TS(T) at
the startup. The algorithm ensures, at execution time,
that if action ai of transaction Ti conflicts with action
aj of transaction Tj, ai occurs before aj if TS(Ti) <
TS(Tj). If an action violates this ordering,the
transaction is aborted and restarted with a new
timestamp.

 28

Timestamp Ordering
Concurrency Control (cont)

Moreover, each data item x is given two timestamps:

•••• Read_TS(x) – maximum timestamp of a
transaction that read the data item x.

•••• Write_TS(x) – timestamp of a transaction that
write the data item x.

Implementation of the timestamp ordering
algorithm:

Read procedure:

Read(Ti, x) begin

if (TS(Ti) < Write_TS(x)) then
< abort Ti and restart it with a new timestamp >;

else begin
< read x >;
Read_TS(x) ← max (Read_TS(x), TS(Ti));

end;
end Read;

 29

Write procedure:

Write(Ti, x) begin

if (TS(Ti) < Read_TS(x) or TS(Ti) < Write_TS(x))
then

< abort Ti and restart it with a new timestamp >;
else begin

< write x >;
Write_TS(x) ← TS(Ti);

end;
end Write;
--

• The algorithm is deadlock-free

S: T1: r(x) T2: r(y) T1: w(y) T2: w(x) T1: c T2: c

• The algorithm does not provide recoverability of

schedules!!!

S: T1: w(x) T2: r(x) T2: w(x) T2: c T1: abort

 30

Timestamp Ordering -
buffering of operations

To ensure the recoverability of schedules produced
by T/O algorithm it is necessary to modify the
protocol by buffering all write operations until the
transaction commits.

• When a transaction T1 wants to write x,

Write_TS(x) is updated to reflect this action, but
the change to x is not carried out immediately;
instead it is recorded in a private workspace
(buffer)

• When T2 wants to read x subsequently, its
timestamp TS(T2) is compared with Write_TS(x),
and the read is seen to be permissible – however,
T2 is buffered until T1 is completed (commited).

The buffering is similar to the effect of T1 obtaining
an exclusive lock on x!!!

 31

Optimistic Concurrency Control

• Locking concurrency control take a pessimistic

approach to conflicts between transactions – so
they use either transaction abort or blocking to
resolve conflicts.

• In systems with relatively light contention for data

items, the overhead of obtaining locks and
following a locking algorithm is pretty high.

• In optimistic concurrency control, the basic

assumption is that most transactions will not
conflict with other transactions, and the idea is to
be as permissive as possible in allowing
transactions to execute.

 32

Optimistic Concurrency Control
Phases

Transactions proceed in three phases:
•••• Read phase: The transaction executes, reading

values from the database and writing new values
into a private workspace.

•••• Validation phase: If the transaction decides to
commit, the optimistic algorithm checks whether
the transaction could possibly have conflicted with
any other concurrently executing transaction. If
there is a possible conflict, thansaction is aborted;
its private workspace is cleared and it is restarted.

•••• Write phase: If validation determines that there are
no possible conflicts, the changes to data items
made by the transaction in its private workspace
are copied into the database.

 33

Validation Procedure

Each transaction Ti is assigned a timestamp TS(Ti) at
the beginning of its validation phase, and the
validation procedure checks whether the timestamp
ordering of transactions is an equivalent serial order.

Moreover, for each transaction Ti is kept an interval
of timestamps (TSstart, TSfinish) that defines
transactions entering the validation phase while the
transaction Ti is in its read phase. The set of
transactions with timestamps belonging to the above
interval is denoted as Tr_setactive(Ti)(TSstart+1,
TSfinish). Moreover, for each transaction Ti two sets
of data items are kept: fr(ti) and fw(Ti), which denote
respectively a set of data items read (written) by Ti.

For every pair of transactions Ti and Tj such that
TS(Ti) < TS(Tj), one of the following conditions
must hold:

1. Ti completes (all three phases) before Tj begins; or

2. Ti completes before Tj starts its Write Phase, and
Ti does not write any data item that is read by Tj;
or

 34

3. Ti completes its Read Phase before Tj completes
its Read Phase, and Ti does not write any data item
that is ejther read or written by Tj.

To validate Tj we must check to see that one of these
conditions holds with respect to each committed
transaction Ti such that TS(Ti) < TS(Tj).

