
 1

Log Manager

 2

Introduction

Log may be considered as the temporal database – the
log knows everything. The log contains the complete
history of all durable objects of the system (tables,
queues, data items). It is possible to reconstruct any
version of an object by scanning through the log.

Duality:
• Multiversion data
• History of data

The log was originally used only for transaction
recovery. Now, the log is increasingly used to provide
application-level time-domain addressing of objects.

It is used to perform:
• Auditing (how your bank account suddenly got very

big)
• Analysis and accounting (how long lasted your

transaction, how much activity it generated) – this
information may be used to tune the system

• Billing – to generate bills for users who invoked
transactions.

 3

Log Manager Overview

• the log manager provides an interface to the log,

which is a sequence of records
• each record has a header that contains the names of

the resource manager and the transaction that wrote
the record

• the bulk of each record is a body containing UNDO-
REDO information generated by the resource
manager that wrote the log record

• the body of record is treated as a byte string
• each record in the log table has a unique key, called

log sequence number (LSN)
• the log table has its definition, expressed in SQL :

 4

create domain LSN unsigned integer(64) - log
sequence number (file#, rba)

create domain RMID unsigned integer - resource
manager identifier

create domain TRID char(12) - transaction
identifier

create table log_table(
 lsn LSN, - the record’s LSN
 prev_lsn LSN, - the lsn of the previous

 record in log
 timestamp TIMESTAMP,

- time log record was created
resource_manager RIMD, - r.m. that wrote this

 record
 trid TRID, - id of transaction that wrote

 this record
 tran_prev_lsn LSN, - prev. Log record of this

 transaction
 body varchar, - log data
 primary key (lsn)
 foreign key (prev_lsn)
 references log_table(lsn),
 foreign key (tran_prev_lsn)
 references log_table(lsn),
) entry sequenced;

The log apears to be an SQL table, so it can be queried using
ordinary SQL statements.

select *
from a_log_table
where resource_manager = :rmid
order by lsn descending;

 5

The Log Manager’s Relationship to
Other Services

The log manager provides read and write access to the log
table for all the other resource managers and for the
transaction manager.

The log manager maps the log table onto a growing collection
of sequential files provided by the operating system, the file
system, and the archive system.

The archive system is necessary because logs grow without
bound. Only recent records are kept online. Log records more
than a few hours old are stored in less-expensive tertiary
storage (tape) managed by the archive system.

 6

The interactions among the various resource managers

from the perspective of the log manager. The arrows show
who calls whom.

Archive Manager

SQL & Other Resource
Managers

Transaction Manager

Lock Manager Log Manager

File Manager

Media Manager

Buffer Manager
Operating System

File
System

 7

Why have a Log Manager?

The log is an entry-sequenced SQL table, so it is
convenient for applications and utilities to read the log
using SQL operations. However, writing the log has
several unique properties that give the log manager
reason to exist.
• Encapsulation. The log manager encapsulates log

record headers, assuring that these fields are filled
correctly. Historically, the log manager had only two
clients: the database manager and the queue manager.
This allowed an unprotected call interface to the log
manager. Now, the log manager encasulates log
records and is the only one actually to write log
records.

• Startup. The log manager helps reconstruct the
durable system state at the system restart. At restart,
almost nothing is functioning. The log manager must
be able to find, read, and write the log without much
help from the SQL system. The data can be stored in
SQL format, but restart operations must be able to
access it via record-at-a-time calls.

• Careful writes. The log is generally duplexed, and it
is written using protocols (serial writes, Ping-Pong
writes, and so on). This is done because the log is the
only durable copy of committed transaction updates
until the data items are copied to disk.

 8

Log Tables

• simple systems have only a single log table
• distributed systems have one or more logs per

network node
• in systems with very high update rates, the bandwidth

of the log can become a bottleneck
• such bottlenecks can be eliminated by creating

multiple logs and by directing the log records of
different objects to different logs

• in some situations, a particular resource manager
keeps its own log table – this is common for portable
systems

• occasionally, a log table may be dedicated to an
object for the duration of a batch’ operation – during
such operations, a special log table is dedicated to the
object so that standard log tables are no cluttered with
the traffic from the operation

• when the operation completes, the object’s normal log
records are again sent to the main log

