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Introduction

We show that rough set theory (RST) proposed by Pawlak 1982 can be treated

as a basis for evidence theory proposed by Dempster and Shafer (1976), 

called Dempster-Shafer Theory (DST)

Dempster-Shafer Theory annuls the axiom of additivity of exclusive events, 

which is one of traditional axioms of probabilistic reasoning: P(A) + P(¬A) = 1

This permits to take into account both a degree of belief in a fact and

a degree of ignorance (belief in a negation of the fact) which do not need to 

sum up to 1 (in extreme case, degrees of belief and ignorance can be 0)

In DST, increased support for a hypothesis does not affect the support for 

the complement of this hypothesis

RST operates on a decision table S=〈U, C∪{d}〉 providing information about

objects in terms of values of attributes; RST detects inconsistencies due to 

indiscernibility of objects belonging to different decision classes (hypotheses) 

Cl = {Cl1,Cl2,…,Cln}; in consequence, the classes are characterized by lower

and upper approximations



3

Introduction

DST operates on a frame of discernment being a finite set of names of decision

classes (hypotheses) Cl = {Cl1,Cl2,…,Cln}; all possible clusters of classes from

Cl are considered – they create power set 2Cl; information about a set of

objects from U creating a given cluster is provided directly by some numerical

functions called the basic probability assignment (gęstość prawdopodobiństwa, 

masy), belief function and plausibility function (dolna i górna granica stopnia 

przekonania) 

Clusters from 2Cl are all possible homes of objects from U (hypotheses), 

given some pieces of evidence (premises): e.g. for Cl = {ravens, cats, whales}, 

the home (hypothesis) for objects with legs is the cluster {ravens, cats}, 

while the home for objects being mammals is the cluster {cats, whales}

While in DST the membership of objects in clusters is described by belief and

plausibility being functions of bpa, we will show that the values of these

functions can be calculated from the decision table using the RST concepts of

lower and upper approximations of decision classes
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Evidence Theory or Dempster-Shafer Theory

Frame of discernment : Cl = {Cl1,Cl2,…,Cln}

Basic probablitity assignment (bpa) m on Cl :  m: 2Cl→R+ satisfying

m(∅) = 0 

,  where Δ is a cluster of decision classes (from 2Cl)

For a given bpa m, two functions are defined:

belief function over Cl :  Bel: 2Cl→R+ iff for any θ ⊆ Cl

plausibility function over Cl :  Pl: 2Cl→R+ iff for any θ ⊆ Cl

Some properties:

Bel(∅) = Pl(∅) = 0,   Bel(Cl) = Pl(Cl) = 1

if Δ ⊆ θ,  then Bel(Δ) ≤ Bel(θ) and Pl(Δ) ≤ Pl(θ) 
Bel(θ) ≤ Pl(θ) 

Bel(θ) + Bel(Cl – θ) ≤ 1   and Pl(θ) + Pl(Cl – θ) ≥ 1 

( ) ( )∑ ⊆Δ Δ= θθ mBel

( ) ( ) ( ) ( ) ( )∑∑∑ ∅≠∩Δ−⊆Δ⊆Δ
Δ=Δ−Δ=−−= θθθθ mmmBelPl

ClCl
Cl1

( ) 1=Δ∑ ⊆Δ Cl
m
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Evidence Theory or Dempster-Shafer Theory

From a given belief function, a basic probablitity assignment (bpa) can be 

reconstructed :

,   for θ ⊆ Cl

The union of all subsets θ ⊆ Cl that are focal (i.e. have the property m(θ)>0) 

is called the core of Cl

( ) ( ) ( ) ( )∑ ⊆Δ
Δ− Δ−= θ

θθ Belm card1
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Evidence Theory or Dempster-Shafer Theory

Dempster’s rule of combination

Suppose that 2 different belief functions Bel1 and Bel2 over the same frame of

discernment Cl represent different pieces of evidence (przesłanki) 

(e.g. „with legs” or „mammals”).

The assumption is that both pieces of evidence are independent.

As a result of Dempster’s rule of combination a new belief function Bel3 is

computed as their orthogonal sum Bel1 ⊕ Bel2 :

where θ1, θ2 are focal elements of m1 and m2, respectively.

If , then m3(θ) cannot be defined, and m1, m2 are

said to be contradictory bpa. 
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Relationship between RST and DST

Let Cl be the frame of discernment compatible with the decision table

S=〈U, C∪{d}〉,  let also T(θ)={t : Clt∈Cl},  where θ ⊆ Cl

For any θ ⊆ Cl the belief function can be calculated as:

where

is called generalized decision for object x (cluster of classes, with no possibility

of discernment using knowledge about S=〈U, C∪{d}〉)
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Relationship between RST and DST

For any θ ⊆ Cl the plausibility function can be calculated as:
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Example

