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Monoversion database systems 
 
 
• Update_in_place (disks) – it violates accounting practice that 

has been observed for centuries. It destroys data (the old 
version), and if data has value, then update_in_place destroys 
value. 

• Degree of concurrency – problem of the so called audit 
transaction. 

 
 

S: T1: r(x)   T2: r(x, y)   T2: w(x, y)   T2: c   T1: r(y)   T1: c 
 
The schedule is not serializable in monoversion’s environment. 
 
Compatibility matrix: 

 

operation 
 

operation 

read(x)  write(x)  

read(x)  4 − 
write(x)  − − 
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Multiversion data item 
 
 
There have been several proposals for systems in which 
data items are never altered; rather, a data item is 
considered to have a history. 
 
A data item is not updated but evolves as information is 
added. The process consists in creating a new value and 
appending it to the data item history as the data item’s 
current value. Such a data item is called a multiversion 
data item. 
 
A multiversion data item can be defined as follows (a sequence 
of versions):  
 
 x = (n, (v0, v1, ..., vk)) 
where vi denotes an i-th version of the data item x (a value) 
 
A multiversion data item can be also defined as follows (a 
history):  
 
 x = (n, (v0[to, t1]), (v1[t1, t2]), ..., (vk[tk, *]) ) 
 
where v0, v1, ..., vk is a sequence of values of consecutive 
versions, and to, t1, t2, tk is an increasing time sequence. 
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This is interpreted as follows: between time to and t1, the 
data item x had value v0. At time t1 it was updated to 
value v1, and at time tk the most recent update was made. 
 
Each transaction is assigned a time at which it ran, that is, 
a time at which all its reads and writes are interpreted. 
 
Reading a data item, transaction T, assigned to run at time 
t3, gets the value of the data item at that time. 
 
Example: 
 
 

S: T1: r(x)   T2: r(x, y)   T2: w(x, y)   T2: c   T1: r(y)   T1: c 
 
Assume that at the beginning data items x and y have the 
following histories:  
 
 x = (x0);  y = (y0) 
 
The schedule is not serializable in a monoversion database 
system; however, it is correct if both data items x and y 
are multiversioned. 
 
The equivalent serial schedule is the following: 
 
   Sserial: T1: r(x, y)   T1: c   T2: r(x, y)   T2: w(x, y)   T2: c 
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Multiversion Schedule 
 
 
A multiversion schedule mvs of a set of transactions τ is a triple:  

mvs(τ) = (Tmvs (τ) , pmvs , h), 
where: 
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3. h : mvsT → mvsT  is a function that maps each read 
operation {ri(x) ∈ mvsT (τ)} into a write operation {wj(x) ∈ 

mvsT (τ)}, in such a way that for each read operation r i(x) 
∈ mvsT (τ), if h(ri(x)) = wj(x), then wj(x) pmvs r i(x). 

 
 
According to the monoversion serializability criterion, a 
given concurrent monoversion schedule is correct if it is 
equivalent to a serial monoversion schedule.  
 

Is it possible to extend this definition for 
multiversion schedules? 
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Example: 
 
Assume that DB consists of a single data item x. Assume 
initially that x=(x0=1000).  
Given 3 transactions increasing the value of x by 1000 – 
Ti = { x= x + 1000}, i=1, 2, 3. 
 
Consider the following serial schedule of T1, T2, and T3. 
 
 
Sserial: T1: r(x0)   T1: w(x0+1000)  T1: c 

T2: r(x0)   T2: w(x0+1000)  T2: c 
T3: r(x0)   T3: w(x0+1000)  T3: c 

 
The final DB state is the following: 
 
 x = (x0, x1, x2, x3)  
 
where x0=1000; x1=2000; x2=2000; x3=2000 
 
The multiversion serial schedule is incorrect! 
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Standard serial multiversion schedule 
 
 
A serial multiversion schedule mvs(τ) is standard if each 
read operation Ti : r(x) accesses the version of a data item 
x created by the last write operation Tj : w(x) preceding Ti 
: r(x). In other words, a serial multiversion schedule is 
standard if there is no such write operation Tk : w(x) that 
the following condition is fulfilled: 

h(Ti : r(x)) pmvs Tk : w(x) pmvs Ti : r(x) 
 
 
 

Multiversion serializability criterion 
 
 

A multiversion schedule mvs(τ) of a set of 
transactions τ is multiversion serializable 
(correct) if it is equivalent to any standard serial 
multiversion schedule of the set of transactions τ. 
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Multiversion Two-Phase Locking 
Algorithm 

 
(two-version data model) 

 
 

The concept of multiversion 2PL is broader than the 
concept of monoversion 2PL.  

