
Normalization

Preliminaries

Conceptual schema design gives a set of relation
schemas and integrity constraints (IC) that can be
regarded as a good starting point for the final
database design. This initial design must be refined
by taking the IC’s into account more fully than is
possible just with the ER model constructs, and also
by considering performance criteria and typical
workloads.

1 Problem

Storing the same information redundantly, that is, in
more than one place within a database, can lead to
several problems:

• Redundant storage: some information is stored

repeatedly.
• Update anomalies: if one copy of a repeated data is

updated, an inconsistency is created unless all copies
are similarly updated.

• Insertion anomalies: it may not be possible to store
some information unless some other information is
stored as well.

• Deletion anomalies: it may not be possible to delete
some information without losing some other
information as well.

Supplier
Name Address Product Price

Smith St. John Str. 5 pen 1.00
Smith St. John Str. 5 brush 0.50
Smith St. John Str. 5 comb 0.50
...
Gray Moulin Rouge 1 pen 1.15
Gray Moulin Rouge 1 pencil 1.10
Gray Moulin Rouge 1 comb 0,75
...

Properties of the relation schema Supplier:

• redundancy: some information is stored multiple times,

e.g. an address of a supplier,
• consistency: redundancy leads to potential

inconsistency,
• insertion anomaly: it is impossible to insert a new

supplier (key constraint),
• delete anomaly: it is impossible to delete information

concerning supply without deleting information
concerning a supplier,

• update anomaly: the address in the first tuple could be
updated without making a similar change in the
second tuple.

What we can do to solve the problem?

Use of decomposition

Supplier
Name Address

Smith St. John Str. 5
Gray Moulin Rouge 1
... ...

Supply
Name Product Price

Smith pen 1.00
Smith brush 0.50
Smith comb 0.50
Gray pen 1.15
Gray pencil 1.10
Gray comb 0,75
...

The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation
with a collection of “smaller” relations. Each of the
smaller relations contains a (strict subset of the
attributes of the original relation.

We refer to this process as decomposition of the larger
relation into smaller relations.

Problems Related to Decomposition

Decomposing a relation schema can create more
problems than it solves. Two important questions are:

1. What problems (if any) does a given decomposition

cause?

2. Do we need to decompose a relation schema?

Ad. 1

Two properties of decompositions are of particular
interest: the lossless-join property and the
dependency-preservation property.

The lossless-join property enables us to recover
any instance of the decomposed relation from
corresponding instances of the smaller relations.

The dependency-preservation property enables us
to enforce any constraint on the original relation by
simply enforcing some constraints on each of the
smaller relations. That is, we need not perform joins
of the smaller relations to check whether a constraint
on the original relation is violated.

Supplier
Name Address

Smith St. John Str. 5
Gray Moulin Rouge 1
... ...

Supply
Name Product Price

Smith pen 1.00
Smith brush 0.50
Smith comb 0.50
Gray pen 1.15
Gray pencil 1.10
Gray comb 0,75
...

Query: “Find the address of all suppliers that supply

pens”

To answer the question it is necessary to join both
relations:
 Supplier (join) Supply ⇒ original Supplier

Debts
Bank_Branch Account Amount Name

III 17 1 Smith
III 23 1,5 Brown
V 5 3 Gray
V 10 1,5 White
I 77 3 Kerr
II 17 1 O’Neil
II 21 1,3 Snake

Clients
Amount Name

1 Smith
1,5 Brown
3 Gray

1,5 White
3 Kerr
1 O’Neil

1,3 Snake

Accounts
Bank_Branch Account Amount

III 17 1
III 23 1,5
V 5 3
V 10 1,5
I 77 3
II 17 1
II 21 1,3

decomposition

Recover of the original relation
- spurious tuples -

 Clients (join) Accounts ⇒ Debts

Debts
Bank_Branch Account Amount Name

III 17 1 Smith
III 23 1,5 Brown
III 17 1 O’Neil
III 23 1,5 White
V 5 3 Kerr
V 10 1,5 Brown
V 5 3 Gray
V 10 1,5 White
I 77 3 Kerr
I 77 3 Gray
II 17 1 O’Neil
II 17 1 Smith
II 21 1,3 Snake

Incorrect decomposition - we loose information

(spurious tuples)

Ad. 2

With respect to the second question, several normal
forms have been proposed for relations. If a relation
is in one of these normal forms, we know that certain
kinds of problems cannot arise. Considering the
normal form of a given relation schema can thus help
us to decide whether or not to decompose it further.
If we decide that a relation schema must be
decomposed further, we must choose a particular
decomposition.

Basic definitions

We are given a relation schema R = {A1, A2, ..., An}.
A superkey for the relation schema R is a set of
attributes S ⊆ R that uniquely identifies each tuple of
relation instance r(R).

In other words, if u and v are two distinct tuples of
r(R) then u(S) ≠ v(S); that is, there will always exist at
least one attribute, Ai ∈ S such that u(Ai) ≠ v(Ai).

Comments:
We use the notation u(X) to refer to the projection of
tuple u onto the set of attributes in X.

A key K for a relation schema R is a “minimal”
superkey for R, K ⊆ R, such that there is no proper
subset K’ ⊂ K that is a superkey for R.

This property assures us that a key is a minimal set
of attributes with property of a superkey.

Candidate keys:

• A primary key
• Secondary keys

Attributes:

• Primary attributes – an attribute A is a primary
attribute iff it belongs to a key.
• Secondary attributes - an attribute A is a
secondary attribute iff it does not belongs to any
key.

Functional Dependencies

A functional dependency (FD) is a kind of IC that
generalizes the concept of a key.

Let R be a relation schema and let X and Y be
nonempty sets of attributes in R. We say that an
instance r of R satisfies the FD X → Y if the
following holds for every pair of tuples u and v in r:

 If u(X) = v(X) then u(Y) =v(Y)

An FD X → Y essentially says that if two tuples agrees
on the values in attribute X, that must also agree on the
values in attribute Y.

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

A relation instance that satisfies AB → C

Functional Dependencies
(cont.)

A legal instance of a relation must satisfy all
specified ICs, including all specified FDs. A functional
dependency defines a dependency between
attributes of a relation schema. This dependency has
a semantic character, i.e. it has to be fulfilled by all
instances of the relation schema.

A functional dependency is a property of a
relation schema not of a relation instance!!!

Examples:

Name → Address
Name, Product → Price

