
 

 

 

 

FILE ORGANIZATIONS  

AND INDEXES 

 

1. INTRODUCTION 
 

A file organization is a way of arranging the 

records in a file when the file is stored on disk. 

A file of records is likely to be accessed and 

modified in a variety of ways, and different ways 

of arranging the records enable different 

operations over the file to be carried out 

efficiently.  
 

A DBMS supports several file organization 

techniques, and an important task of a DBA is to 

choose a good organization for each file, based on 

its expected pattern of use. 

Each file organization makes certain operations 

efficient, but often we are interested in supporting 

more than one operation. 

2. COST MODEL 
 

 

Notation and assumptions: 

• there are B data pages with R records per page, 

• the average time to read or write a disk page is D, 

• the average time to process a record (e.g., to 

compare a field value to a selection constant) is C. 

• In the hashed file organization, we will use a 

function, called a hash function, to map records 

into a range of numbers; the time required to apply 

the hash function to a record is H. 

 

Typical values today are D = 20 milliseconds, C and 

H = 1 to 10 microseconds; we therefore expect the 

cost of I/O to dominate. 

 

3. COMPARISON OF THREE FILE 

ORGANISATIONS 
 

 

We compare the costs of some operations for three 

basic file organizations:  

• heap files;  

• files sorted on some field;  

• files that are hashed on some field.  

 

The operations that we consider are the following: 

 

• Scan: Fetch all records in the file. The pages in the 

file must be fetched from disk into the buffer pool. 

There is also a CPU overhead per records for 

locating the record on the page (in the pool). 

• Search with Equality Selection: Fetch all records 

that satisfy an equality selection, e.g., „Find the 

Students records for the student with sid 23.” 

Pages that contain qualifying records must be 

fetched from disk, and qualifying records must be 

located within retrieved pages. 

 

• Search with Range Selection: Fetch all records 

that satisfy a range selection, e.g., „Find all 

Students records with name alphabetically after 

‘Smith’.” 

 

• Insert: Insert a given record into the file. We must 

identify the page in the file into which the new 

records must be inserted, fetch that page from disk, 

modify it to include the new record, and the write 

back the modified page. Depending on the file 

organization, we may have to fetch, modify and 

write back other pages as well. 

 

• Delete: Delete a record that is specified using its 

rowid. We must identify the page that contains the 

record, fetch if from disk, modify it, and write it 

back. Depending on the file organization, we may 

have to fetch, modify and write back other pages 

as well. 

 



3.1. Heap Files 
 

 

 

 

 

 

 

 

 

 

 

 

 

Heap file – doubly linked list of pages: 

• linked list of pages with free space 

• linked list of full pages 

 

 

 

Header 
page 

Data 
page 

Data 
page 

Data  
page 

Data 
page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heap file organization with a directory 

 

Free space is managed by maintaining a bit per entry 

indicating whether the corresponding page has any 

free space on the page. 

 

Header page 

Data 
Page 1 

Data  
Page 2 

Data 
Page N 

 

Scan: The cost is B(D +RC) because we must retrieve 

each of B pages taking time D per page, and for each page, 

process R records taking time C per records. 

 

Search with Equality Selection: The cost is 0.5B(D + 

RC). If there is no record that satisfies the selection we 

must scan the entire file to verify this. 

 

Search with Range Selection: The cost is B(D + RC). 

 

Insert: The cost is 2D + C. 

 

Delete: The cost is the cost of searching plus C + D. 

 

3.2  Sorted Files 
 

 

Aaron Ed 

Abbott Diane 

 

Acosta Marc 

 

Adams John 

Adams Robin 

 

Akers Jan 

 

•  • • 

 

Wright Pam 

Wyatt Charles 

 

Zimmer Donna 

 

 

 

 

Scan: The cost is B(D + RC) because all pages must be 

examined. 

 

Search with Equality Selection: The cost is Dlog2B + 

Clog2R, which is a significant improvement over searching 

heap files (the so called - binary search) 

 

Search with Range Selection: The cost is the cost of 

search plus the cost of retrieving the set of records that 

satisfy the search. The cost of the search includes the cost 

of fetching the first page containing qualifying, or 

matching records. 