Each transaction initiated in the system and each version 
of a data item is certified or uncertified. When a 
transaction begins, it is uncertified. Similarly, each new 
version prepared in the transaction’s workspace is 
uncertified. 

A certify operation is introduced and a new lock mode – 
the certify lock is introduced. Cerify locks are mutually 
incompatible. 

Any read operation r(x) concerns the last certified version 
of a data item x or any uncertified version of this data 
item. Any write operation w(x) prepares a new version of 
x in the workspace of the transaction. At the end of 
transaction execution the transaction and new versions of 
data items prepared are being certified. The certification 
procedure consists of certify-locking of all data items that 
the transaction accessed to write. The Ti certification is 
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completed when all certify locks are set and the following 
conditions are satisfied: 

• At the moment of ti’s certification the versions of all 
data items read by Ti are certified; 

• For each data item x that Ti wrote, all transactions that 
read certified versions of x are also certified. 

 

Inorder to satisfy the second condition a certify token is 
allocated to each data item x to forbid reading certified 
versions of x other than the last one. 

 

Compatibility matrix  

 
Current lock 

 
Requested lock 

 
R  

 
W  

 
C 

R  4 4 − 
W  4 − − 
C − − − 
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Read(x, tid) begin 

B: if (LOCK(x, tid) = C) 
then begin  

< insert into queue(x) and wait (until lock manager wakes 
up the transaction)>; 

go to B; 
end; 
else begin 
LOCK(x, tid) ← R; 
< read x >; 
end; 

end Read; 
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Write(x, tid) begin 
B: if (LOCK(x, tid) = 0 or LOCK(x, tid) = R) 

then begin  
LOCK(X, tid) ← W; 
< create new version x' >; 

end; 
else begin  

< insert into queue(X) and wait (until lock manager wakes 
up the transaction)>; 

go to B; 
end; 

end W_lock; 

 
Certify(x, tid) begin 

B: if (number_of_read_locks_on_x = 0) then begin 
LOCK(X, tid) ← C; 
< replace old version x with x' >; 

end; 
else begin  

< wait (until lock manager wakes up the transaction)>; 
go to B; 

end; 
end Certify; 
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Example: 
 

S: T1: r(x)  T1: r(y)  T1: r(z)  T2: r(y)  T1: w(z)  T1:c   

T3: r(x)  T3: w(y)  T2: w(y)  T2:c  T3: r(z)   T3:w(z)  T3: c 

 

The schedule is incorrect in monoversion database system due to 
cycle  

 

 

 

 

 

 

However, the algorithm correctly serialize the operations 
and the schedule is multiversion serializable. 
 

 

T1 

T2 

T3 
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Multiversion Timestamp Ordering 
Method 
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Each multiversion data item x=<x0, x1, ..., xn>  is 
represented by its history:  
 
H(x) = {(Read_TS(x0), Write_TS(x0), ..., (Read_TS(xn), 

Write_TS(xn)}, 
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The pair {(Read_TS(xi), Write_TS(xi)} is called a history 
of a version xi. A history consists of two timestamps: 
 
•••• Read_TS(xi) – is assigned the largest timestamp of a 

completed transaction that read this version; until the 
first transaction that has read the version completes, the 
timestamp Read_TS(xi) has the value Write_TS(xi). 

•••• Write_TS(xi) - is assigned the value of the timestamp of 
the transaction that created (wrote) this version. 

 

The history H(x)={(1, 5), (8, 10), (13, 18), (19, 19)} 
means that the data item x has four versions (x0, x1, x2, 
x3), created at times 1, 8, 13, and 19. 
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Reed Algorithm 
 
 
Read(Ti, x) begin 

< read xk , such that Write_TS(xk) = max {Write_TS(xj) : 
Write_TS(xj) ≤ TS(Ti)} >; 

if (Read_TS(xk) < TS(Ti)) then  
Read_TS(xk) ←  TS(Ti); 

end Read; 

Write(Ti, x) begin 
if (exists xk , such that  

Write_TS(xk)≤TS(Ti)≤ Read_TS(xk))  
then 

< abort Ti and restart it with a new timestamp >; 
else begin 

< write xk >; 
Write_TS(xk ), Read_TS(xk ) ← TS(Ti); 

end; 
end Write; 
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Example: 
 
 
Consider the execution of four operations performed on a 
data item x: two read operations by transactions T1 and 
T2, and two write operations by transactions T3 and T4. 
Let TS(T1)=3, TS(T2)=11, TS(T3)=15 and TS(T4)=20. 
 
Assume that the history of x is the following: 
 H(x)={(1, 5), (8, 10), (13, 18), (19, 19)} 
 
 