Validation Phase

Procedure Validate(Ti)
test = false

for each Tj ∈Tr_setactive(Ti)(TSstart+1, TSfinish)

if (fr(Ti) ∪ fw(Ti)) ∩ fw(Tj) ≠ ∅

then test = true

if test then

<write phase>

 write fw(Ti)

 increase Global Counter (GC) by 1
</end write phase>

else abort Ti

 35

Degrees of Isolation

Every transaction has three characteristics:
diagnostics_size, access_mode, and isolation_level.

Diagnostics_size:

The diagnostics_size determines the number of error
condition that can be recorded for the transaction.

Access_mode:

There are two access_modes: READ ONLY and
READ WRITE.

If the access_mode is READ ONLY, the transaction
is not allowed to modify the database. Thus INSERT,
DELETE, UPDATE and CREATE statements cannot
be executed. For transactions with READ ONLY
access_mode, only shared locks need to be obtained,
thereby increasing concurrency.

If we have to execute one of commands INSERT,
DELETE, UPDATE or CREATE, the access_mode
should be set to READ WRITE.

 36

Isolation_levels

Most systems do not provide automatically
serializability!!
• Implementors did not understand the issues
• Implementors make a compromise between correctness

and performance and provide options called levels of
isolation (or degrees of isolation)

The isolation_level controls the extent to which a
given transaction is exposed to the actions of other
transactions executing concurrently. By choosing one
of four possible isolation_level settings, a user can
obtain greater concurrency at the cost of increasing
the transaction’s exposure to other transaction’s
uncommitted changes.

In SQL-92 the isolation levels are:

• READ UNCOMMITTED
• READ COMMITTED
• REPEATABLE READ
• SERIALIZABLE

 37

Isolation_levels

• SERIALIZABLE – this isolation level ensures that T

reads only the changes made by committed transactions,
that no value read or writtten by T is changed by any
other transaction until t is complete.

In terms of lock-based implementation, a
SERIALIZABLE means that the lock algorithm is two-
phase and well formed.

• REPEATABLE READ - this isolation level ensures that
T reads only the changes made by committed
transactions, that no value read or writtten by T is
changed by any other transaction until t is complete.
However, T could experience the phantom phenomenon.

In terms of lock-based implementation, a
REPEATABLE READ means that the lock algorithm is
two-phase and well formed.
A REPEATABLE READ uses the same locking protocol
as a SERIALIZABLE transaction except that it does not
do index locking – it locks only individual objects - not
sets of objects.

 38

Isolation levels

• READ COMMITTED (cursor stability) - this isolation

level ensures that T reads only the changes made by
committed transactions, that no value writtten by T is
changed by any other transaction until t is complete.
However, a value read by T may well be modified by
another transaction while T is in progress, and T is
exposed to the phantom phenomenon.

In terms of lock-based implementation, a READ
COMMITTED means that the lock algorithm is two-
phase with respect to write locks and well formed with
respect to reads. In other words, all shared locks
obtained by T are released immediately.

• READ UNCOMMITTED (browse)- T can read changes
made to an object by an ongoing transaction. Moreover,
the object can be changed further while T is in progress,
and T is exposed to the phantom phenomenon.

In terms of lock-based implementation, a READ
UNCOMMITTED means a transaction T obtains write
locks before writing data items, and holds these locks
until the end, but does not obtain shared locks before
reading data items.

READ UNCOMMITTED is allowed only for read-only
transactions – a transaction is required to have an access
mode of READ ONLY.

 39

Isolation levels

Isolation
Level

Dirty
Read

Unrepeatable
Read

Phantom

READ
UNCOMMITTED

maybe maybe maybe

READ
COMMITTED

no maybe maybe

REPEATABLE
READ

no no maybe

SERIALIZABLE no no no

Why READ COMMITTED is called
sometimes Cursor Stability?

exec sql select balance
into :balance
from account
where account_id=:id;

balance=balance+10;

exec sql update account

set balance=:balance
where account_id=:id;

 40

exec sql declare cursor c for

select balance
from account
where account_id=:id;

exec sql open cursor c
exec sql fetch c into :balance
balance=balance+10;

exec sql update account

set balance=:balance
where current of cusor c;

exec sql close c;

• Most SQL-systems keep a shared lock on the

record currently addressed by a cursor.

The isolation and access-mode can be set using the
SET TRANSACTION command. The following
command declares the current to be SERIALIZABLE
and READ ONLY:

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