 9

Mapping the Log Table onto Files

The log is implemented using sequential files. Recently
generated files (4 or 5) are kept online and filled one after
another. The files are usually duplexed, so that no single
storage failure can damage the log. The two physical file
sequences are often stored in independent directory spaces
(file servers) to minimize the risk of losing both directories

The two log files use standard file names, ending with the
patterns LOGA00000000 and LOGB00000000, where the
zeros are filled in with the file’s index in the log directories.
The log manager maintains a single record to describe each
log:

struct log_files
 (filename a_prefix; directory for “a” log files
 filename b_prefix; directory for “b” log files
 long index; index of current log file
);

• this information is known as the log anchor
• it is cached in main memory and is also recorded in at least

two places in durable storage – in two files, so that it can be
found at restart

• when the anchor is updated in these files, careful writes are
used to minimize the risk of destroying both copies of the
anchor

 10

The mapping of log tables to entry-sequenced files. Log record

headers are maintained by the log manager. The header contains the
log record’s sequence number (LSN), the name of the resource
manager that wrote the record, and the name of the transaction that
wrote the record. Each transaction’s log records are in a linked
‘tran_prev_lsn’ list to speed transaction backout. The log table is
mapped to two sequences of files (the ‘a’ and ‘b’ series).

 lsn
prev_lsn
resource_mgr
trid
tran_prev_lsn

body

A Files B Files
Log Table

Archive

 11

Log Sequence Numbers

• each log record has a unique identifier, or key, called its log

sequence number (LSN)
• the LSN is composed of the record’s file number and the

relative byte offset of the record within that file
• LSNs are unsigned, 8-byte integers that increase

monotonically, so that if log record A for an object is
created ‘after’ log record B for that object, then
LSN(A)>LSN(B)

• this monotonicity is used by the write-ahead log (WAL)
protocol

• the first word of the LSN, lsn_file, gives the record’s file
index, NNN, which in turn implies the two file names :
a_prefix.logNNN and b_prefix.logbNNN

Public Interface to the Log

• two log read interfaces are provided :

• the SQL ‘set oriented’ interface, returning all
records that satisfy a given predicate

• low-level, record-at-a-time interface, providing
direct access to the log, given the record’s LSN

 12

Reading the Log Table

• because the record is usually less than 100 bytes, the caller

reads the whole thing
• occasionally, the log records are large (several MB), and the

caller may only want to read the log record header or a
substring of the log record body

• the log_read() routine copies a substring of the log record
body into the caller’s buffer; in addition, it returns the
values of the fields in the log record header – this routine
returns the number of bytes actually moved :

typedef struct{ LSN lsn;
 LSN prev_lsn;
 TIMESTAMP timestamp;
 RMID rmid;
 TRID trid;
 LSN tran_prev_lsn;
 long length;
 char body[];

 }log_recorder_header;

• the log_max_lsn(void) routine returns the current

maximum lsn of the log table
• these two routines are sufficient to read the log in either

direction

 13

Writing the Log Table

• writing a log record is simple, once the table has been

opened for write access – the only parameter is the log
record body

• the log manager allocates space for the record at the end of
the log – it then fills in the log record header and adds the
record’s LSN, the transaction’s previous log record LSN,
and the current timestamp

• the log manager fills in the log record body by moving n
bytes from the passed record

• new log records are buffered in volatile storage
• if the system fails at this point, all or part of the log record

may be lost
• when the resource manager wants to assure that the log

record is present in durable storage, it must call a second
routine : log_flush()

• log_flush() has a ‘lazy’ option to allow the log manager to
defer the log write

 14

Summary

• the log manager provides record-oriented read and insert-

flush interfaces to log tables
• resource managers use these interfaces to record changes to

persistent objects
• the transaction manager reads these records back to the

resource manager if the transaction must be undone or
redone

• record-oriented read and insert-flush interfaces approximate
the design of most logging systems :

• Data copy. The interface requires data to be moved
between the caller;s data buffer and the log

• Incremental insert. In many situations, the client
first builds the UNDO part of the record and then the
REDO part. In these cases, some log systems allow
the caller to allocate the log record and then
incrementally read the body

• SQL representation. It is about allowing SQL read
access. The more typical design dedicates a log
manager to a resource manager and treats the log as
part of the resource manager’s data, which the
resource manager can directly address

 15

Mapping of the log into main memory buffer pool.