Let us consider decision table S = 〈U, C∪{d}〉,  where U = {1,…,28}, 

C={a, b, c, e, f}  and decision d makes partition of U into decision classes

Cl = {Cl1,Cl2, Cl3},  T(Cl) = {1, 2, 3} 

Cl1={1,2,4,8,10,15,22,25}

Cl2={3,5,11,12,16,18,19,21,23,24,27}

Cl3={6,7,9,13,14,17,20,26,28}

IC(1)={1,10},  IC(2)={2,11,20,23},

IC(3)={3,5},  IC(4)={4,6},

IC(7)={7,9,17},  IC(8)={8,12},

IC(13)={13,16},  IC(14)={14,21},

IC(15)={15,24},  IC(18)={18,19},

IC(22)={22},  IC(25={25,26,27},

IC(28)={28}



10

Example

Lower and upper approximations of decision classes:

( ) ( ) ( ) { }
( ) ( ) ( ) { }
( ) ( ) ( ) { }

( ) ( ) ( ) ( ) ( ) ( ) ( )
{ }
( ) ( ) ( ) ( ) ( ) ( ) ( )
{ }
( ) ( ) ( ) ( ) ( ) ( ) ( )
{ }

( ) ( ) ( ) { }
( ) ( ) ( ) { }
( ) ( ) ( ) { }27262523212016141311642

2726252423212016151413121182

2726252423201512118642

28272625232120171614131197642

25141342

2726252423212019181615141312118532

251514138

272625242322201512111086421

2515842

281797287

191853183

22101221

333

222

111

33

22

11

3

2

1

,,,,,,,,,,,,ClCClCClBn

,,,,,,,,,,,,,,ClCClCClBn

,,,,,,,,,,,,ClCClCClBn

,,,,,,,,,,,,,,,,

IIIIIClCClC

,,,,,,,,,,,,,,,,,,

IIIIIClCClC

,,,,,,,,,,,,,,,

IIIIIClCClC

,,,IIClC

,,,IIClC

,,IIClC

C

C

C

CCCCC

CCCCC

CCCCC

CC

CC

CC

=−=

=−=

=−=

=

=∪∪∪∪∪=

=

=∪∪∪∪∪=

=

=∪∪∪∪∪=

=∪=

=∪=

=∪=



11

Example

Generalized decisions for objects from the boundaries of decision classes
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Example

Generalized decisions for objects from the boundaries of decision classes

δC
δC
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Example

Values of the basic probability assignment for the frame of discernement

Cl = {Cl1,Cl2, Cl3}

T(θ)

mS(θ)

{Cl1} {Cl2} {Cl3} {Cl1,Cl2} {Cl1,Cl3} {Cl2,Cl3} {Cl1,Cl2,Cl3}

sum up to 1
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Example

Values of belief function for the frame of discernement Cl = {Cl1,Cl2, Cl3},

e.g.  BelS({2,3} = mS({2})+mS({2})+mS({2,3}) = 1/7+1/7+1/7=12/28=3/7, 

i.e. 12 out of 28 objects are in Cl2∪Cl3, among them 4 are in Cl2, 4 are in Cl3
and 4 are in Cl2 or Cl3 (with no possibility of discernment to which one).

PlS(θ) = 16/28,  19/28,  17/28,    6/7,        6/7,        25/28,    1

since PlS(θ) = 1 – Bel(Cl – θ),   for θ ⊆ Cl

T(θ)

BelS(θ)

{Cl1} {Cl2} {Cl3} {Cl1,Cl2} {Cl1,Cl3} {Cl2,Cl3} {Cl1,Cl2,Cl3}
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Final remarks about RST and Knowledge Discovery
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Knowledge discovery principle

Knowledge discovery (KD) is a type of machine learning which

enables the extraction of useful information from a set of raw data 

in a high-level format, which a user can understand.

The process of KD generally involves developing models (patterns)

that describe or classify a set of measurements.

Some times, the objective of KD is to study the model itself, while

other times it is to construct a good classier. 

This process consists of various steps which are executed in a 

"waterfall" type fashion. 

One important step is the data mining step, whereby patterns and

relationships are found in the data.
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Knowledge discovery „waterfall”
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Knowledge discovery steps

Selection: This task involves setting the data set into a format that

is suitable for the discovery task. This may involve joining together

several existing sets of data in order to come to the final data set.

Preprocessing: This step involves cleaning the data and removing 

information that is deemed unecessary or filling any missing values 

in the data. 

Transformation: The data set will be quite large and contain non 

relevant features or duplicate examples which must be merged. 

This will reduce the amount of data and also the time taken to 

execute mining queries. 

Mining: This step involves extracting patterns from the data.

Evalution: Patterns identified by the system are interpreted into 

knowledge which can be used to support human-decision making or 

other tasks.
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Rough set theory as a framework for knowledge discovery

Selection: The data representation for rough sets are flat, two-dimensional

data tables.

Preprocessing: If the data contains missing values, the table may be 

processed either classically, after completing the data table in some way, or

using a new indiscernibility relation able to compare incomplete descriptions.

Transformation: Data discretization is often performed on numerical 

attributes. This involves converting the exact observations into intervals or 

ranges of values. This amounts to defining a coarser view of the world and also 

results in a reduction on the value set size for the observations.

Mining: In the rough set framework, if-then rules are mined in one of three

perspectives: minimal cover (minimal number of rules), exhaustive description

(all rules), satisfactory description (interesting rules).

Evalution: Individual patterns or rules can be measured or manually 

inspected. Rule sets can be used to classify new objects and their classicatory

performance may be assessed.


