
 
 
 
 
 

HASH-BASED INDEXING 
 
 
 
 
 

The basic idea of hashing is to use a hashing function, 
which maps values in a search field into a range of bucket 
numbers to find the page on which a desired data entry 
belongs. The basic Static External Hashing  scheme 
suffers from the problem of long overflow chains, which 
can affect performance.  

 

Hash-based indexing techniques cannot support range 
searches. Tree-based indexing techniques can support 
range searches efficiently and are almost as good as hash-
based indexing for equality selections. Thus many 
commercial systems choose to support only tree-based 
indexes. Nonetheless, hashing techniques prove to be very 
useful in implementing relational operations such as joins.  

 

1. STATIC HASHING 
 
 
 

The pages containing the data can be viewed as collection 
of buckets, with one primary page and possibly 
additional overflow pages per bucket. A file consists of 
buckets 0 through N-1, with one primary page per bucket 
initially. 
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Figure 6.1 Static Hashing

• To search for a data entry, we apply a hash function h 
to identify the bucket to which it belongs and then 
search this bucket. To speed the search of a bucket, we 
can maintain data entries in sorted order by search key 
value. 

 
• In order to insert a data entry, we use the hash function 

to identify the correct bucket and then put the data entry 
there. If there is no space for this data entry, we allocate 
a new overflow page, put the data entry on this page, 
and add this page to overflow chain of the bucket. 

 
• To delete a data entry, we use the hashing function to 

identify the correct bucket, locate the data entry by 
searching the bucket, and then remove it. If this data 
entry is the last in a overflow page, the overflow page is 
removed from the overflow chain of the bucket and 
added to a list of free pages. 

 

 

• Since the number of buckets in a static hashed file is 
known when the file is created, the primary pages can 
be stored on successive disk pages. Thus a search 
ideally requires just one disk I/O, and insert and delete 
operations require two I/Os (read and write the page), 
although the cost could be higher in the presence of 
overflow pages.  

 
• As the file grows, long overflow chains can develop. 

Since searching a bucket requires searching all pages in 
its overflow chain, performance deteriorates.  

 
• The main problem with Static Hashing is that the 

number of buckets is fixed. If a file shrinks greatly, a lot 
of space is wasted, if a file grows a lot, long overflow 
chains develop, resulting in poor performance. One 
alternative is to periodically ‘rehash’ the file to restore 
the ideal situation (no overflow chains, about 80% 
occupancy). However, rehashing takes time and the 
index cannot be used while rehashing is in progress.  

2. EXTENDIBLE HASHING 
 
 
 

Idea: to overcome the problem with inserting a new data 
entry into a full bucket, use a directory of pointers to 
buckets, and double the size of number of buckets by 
doubling just the directory and splitting only the bucket 
that overflowed. 
 
Example: 
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Figure 6.2 Example of an Extendible Hashed File



The directory consists of an array of size 4, with each 
element being a pointer to a bucket. To locate a data entry, 
we apply a hash function to the search field and take the 
last two bits of its binary representation to get a number 
between 0 and 3. The pointer in this array position gives 
us the desired bucket; we assume that each bucket can 
hold four data entries. Thus to locate a data entry (e.g. 13) 
with hash value 5 (binary 101), we look at directory 
element 01 and follow the pointer to the data page (bucket 
B). 
 
Let us consider insertion of a data entry into a full bucket. 
Consider the insertion of data entry 20 (binary 10100). 
Looking at directory element 00, we are led to bucket A, 
which is already full. We must first split the bucket by 
allocating a new bucket and redistributing the contents 
(including the new entry to be inserted) across the old 
bucket and its ‘split image’. To redistribute entries across 
the old bucket and its split image, we consider the last 
three bits of h(r); the last two bits are 00, indicating a data 
entry that belongs to one of these two buckets, and the 
third bit discriminates between these buckets. The 
redistribution of entries is illustrated in Figure 4. 

 
 
 
 

 

Figure 6.3 After Inserting Entry r with h(r)=13
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Notice a problem that we must now resolve - we need 
three bits to discriminate between two of our data pages 
(A and A2), but the directory has only enough slots to 
store all two-bit patterns.  

 

Figure 6.4 While Inserting Entry r with h(r)=20
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The solution is to double the directory. Elements that 
differ only in the third bit from the end are said to 
‘correspond’: corresponding elements of the directory 
point to the same bucket with the exception of the 
elements corresponding to the split bucket. In our 
example, bucket 0 was split so, new directory element 000 
points to one of the split versions and element 100 points 
to the other. The sample file after completing all steps in 
the insertion of 20 is shown in Figure 5. 
 