The last few pages of the log table reside in the disk buffer
pool. New records of a log table are inserted into these pages
in the standard way. Each page has the standard layout, which
includes a few bytes of header and trailer. When log_flush()
of the current LSN is called, the pages indicated are written to
the two disks.

A File B File

Pages Written In Next Write

Durable
Storage

End of Durable
Log

Body

Header Log Table

Log Pages in
Buffer Pool

 16

Reading the Log

• all but the last log record can be read without locking
• the last record cannot be read while it is being update

– this update protects a semaphore
• the log manager keeps a flag in each page to indicate

if the page is full
• since the log is written sequentially, all pages but the

last should have the full flag set to true
• the last page is buffered in memory most of the time
• when reading a log page, if the full flag of the first

read is false, the log manager reads the other copy of
the page

 17

Log Anchor

• the log anchor describes the active status of the log

table
• it contains the log table name, the array of open files,

and various LSNs described below
• it also contains a semaphore that serializes log insert

operations
• the anchor has the following structure :
typedef struct(
 filename tablename; name of log table
 struct log_files; A & B file prefix names
 xsemaphore lock; semaphore
 LSN prev_lsn ; LSN of most recent

written record
 LSN lsn; LSN of next record
 LSN durable_lsn; max lsn recorded in

durable storage
 LSN TM_anchor_lsn;
 struct (
 long partno; partition number
 int os_fnum; OS file number
) part [MAXOPENS]
) log_anchor;
• concurrent access to the end of the log is protected by

an exclusive semaphore called the log lock
• the only locking needed is that which control access

to the end of the log

 18

Log Insert

• the pages must be allocated, fixed in the buffer pool,

formatted and filled in
• when log_insert() fails to find enough space in a page, it

calls another routine to allocate new page(s) in the buffer
pool and then adds the log record data to those pages

Allocate and Flush Log Daemons

• allocating a file is time-consuming and involves

authorization, space allocation, and even disc I/O
• a log manager daemon, an asynchronus process, allocates

files in advance
• it wakes up periodically to see if the current file is half full

– if so, it allocates the next file
• the daemon adds the file descriptor to the log_anchor and

updates the log_anchor in durable storage
• it records this new partition in the SQL catalogs
• in simple systems, the buffer manager performs all log

writes
• high-performance systems appoint a separate process to

drive the buffer-manager write logic – the movement of
data to durable storage is coordinated by an asynchronus
process called the log flush daemon

• this daemon is woken up by flush requests and by periodic
timer interrupts

• its goal is to move recent log additions to disk in a way that
will not damage data already present in durable storage

 19

A typical shared-memory logging design. The mainline

log functions of reading and writing the log are part of the
application process, while asynchronus processes manage
movement of data to disk and allocation of new log files.

Application
Resource
Managers
Log Code

Log Daemon to Flush
(Carefully Write) Log

Pages as Needed

Log Daemon to Allocate
New Log Files as Needed

Log Data in Shared Memory and on
Disk

 20

Careful Writes : Serial or Ping-Pong

Duplexing the log table guards against most media
errors. However, the following scenario is possible.
Suppose the last log page on disk contains some usefull
information but is only partially full. The next log
record will be added to the partially full page. Writing
the new page to disk will overwrite the old half-full
version of that page on both disks. If there is a processor
or power failure during the transfer, both copies of the
last page could be damaged by the single write.

Two solutions are feasible.
• Serial writes. Write one copy, and, when that

complete write the second copy. Two exceptions.
First, if the write to the page is the first write to that
page, then serial writes are not necessary. In a system
with intensive data accesses it is better to write full
page rather than partial log page. This suggests to
deferring log writes until a log page is full.

• Ping-Pong algorithm. Supose the last page of the log
is not empty (call it page i). In that case, write its
contents to page i+1 instead. This Ping-Pong
algorithm avoids overwriting the most recent written
log page and, in doing so, allows parallel writes of the
two log files.

 21

Using Ping-Pong parallel writes to overwrite good

pages on a duplexed disk. Duplex writes risk destroying data
already safely stored in durable storage. Either serial writes or
the Ping-Pong scheme can be used to avoid the problem.

Disk Page Disk
Page

New Log Data

Parallel Ping-Pong

Writes

i:

i+1:

