
 1

Transactional Recovery

 2

Introduction

Data in a database resides on disk

Memory:
• Volatile storage
• Nonvolatile storage

Buffer disk pages are read into memory buffer(s) so

the data will be available for random access by
processes.

The system makes attempt to keep a page in the buffer
in the hope that it will be referenced again in the near
future – it reduces the number of I/O operations.

 3

To support buffering - lookaside approach

• Disk page read request – hash the page address to any

entry in the lookaside table:
• If the entry is found – the page is already in the buffer
• If not – it must be read from disk

LRU buffering (least recently used): database pages
remain in buffer until a new page being read in from
disk requires space, and all buffer pages are occupied.

Some page must be dropped from the buffer among
those that has not been referenced for the longest time
(LRU)

We also don’t want to have to write out page back to disk
every time it is updated by some transaction

This is one of the most important optimizations for
transactional applications

 4

Conclusion - popular pages remain in buffer until:

• They become less popular and drift out of buffer

because of LRU
• The system forces them to be written back to disk

after some period of time

A page in a buffer is said to be dirty if it has been
updated by some transaction since the last time it was
written back to disk.

Dirty pages remain in buffer long after the transaction
that dirtied them has committed.

Problem: suppose we suddenly lose power or have a
system crash. Some of the disk pages are out of date
because they were very popular and they haven’t been
written out from buffer during the last thousand updates
that took places. All these updates existed only in
memory!

How can we handle this problem and be able to
recover these lost updates without going back to
the approach of writing out every update as soon
as it happens?

 5

As a tuple update occurs the system write a note, a log
entry, into a memory area known as a log buffer.

At appropriate times the log buffer is written out to disk
into
A sequential file called – log file.

A log file contains all log entries created for some
interval of time into the past. If memory is lost, the
recovery process will be able to use the log file to
recover updates of tuples that are out of date on disk.

This log method is preferable to writing out each tuple
update as it happens because it is much more efficient
with respect of I/Os.

Even if all disk page updates were written out to
disk as soon as they occurred at no cost, this
would not be sufficient to perform recovery!

 6

2 Log Formats

Consider the following execution:

r1 = T1:r(a, 50) T1:w(a, 20) T2:r(c, 100) T2:w(c,50)
 T2:c T1:r(b, 50) T1:w(b, 80) T1:c.........

Suppose the system crashed after T1:c. Due to LRU
buffering scheme the data items A, B, and C might not
be written out to disk in the order in which the updates
occur in the system.

 a = 50
 b = 80
 c = 100

consistency constraint is: a +b = 100

Conclusion: while we depend only on LRU buffering
scheme to write out updates, we cannot expect
consistent data to be on disk.

data are inconsistent

 7

Assume that writes to disk are performed as soon as the
page is updated in buffer.

Assume that the crash occurred after the operation T2:c

 a = 20
 b = 80
 c = 50

Conclusion: the system that performs updates to disk as
soon as they occur does’nt solve the problem.

Data are inconsistent

 8

Transaction:

• atomicity
• durability

A procedure known as database recovery is
performed after a crash that uses the log entries
written earlier and brings the disk-resident database
to a state where it will reflect either all or none of
the tuple updates for transactions that were in
progress at the time of the crash.

Basic assumption of recovery:
Transactional system, after being restarted following a
crash, will never remember the intentions of the
transaction logic that was running when memory was
lost.

What is the proper consistent state in the case of the
system crash?
Transaction T2 committed; T1 rolled back. Thus, the
proper consistent state after the crash would be:

 a = 50
 b = 50
 c = 50

Consistent data

 9

Transaction execution and corresponding log entries

Operation Log entry

T1:r(a, 50) (S, 1) – start transaction T1 log entry. No
log entry is written for a read operation,
but this operation is the start of T1

T1:w(a, 20) (W, 1, a, 50, 20) – T1 write log for update
of a. The value 50 is the before image, 20 –
is the after image of a

T2:r(c, 100) (S, 2) – start transaction T2 log entry
T2:w(c, 50) (W, 2, c, 100, 50) – T2 write log for update

of b. The value 100 is the before image, 50
– is the after image of b

T2:c (C, 2) – commit T2 log entry – (write log
buffer to log file)

T1:r(b, 50) No log entry
T1:w(b, 80) (W, 1, b, 50, 80) – T1 write log for update

of b. The value 50 is the before image, 80 –
is the after image of b

T1:c (C, 1) – commit T1 log entry – (write log
buffer to log file)

Log entries also appear for insert and delete operations.

 10

The log buffer is written out to the log file under only
two circumstances in our scheme:

• when some transaction commits
• when the log buffer becomes too full to hold more

entries (double-buffered disk write)

Is there enough data in these log entries to permit the
system to recover after a system crash?

Two kinds of problems may occur.

• we may have written to disk page updates of

transactions that ever completed (UNDO)
• we may find that some page updates of transactions

that have committed never got to disk (REDO)

 11

Assume that a system crash occurs immediately after
the operation T1:w(b, 80) has completed ((W, 1, b, 50,
80) has been placed in the log buffer).

The log buffer was written out to disk with the log entry
(C, 2). Transaction T2 has committed while transaction
T1 has not. After the system is reinitialized and the
system operator gives a command that initiates recovery
(RESTART command)

It means that all updates performed by T2 must be on
disk and all updates performed by T1 must be rolled
back on disk. The final values of data items after
recovery should be:

 a = 50
 b = 50
 c = 50

The process of recovery takes place in two phases:
• ROLLBACK
• ROLL FORWARD

Consistent data

 12

In the ROLLBACK phase, the entries in the sequential
log file are read in reverse order back to system starup,
when all data items activity began. During the
ROLLBACK step, recovery performs UNDO of all the
updates that should not have occurred, because the
transactions that made them did not commit.

In the ROLL FORWARD phase, the entries in the
sequential log file are read forward again to the last
entry. During the ROLL FORWARD step, recovery
performs REDO of all the updates that should have
occurred, because they were legal updates by
transactions that have committed.

Log entry ROLLBACK action performed
1. (C, 2) Put T2 into the committed list
2. (W, 2, c, 100, 50) Since T2 is on the committed list, do

nothing
3. (S, 2) Transaction T2 is no longer active
4. (W, 1, a, 50, 20) Transaction T1 has never committed.

Therefore, the system performs
UNDO of this update by writing the
before image value (50) into data
item a. Put T1 into the uncommitted
list

5. (S, 1) T1 is no longer active. Now that no
transactions were active, we can end
the ROLLBACK phase

 13

Log entry ROLL FORWARD action

performed
6. (S, 1) No action required
7. (W, 1, a, 50, 20) T1 is uncommitted – no action

required
8. (S, 2) No action required
9. (W, 2, c, 100, 50) Since T2 is on the committed list, we

REDO this update by writing after
image value (50) into data item c

10. (C, 2) No action required
11. We have rolled forward through all

log entries and terminate recovery

Comments:

 14

3 Correctness of recovery

How can we be certain that all the log entries needed for
proper recovery are out on disk?

• Writes to disk are carried out in an atomic manner -

„read after write”
• Transaction commit + write out of the log buffer to

the log file – atomic action

Correctness of ROLLBACK i ROLL FORWARD
procedures.

1. ROLL FORWARD – REDO operation

A commit log entry is a trigger for writing out the log
buffer and the transaction is not considered to have
successfully completed until this log buffer write has
been successful. Since the commit log must get out to
disk, all earlier write log entries for that transaction are
also out to disk, so we are assured that the REDO task
can be performed successfully.

 15

2. ROLLBACK – UNDO operation

We have to UNDO all updates of transactions that have
not committed in the log file. We have not provided any
guarantee that all log entries for updates of uncompleted
transactions will get out to disk. Could any problems
arise as a result of this? YES.

This may happen if the page updated by uncommitted
transaction drifted out to disk through the LRU
buffering before the log buffer containing the associated
log entry was written to the log file.

r1 = T1:r(a, 50) T1:w(a, 20) T2:r(c, 100) T2:w(c,50)
 T2:c T1:r(b, 50) T1:w(b, 80) T1:c.........

crash

 16

Two feasible solutions:

Solution A: subvert LRU page replacement policy

All updated pages will not drifted out to disk until
transactions that have written on them have committed
– dirty pages remain in the buffer until transactions
commit. No UNDO processing is ever needed at al
during recovery, and therefore before images are not
needed in the logs.
Drawback - ?

Solution B: modify LRU page replacement policy

The problem – dirty page drift out to disk through the
LRU before the associated log buffer is written out to
disk.

The solution - the associated log buffer is written out to
disk prior to dirty buffer pages reaching disk.

This is referred to as the „write ahead log” (WAL)
guarantee.

 17

Transactional system create the so called log sequence
number (LSN), a sequentially increasing integer value
associated with every entry written into the log buffer.
Moreover, the system keeps track of the smallest LSN
of any entry in the log buffer that has been created since
the log buffer was last written out to disk – we denote it
LSN_BUFFMIN.
Additionally, for every disk page in buffer, the system
notes the most recent LSN of an action that has
performed an update on a data item in that page, and
calls this value LSN_PGMAX.

Modification rule of LRU buffering policy is the
following:

A disk page cannot be written out to disk from the
LRU buffer unless its associated LSN_PGMAX <
LSN_BUFFMIN.

The rule guarantees that the associated page never gets
written out to disk until the log buffer with the relevent
log entry has been written out to disk.

 18

4 Checkpoints

The question is how far should we perform the
ROLLBACK procedure?
• to the time of system startup
• to the time defined by a user (DBA)

Problem: the length of time to perform recovery grows
with the length of the log file that we need to read
through:
• ROLLBACK – most of transactions are relatively

short-lived update transactions – the ROLLBACK
phase is quite efficient

• ROLL FORWARD – we need to REDO all updates of
transactions that have committed (most of them). In
fact, we have to perform once more all updates – this
phase may be very inefficient and takes more time
than original transactions.

 19

Checkpoint – new point of time, since which and till
which ROLLBACK and ROLL FORWARD are
performed.

We may ignore all the transactions and page updates
that occurred before the checkpoint.

There are three distinct approaches to creating a
recovery checkpoints:

• commit-consistent checkpointing
• cache-consistent checkpointing
• fuzzy checkpointing

 20

The Commit-Consistent Checkpoint

The system enters a “performing checkpoint state” with
the following steps.

1. No new transactions can start until the checkpoint is

complete.
2. Database operation processing continues until all

existing transactions commit, and all their log entries
are written out to disk.

3. The current log buffer is written out to the log file,
and after this the system ensures that all dirty pages in
buffer have been written out to disk.

4. When steps 1-3 have been performed, the system
writes a special log entry, (CKPT), to disk, and the
checkpoint is complete.

This procedure is very similar we use for a shutdown of
the system, and the final state is equivalent to what we
have been thinking of as system startup.

 21

Example:

• sizes of buffers - 200 MB
• page size - 4KB
• 50 000 pages – assume that half of them are dirty, so

we have 25 000 dirty pages that have to be writte out
to disk

• each page requires 25 ms to write to disk
• total time required to write of dirty pages to disk is -

625 seconds.
• total time required to perform a checkpoint is much

longer!!!

 22

The Cache-Consistent Checkpoint

To avoid problems of halting system operations during
a checkpoint procedure, a new type of a checkpoint is
defined – the cache-consistent checkpoint.

Transactions remain active during the checkpoint
procedure, and we only require that all dirty pages in
buffer and associated write log entries be forced out to
disk.

Disk buffer space in memory is also known as disk
cache ⇒ this explains the name of the checkpoint.

While a cache-consistent checkpoint is in process, the
active transactions must WAIT, in particular they
cannot perform new I/O operations.

Benefit – we do not have to wait until all active
transactions (e.g. long-lived) are completed.

 23

The system enters a “performing cache-consistent
checkpoint state” with the following steps.

1. No new transactions can start until the checkpoint is

complete.
2. Active transactions are not permitted to start any new

operations.
3. The current log buffer is written out to the log file,

and after this the system ensures that all dirty pages in
buffer have been written out to disk.

4. When steps 1-3 have been performed, the system
writes a special log entry, (CKPT, List), to disk, and
the checkpoint is complete. The List contains a list of
active transactions at the time the checkpoint is
created.

The recovery procedure when cache-consistent checkpoints
are used differs from the procedure when commit-consistent
checkpoints are used.