 
 

 

Figure 6.5 After Inserting Entry r with h(r)=20
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We observe that the basic technique used in Extendible 
Hashing is to treat the result of applying a hash function h 
as a binary number and to interpret the last d bits, where d 
depends on the size of directory, as an offset into the 
directory. The number d is called the global depth of the 
hashed file and is kept as part of the header of the file. It is 
used every time we need to locate a data entry. 

 
 
 

Question: whether splitting a bucket necessitates a 
directory doubling? 

 
 
We now insert 9, it belongs in bucket B; this bucket is 
already full. We can deal with this situation by splitting 
the bucket and using directory elements 001 and 101 to 
point to the bucket and its split image, as shown in Figure 
6. 

 

 
 

 
 
 

In order to differentiate between these cases, and 
determine whether a directory doubling is needed, we 
maintain a local depth for each bucket. If a bucket whose 
local depth is equal to the global depth is split, the 
directory must be doubled.  

Figure 6.6 After Inserting Entry r with h(r)=9
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Initially, all local depths are equal to the global depth 
(which is the number of bits needed to express the total 
number of buckets). We increment the global depth by 1 
each time the directory doubles. Also, whenever a bucket 
is split (whether or not the split leads to a directory 
doubling), we increment by 1 the local depth of the split 
bucket and assign this same (incremented) local depth to 
its (newly created) split image. Intuitively, if a bucket has 
local depth l, the hash values of data entries in it agree 
upon the last l bits; further, no data entry in any other 
bucket of the file has hash value with the same last l bits. 
A total of 2d-l directory elements point to a bucket with 
local depth l; if d = l, exactly one directory element is 
pointing to the bucket, and splitting such a bucket requires 
directory doubling. 
 
A final point to note is that we can also use the first  d bits 
(the most significant bits) instead of the last d (least 
significant bits), but in practice the last d bits are used. 
The reason is that a directory can be doubled simply by 
coping it. 

For deletes, the data entry is located and removed. If the 
delete leaves the bucket empty, it can be merged with its 
split image, although this step is often omitted in practice. 
Merging buckets decreases the local depth. If each 
directory entry element points to the same bucket as its 
split image, we can halve the directory and reduce the 
global depth, although this step is not necessary for 
correctness. 
 

On the other hand, the directory grows in spurts and 
can become large for skewed data distributions (where our 
assumption that data pages contain roughly equal numbers 
of data entries is not valid). In the context of hashed files, 
a skewed data distribution is one in which the 
distribution of hashed-values of search field values (rather 
than the distribution of search field values themselves) is 
skewed (very ‘bursty’ or not uniform). Even if the 
distribution of search values is skewed, the choice of a 
good hashing function typically yields a fairly uniform 
distribution of hash-values; skew is therefore not a 
problem in practice. 

 
 

3. LINEAR HASHING 
 
 
 

 

The scheme utilizes a family of hash functions h0, h1, h2, 
... , with the property that each function’s range is twice 
that of its predecessor. That is, if hi maps a data entry into 
one of M buckets, hi+1 maps a data entry into 2M buckets. 
Such a family is typically obtained by choosing a hash 
function h and an initial number N of buckets, and 
defining hi(value) = h(value) mod (2iN). If N is chosen to 
be a power of 2, then we apply h and look at the last di 
bits; d0 is the number of bits needed to represent N, and di 
= d0 + i. Typically we choose h to be a function that maps 
a data entry to some integer. 

 

The idea is best understood in terms of rounds of 
splitting. During round number Level, only hash functions 
hlevel and hlevel+1 are in use. The buckets in the file at the 
beginning of the round are split, one by one from the first 
to the last bucket, thereby doubling the number of buckets. 
At any given point within a round, therefore, we have 
buckets that have been split, buckets that are yet to be 
split, and buckets created by splits in this round, as 
illustrated in Figure 6.7. 

 
 

 
 

Consider how we search for a data entry with a given 
search key value. We apply hash function hlevel, and if this 
leads us to one of the unsplit buckets, we simply look 
there. If it leads us to one of the split buckets, the entry 
may be there or it may have been moved to the new 
bucket created earlier in this round by splitting this 
bucket; to determine which of these two buckets contains 
the entry, we apply hlevel+1. 

 

Figure 6.7 Buckets during a Round in Linear Hashing
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We now describe Linear Hashing in more detail. A 
counter Level is used to indicate the current round number 
and is initialized to 0. The bucket to split is denoted by 
Next and is initially bucket 0 (the first bucket). We denote 
the number of buckets in the file at the beginning of round 
Level by NLevel. We can easily verify that NLevel = N * 
2Level. Let the number of buckets at the beginning of round 
0, denoted by N0, be N. We show a small linear hashed file 
in Figure 6.8. Each bucket can hold four data entries, and 
the file initially contains four buckets, as shown in the 
figure. 
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Figure 6.8 Example of a Linear Hashed File
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We have considerable flexibility in how to trigger a split, 
thanks to the use of overflow pages. We can split 
whenever a new overflow page is added, or we can 
impose additional conditions based on conditions such as 
space utilization. For our examples, a split is ‘triggered’ 
when inserting a new data entry causes the creation of an 
overflow page. 
 