 

Insert: The cost is the cost of searching to find the 

position of the new record plus 2 * (0.5B(D + RC)), that is, 

search cost plus B(D + RC). 

Remarke: use overflow or transaction file – unordered file 

 

Delete: The cost is the same as for an insert, that is, search 

cost plus B(D + RC). 

3.3. Hashed Files 
 

A hashed file has an associated search key (called the 

hash key), which is a combination of one or more fields of 

the file. The idea behind hashing is to provide a function 

h, called a hash function that is applied to the hash field 

value of a record and yields the address of the disk block 

in which the record is stored. 

 



3.3.1. Internal hashing 

 

Given an array of records with M slots. The index 

array range from 0 – M-1. 

 

0 

1 

2 

3 

 

 

M-2 

M-1 

 

Hash function transforms the hash field value into an 

integer between 0 and M-1. Common function: 

 

H(K) = K mod M 

 
 

Morzy 

SSN Name Salary 

The whole process consists of two steps: 

• folding – transformation of hash field values into 

integers 

• hashing 

 

Collision – when the hash field value of a new record 

that is being inserted hashes to an address that already 

contains a different record. 

 

Collision resolution – the process of finding another 

position for the inserted record.  

 

Collision resolution methods: 

• open addressing – check the subsequent position, 

• chaining – use overflow locations, 

• multiple hashing – apply a second hash function. 

 

Each collision resolution method requires its own 

algorithms for insertion, retrieval and deletion of 

records. 

3.3.2. External hashing 

 

Hashing for disk files is called external hashing. The 

pages in a hashed file are grouped into buckets. The 

hashing function maps a hash key into a relative bucket 

number. A table maintained in the file header converts the 

bucket number into the corresponding disk block address. 

 

 

 

 

 

 

 

 

 

 

block address 
on disk 

0 

1 

2 

bucket 
numbers 

chaining 

 

Scan: The number of pages and the cost of scanning all 

the data pages is about 1.25 times the cost of scanning an 

unordered file that is, 1.25B(D + RC). 

 

Search with Equality Selection: The cost is H + D + RC. 

 

Search with Range Selection: The cost is 1.25B(D + RC). 

 

Insert: The cost is the cost of search plus C + D.  

 

Delete: The cost is again the cost of the search plus C + D 

(for writing the modified page). 

3.
4.

 C
ho

os
in

g 
F

ile
 O

rg
an

iz
at

io
n 

 F
ig

ur
e

 1
 c

om
pa

re
s 

I/O
 c

os
ts

 f
or

 t
he

 t
hr

e
e

 f
ile

 o
rg

a
ni

za
tio

ns
. 

  
F

il
e 

T
yp

e 
Sc

an
 

E
qu

al
it

y 
Se

ar
ch

 
R

an
ge

 
Se

ar
ch

 
In

se
rt

 
D

el
et

e 

 
H

ea
p 

B
D

 
0

.5
 B

D
 

B
D

 
2D

 
Se

ar
ch

 +
 D

 
So

rt
ed

 
B

D
 

D
lo

g 2
B

 
D

lo
g 2

B
 +

 #
  

m
at

ch
es

 
Se

ar
ch

 +
 B

D
 

Se
ar

ch
 +

 B
D

 

H
as

he
d 

1
.2

5B
D

 
D

 
1

.2
5

 B
D

 
2D

 
Se

ar
ch

 +
 D

 
 

 

F
ig

u
re

 1
. A

 C
o

m
p

ar
is

o
n

 o
f 

I/O
 C

o
st

s 
   

4. OVERVIEW OF INDEXES 
 

• An index on a file is an auxiliary structure designed to 

speed up operations that are not efficiently supported by the 

basic file organization of records 

• An index can be viewed as collection of data entries, with 

an efficient way to locate all data entries with search key 

value k. Each such data entry, denoted as k*, contains 

enough information to retrieve (one or more) data records 

with search key value k.  

 

Two important questions to consider are: 

 

• How are data entries organized in order to support efficient 

retrieval of data entries with a given search key value? 

• Exactly what is stored as a data entry? 

 



                    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

F
ig

ur
e 

2.
 F

ile
 H

as
he

d 
on a

ge
, w

ith
 In

de
x 

on
 sa

l  
 

 

F
ile

 h
as

h
ed

 o
n

 a
g

e  

F
ile

 o
f <

sa
l, 

ri
d

>
 p

ai
rs

 
h

as
h

ed
 o

n
 s

al 

30
00

A
sh

by
, 2

5,
 3

00
0 

B
as

u,
 3

3,
 4

00
3 

B
ris

to
w

, 2
9,

 2
00

7 

C
as

s,
 5

0,
 5

00
4 

D
an

ie
ls

, 2
2,

 6
00

3 

Jo
ne

s,
 4

0,
 6

00
3 

S
m

ith
, 4

4,
 3

00
0 

T
ra

cy
, 4

4,
 5

00
4 

30
00

50
04

50
04

40
03

20
07

60
03

60
03

ag
e 

h(
ag

e)
=

01
 

sa
l 

h(
ag

e)
=

10
 

h(
sa

l)=
00

 

h(
ag

e)
=

00
 

h(
sa

l)=
11

 

h
 

h
 

  

Alternatives for Data Entries in an Index 
 

 

A data entry k* allows us to retrieve one or more data 

records with key value k. We need to consider four 

main alternatives: 

 

1. A data entry k* is an actual data record (with search 

key value k). 

 

2. A data entry is a <k, rowid> pair, where rowid is the 

record id of data record with search key value k. 

 

3. A data entry is a <k, rowid-list> pair, where rowid-

list is a list of record ids of data record with search 

key value k. 

 

4. A data entry is a <k, bitmap> pair, where bitmap is a 

list of 0 and 1 representing records. 

5. PROPERTIES OF INDEXES 
 

5.1 Clustered versus Unclustered 

Indexes  
 

When file is organized so that the ordering of data 

records is the same as or close to the ordering of data 

entries in the index – we say that the index is 

clustered. Otherwise, the order of the data records is 

random, defined purely by their physical order – 

unclustered index 

 

In practice, data records are rarely maintained in full 

sorted order, unless data records are sorted in an index 

using Alternative (1), because of the high overhead of 

moving data records around to preserve the sort order 

as records are inserted and deleted. 

 

 

                      
F

ig
ur

e 
3.

 C
lu

st
er

ed
 T

re
e 

In
de

x 
U

si
ng

 A
lte

rn
at

iv
e 

(2
) 

 

In
de

x 
en

tr
ie

s 
 

 
(D

ire
ct

 s
ea

rc
h 

fo
r 

da
ta

 e
nt

rie
s) 

D
at

a 
en

tr
ie

s D
at

a 
re

co
rd

s 
D

at
a 

fi
le

 

In
de

x 
fi

le
 

                      
F

ig
ur

e 
4.

 U
nc

lu
st

er
ed

 T
re

e 
In

de
x 

U
si

ng
 A

lte
rn

at
iv

e 
(2

)
  

 

In
de

x 
en

tr
ie

s 
 

 
(D

ire
ct

 s
ea

rc
h 

fo
r 

da
ta

 e
nt

rie
s) 

D
at

a 
en

tr
ie

s D
at

a 
re

co
rd

s  
D

at
a 

fi
le

 

In
de

x 
fi

le
 



Remarks: 

• records are sorted initially and each page is left with 

some free space to absorb future insertions 

•  if the free space on a page is subsequently used up 

(by records inserted after the initial sorting step), 

further insertions to this page are handled using 

linked list of overflow pages 

• after a while, the order of records only approximates 

the intended sorted order, and the file must be 

reorganized (i.e., sorted afresh) to ensure good 

performance. 

• a data file can be clustered on at most one search 

key - we can have at most one clustered index on a 

data file 

• we can have several unclustered indexes on a data 

file. 

 

5.2  Dense versus Sparse Indexes 
 

 

• An index is said to be dense if it contains one data 

entry for every search key value that appears in a 

record in the indexed file 

• An index is said to be non dense or sparse if it 

contains one data entry for each page of records in 

the indexed file 

• We cannot build a sparse index that is not clustered 

- thus we can have at most one sparse index. A 

sparse index is typically much smaller than a dense 

index.  

• A data file is said to be inverted on a field if there 

is a dense secondary index on this field. A fully 

inverted file is one in which there is a dense 

secondary index on each field that does not appear 

in the primary key. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5. Sparse versus Dense Indexes 

22

25

33

30

40

44

44

50

Ashby, 25, 3000 

Basu, 33, 4003 

Bristow, 30, 2007 

Cass, 50, 5004 

Daniels, 22, 6003 

Jones, 40, 6003 

Smith, 44, 3000 

Tracy, 44, 5004 

Ashby 

Cass 

Smith 

Sparse index  
on 

 name DATA  

Danse index  
on 
age 

5.3 Primary and Secondary Index 
 

An index on a set of fields that includes the primary 

key is called a primary index. An index that is not a 

primary index is called a secondary index. (The terms 

primary index and secondary index are sometimes 

used with a different meaning: An index that uses 

Alternative (1) is called a primary index, and one that 

uses Alternative (2) or (3) is called a secondary index.) 

 

Two data entries are said to be duplicates if they have 

the same value for the search key field associated with 

the index. A primary index is of course guaranteed not 

to contain duplicates; a secondary index contains 

duplicates.  

5.4 Indexes Using Composite Search 

Keys 
 

The search key for an index can several fields; such 

keys are called composite search keys or 

concatenated keys. As an example, consider a 

collection of employee records, with fields name, age, 

and sal, sorted in sorted order by name. Figure 6 

illustrates the difference between a composite index 

with key <age, sal>, a composite index with key <sal, 

age>, an index with key age and an index with key 

sal. All indexes shown in the figure use Alternative (2) 

for data entries.  

          
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

     
F

ig
ur

e 
6.

 C
om

po
si

te
 K

ey
 In

de
xe

s 

<
ag

e,
 s

al
> 

<
sa

l, 
ag

e>
 

<
sa

l>
 

<
ag

e>
 

  n
am

e 
  

ag
e 

 
 s

al
 

 b
ob

 
 

12
 

   
   

   
   

10
 

 jo
e 

 
12

 
 

20
 

su
e 

 
13

 
 

75
 

 c
al

 
 

11
 

 
80

 

11
,8

0 

12
,2

0 

12
,1

0 

13
,7

5 

10
,1

2 

20
,1

2 

75
,1

3 

80
,1

1 

10
 

20
 

75
 

80
 

11
 

12
 

12
 

13
 



We distinguish two basic types of queries: 

• an equality query is one in which each field in the 

search key is bound to a constant. For example, we 

can ask to retrieve all data entries with age = 20 and 

sal = 10.  

 

• a range query is one in which not all fields in the 

search key are bound to constants. For example, we 

can ask to retrieve all data entries with age = 20; 

this query implies that any value is acceptable for 

the sal field. As another example of a range query, 

we can ask to retrieve all data entries with age < 30 

and sal > 40. 

6. INDEX SPECIFICATION IN 

SQL-92 
 

The SQL-92 standard does not include any statement 

for creating or dropping index structures. The 

following command to create a B+ tree index is 

illustrative: 

 

CREATE INDEX IndAgeRating ON Students 

WITH STRUCTURE =BTREE, 

KEY = (age, gpa) 

 

This specifies that a B+ tree index is to be created on 

the Students table using the concatenation of the age 

and gpa columns as the key. Thus key values are pairs 

of the form <age, gpa>, and there is a distinct entry for 

each such pair. Once the index is created, it is 

automatically maintained by the DBMS 

adding/removing entries in response to inserts/deletes 

on Students. 

 