 24

A log file and recovery using a cache-consistent
checkpoint

Given the following execution of transactions:

r: T1:r(A, 10) T1:w(A, 1) T1:c T2:r(A, 1) T3:r(B, 2)
 T2:w(A, 3) T4:r(C, 5) CKPT T3:w(B, 4) T3:c
 T4:r(B, 4) T4:w(C, 6) T4:c crash

The sequence of log entries resulting from the above
execution

(S, 1) (W, 1, A, 10, 1) (C, 1) (S, 2) (S, 3) (W, 2, A, 1, 3)
(S, 4) (CKPT, (List = T2, T3, T4)) (W, 3, B, 2, 4) (C, 3)
(W, 4, C, 5, 6) (C, 4) crash

At the time the cache-consistent checkpoint was
created, the following values were written out to disk:

A = 3, B = 2, C = 5

 25

Assume that no other updates were written out to disk before
the crash, so the data item values remain the same.

T1

T2

T3

T4

Checkpoint Crash

 26

ROLLBACK

1 (C, 3) Transaction T3 is a committed

transaction in active list.

2. (W, 3, B, 2, 4) Committed transaction, wait for
 ROLL FORWARD

3. (CKPT, (List = T2, T3, T4)) Active transactions

T2,T4 not committed

4. (S, 4) Delete T4 from List of active

transactions

5. (W, 2, A, 1, 3) T2 not committed, perform
 UNDO; A = 1

6. (S, 3) Committed transaction, delete T3

from List

7. (S, 2) Delete T2 from List of active

transactions. Since the list of
active transactions is empty,
Stop ROLLBACK.

 27

Notice that when ROLLBACK encounters the CKPT
log entry, the system takes note of the transactions that
were active at the time of checkpoint creation. We
remove from the list those transactions that have been
committed, and receive a list of transactions whose
updates we need to UNDO. We continue the
ROLBACK phase until we complete all such UNDO
actions.

ROLL FORWARD

8. (CKPT, (List = T2, T3, T4)) Skip forward in log file

to this entry. The only committed
transaction is T3

9. (W, 3, B, 2, 4) ROLL FORWARD; B = 4

10. (C, 3) No action. Last entry in the log

file, so ROLL FORWARD is
complete.

 28

The aim of the ROLL FORWARD procedure is to
perform REDO of all updates made by committed
transactions that might not have gone out to disk. We
can jump forward to the first log entry after the
checkpoint, since we known (from the construction of
the checkpoint) that all earlier updates were written out
to disk.

Recall that the values of data items on disk at the time
of crash were:

 A = 3, B = 2, C = 5

At the end of recovery, we have set:

 A = 1 (step 5)

B = 4 (step 9)
C = 5

It follows from the fact that T2 and T4 are not
committed, while T1 and T3 are committed.

 29

The Fuzzy Checkpoint

The aim of a fuzzy checkpoint is to reduce to an
absolute minimum the time needed to perform a
checkpoint. Since this time is mainly determined by the
time necessary to flush all dirty pages to disk, so this
approach tries to minimize the effort necessary to write
out dirty pages on disk.

Fuzzy checkpoint makes use of two checkpoint events,
the most recent two checkpoints that have been
recorded to the log file with the CKPT log entries. The
idea is the following. During the creation of the
checkpoint CKPTN, the system takes note of the set of
dirty pages that have accumulated in buffers since the
prior checkpoint CKPTN-1. The intent is that all of these
pages will be written out to disk by the time of next
checkpoint is taken - CKPTN+1. During the period
between checkpoints, there is a good opportunity for
most of the pages dirty during the first checkpoint to
drift out to disk under the normal operation of the buffer
manager. The rest of dirty pages will be forced out to
disk when the next checkpoint is taken. Summarizing,
all the pages that were dirty at the time CKPTN-1 was
taken have been forced out to disk by the time we
complete CKPTN.

 30

The system enters a “performing fuzzy checkpoint
state” with the following steps.

1. Prior to checkpoint start, the remaining pages dirty as

of the previous checkpoint are forced out to disk.
2. No new transactions can start until the checkpoint is

complete.
3. Active transactions are not permitted to start any new

operations.
4. The current log buffer is written out to the log file

with an appended log entry, (CKPTN, List), as in the
cache-consistent checkpoint procedure.

5. The set of pages in buffer that are dirty since the last
checkpoint log, CKPTN-1, is noted. Special flags on
the buffer directory may accomplish this. The
checkpoint is now completed.

The recovery procedure with fuzzy checkpoints differs
from the procedure with cache-consistent checkpoints
only in that ROLL FORWARD must start with the first
log entry following the second-to-last checkpoint log
(i.e. it start with CKPTN-1, if the last checkpoint that was
taken in the system is CKPTN).