 

Whenever a split is triggered the Next bucket is split, and 
hash function hLevel+1 redistributes entries between this 
bucket (say bucket number b) and its split image; the split 
image is therefore bucket number b + NLevel. After splitting 
a bucket, the value of Next is incremented by 1. In this 
example file, insertion of data entry 43 triggers a split. 
The file after completing the insertion is shown in Figure 
6.9. 
 



 
 
 

 
 
 

At any time in the middle of round Level, all buckets 
above bucket Next have been split, and the file contains 
buckets that are their split images, as illustrated in Figure 
7. Buckets Next through NLevel have not yet been split. If 
we use hLevel on a data entry and obtain a number b in the 
range Next through NLevel, the data entry belongs to bucket 
b. For example, h0(18) is 2; since this value is between 
current values of Next (=1) and N1 (=4), this bucket has 
not been split.  
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Figure 6.9 After Inserting Record r with h(r)=43
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However, if we obtain a number b in range 0 through 
Next, the data entry may be in this bucket or in its split 
image (which is bucket number b + NLevel); we have to use 
hLevel+1 to determine which of these two buckets the data 
entry belongs to.  
 
For example, h0(32) and h0(44) are both 0. Since Next is 
currently equal 1, which indicates a bucket that has been 
split, we have to apply h1. We have h1(32) = 0 and h1(44) 
= 4. Thus 32 belongs in bucket A and 44 belongs in its 
split image, bucket A2. 

 
Not all insertions trigger a split. If we insert 37 into the 
file shown in Figure 6.9, the appropriate bucket has space 
for the new data entry. The file after the insertion is shown 
in Figure 6.10. 

 

 
 

 
 

Sometimes, the bucket pointed to by Next (the current 
candidate for splitting) is full, and a new data entry should 
be inserted in this bucket. In this case a split is triggered, 
but we do not need a new overflow bucket.  
 
This situation is illustrated by inserting 29 into file shown 
in Figure 6.10. The result is shown in Figure 6.11. 
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Figure 6.10 After Inserting Record r with h(r)=37
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Figure 6.11 After Inserting Record r with h(r)=29
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When Next is equal to NLevel - 1 and a split is triggered, we 
split the last of the buckets that were present in the file at 
the beginning of the round Level. The number of buckets 
after the split is twice the number at the beginning of the 
round, and we start a new round with Level incremented 
by 1 and Next reset to 0. Consider the example file in 
Figure 6.12, which was obtained from the file of Figure 11 
by inserting 22, 66 and 34. Inserting 50 causes a split that 
leads to incrementing Level (see Figure 6.13). 
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In summary, an equality selection costs just one disk I/O 
unless the bucket has overflow pages; in practice the cost 
on average is about 1.2 disk accesses for reasonably 
uniform data distributions. The cost can be considerably 
worse - linear in the number of data entries in the file - if 
the distribution is very skewed. Inserts require reading and 
writing a single page, unless a split is triggered. 
 
The deletion is essentially the inverse of insertion. If the 
last bucket in the file is empty, it can be removed and Next 
can be decremented. If we wish, we can combine the last 
bucket with its split image even when it is not empty, 
using some criterion to trigger this merging, in essentially 
the same way. The criterion is typically based on the 
occupancy of the file, and merging can be done to 
improve space utilization. 
 

 
 
 

4. EXTENDIBLE HASHING VERSUS 
LINEAR HASHING 

 
 
 

We observe that the choice of hashing function is actually 
very similar to what goes on in Extendible Hashing - in 
effect, moving from hi to hi+1 in Linear Hashing 
corresponds to doubling the directory in Extendible 
Hashing. Both operations double the effective range into 
which key values are hashed; but whereas the directory is 
doubled in a single step, moving form hi to hi+1, along 
with a corresponding doubling in the number of buckets, 
occurs gradually over the course of a round. The new idea 
behind Linear Hashing is that a directory can be avoided 
by clever choice of the bucket to split. On the other hand, 
by always splitting the appropriate bucket, Extendible 
Hashing may lead to a reduced number of splits and 
higher bucket occupancy. 
 
The disadvantage of Linear Hashing relative to Extendible 
Hashing is that space utilization could be lower, especially 
for skewed distributions, because the bucket splits are not 
concentrated where the data density is highest, as they are 
in Extendible Hashing. A directory-based implementation 
can improve space occupancy, but it is still likely to be 
inferior to Extendible Hashing in extreme cases. We can 
address this problem by adjusting the criterion used to 
trigger splits; in effect, we can trade off slightly longer 
overflow chains for better space utilization. 
 


