
 
 
 
 
 
 
 
 
 
 
 

Buffer Manager 
 

Buffer Management 
 
 
The database buffer is the mediator between the basic 
file system and the tuple oriented file system. The buffer 
manager’s task is to make the pages addressable in main 
memory and to coordinate the writing of pages to disk 
with the log manager and the recovery manager. It 
should also minimize the number of actual disk accesses 
for doing that. 
 
 
1 Functional Principles of the Database Buffer 
 
Each relation is can be mapped onto many files (each 
file containing data from one relation only). Each file is 
viewed as a set of equal-sized pages. All the database 
access modules (responsible for providing associative 
access, implementing joins, etc.) operate on the basis of 
page abstractions. Each tuple is located by specifying 
the identifier of the page in which it is stored, and the 
offset within that page. A page identifier has the 
following structure: 
 
typedef struct  
 ( FILENO  fileno; /*file to which the page  

    belongs 
    unsigned int pageno; /* page number in the  

    file 
 ) PAGEID, *PAGEIDP; 

The page numbers grow monotonically, starting from 0, 
within each file. Each page of that file system is the 
contents of the block with the same number in the 
corresponding basic file.  
 
The database access modules reference their objects by 
addresses that are tuples of the type (PAGEID, offset). 
For executing instructions on such objects, however, 
these objects must be located in some process’s virtual 
memory. Moving pages between a disk and the buffer 
pool is the buffer manager’s basic function. 
 
The buffer manager administers a segment in virtual 
memory, which is partitioned into portions of the equal 
size called frames. We assume that each frame can hold 
exactly one page.  
 
• Buffer per file 
• Buffer per page size 
• Buffer per file type 
 
 
 
The database buffer can be declared as a simple data 
structure: 

What is the difference between a conventional file 
buffer and a database buffer? 
 
1. The caller is not returned a copy of the requested page 

into his address space; he gets back an address of the 
page in the buffer manager’s domain (to avoid 
anomalies, like ‘lost update”). 

2. As a consequence of a page request, other pages 
(probably not related to the transaction issuing the 
request) can be written. If the page is modified the 
buffer manager is informed, but it will essentially 
decide by its own criteria when the modified page is 
written out to disk. 

 

The buffer manager provides: 
 
• Sharing. Pages are made addressable in the buffer 

pool, which is an area of shared virtual memory 
accessible to all processes that run the database code. 

• Addressability. Each access module is returned an 
address in the buffer pool, denoting the beginning of 
the frame containing the requested page. 

• Semaphore protection. Many processes can request 
accesses to the same page at the same time; the buffer 
manager gives them the same frame address. The 
synchronization of these parallel accesses in order to 
preserve serializability is not the buffer manager 
problem. It has only to provide a semaphore per page 
that can be used for implementing e.g. locking 
protocol. 

• Durable storage. The access modules inform the 
buffer manager if their page access has modified the 
page, however, the page is written out to disk by the 
buffer manager, probably, at a time when update 
transaction is already committed. 

 

All service requests to the buffer manager refer (via 
pointer) to a buffer access control block that is declared 
as follows: 
 
typedef struct 
 ( PAGEID  pageid;  /*id of page in file 
    PAGEPTR  pageaddr; /*base address of  

page in buffer pool 
this entry is set by  
buffer manager 

    int   index;  /*record within page 
    semaphore* pagesem; /*pointer to the  

semaphore for the  
page 

    Boolean  modified; /*flag – modified  
page 

    Boolean  invalid;  /*flag – destroyed  
page 

 ) BUFFER_ACC_CB, *BUFFER_ACC_CB; 
 
 
The control block tells the caller what he has to know 
for accessing the requested page in the buffer. Both 
modified and invalid flags are initialized to FALSE. It 
may happen that for some reason the caller fails to 
function properly. The transaction must be aborted, and 
the buffer manager must be informed that the page 
contains the garbage. this is indicated by setting the flag 
to TRUE. 
 



The call that fills in the buffer access control block is 
defined by the following function: 
 
Boolean  bufferfix (PAGEID pageid, LOCK_MODE  

mode, BUFFER_ACC_CBP*  
address); 

/*returns TRUE if the page could be allocated, FALSE 
/*otherwise, if it is allocated the address of the first byte 
/*of the page header in the buffer pool is returned in 
/*BUFFER_ACC_CB. The fix count is increased by 1. 
/*The semaphore protecting the page is acquired in the 
/*requested mode (shared or exclusive). 
 
 
To provide the correct access to frames, database 
systems typically use the FIX-USE-UNFIX  protocol. 
 
FIX . The client requests access to a page using the 

bufferfix interface. The page is fixed in the buffer, 
that is, it is not eligible for replacement. 

 
USE. The client uses the page with the guarantee that 

the pointer to the frame containing the page will 
remain valid. 

 
UNFIX . The client explicitly waives further usage of the 

frame pointer, that is, it tells the buffer manager that 
it no longer wants to use that page. The buffer 
manager can therefore unfix the page, which means 
that the page is eligible for replacement. 

The interface for unfixing a page is defined as follows: 
 
Boolean  bufferunfix  (BUFFER_ACC_CBP); 
/*returns TRUE if the page could be unfixed, otherwise 
/*FALSE. If the unfix is possible, the fix counter is 
/*decreased y 1. If the transaction has multiple fixes on 
/*the page, it must issue the corresponding number of 
/*unfix operations. 
 
 
Several concurrent transactions can share concurrent 
access to a buffer page at the same time. In that case, 
each transaction is given the same pointer to the buffer 
pool, and each transaction fixes the page. If one 
transaction unfixes the page, the page does not become 
eligible for replacement. 
 
Al modules operating at the buffer interface must 
strictly follow the FIX-USE-UNFIX protocol, with the 
additional requirements of keeping the duration of a fix 
as short as possible (even if a module knows that it 
might need access to a page again later on). 
 
The FIX-USE-UNFIX operations are among the most 
frequently used primitives in a database system, and 
thus should be very fast. 
 
 
 
 

Two additional operations are needed during normal 
processing. 
 
Boolean  emptyfix(PAGEID pageid, LOCK_MODE  

mode, BUFFER_ACC_CBP*  
address); 

/*returns TRUE if the page could be allocated, FALSE 
/*otherwise. The function requests empty page to be 
/*allocated in buffer. The identifier of the empty page 
/*has to be provided by the caller. The buffer manager 
/*returns a pointer to the buffer access CB like 
/*bufferfix. 
 
 
Whenever a page that was modified in the buffer pool 
by a successful transaction is to be replaced, it must be 
forced to durable storage, before it can be removed from 
the buffer pool. Since the basic file system is not 
accessible to the higher-level modules, they cannot issue 
a write operation. This has to be done by the buffer 
manager, so, there must be an interface for telling him 
about it. 
 
Boolean  flush (BUFFER_ACC_CBP); 
/*returns TRUE if the page was written to the file, 
/*otherwise FALSE. The page is written to its block in 
/*the file. The modified flag is set to FALSE, and the 
/*page remains in the buffer. This function can be called 
/*by any client. The buffer manager will acquire a 
/*shared semaphore on the page while writing it. 

2 Logging and Recovery from the Buffer’s 
Perspective 

 
 
The buffer manager is completely autonomous in 
handling the incoming requests. The decision which 
(modified) page and when write out to disk is left to the 
buffer manager. The buffer manager may apply LRU 
buffering to optimize overall system performance. Is it 
true? 
 
It is true when we are talking about “normal” (non-
transactional) file buffer. However, in a transactional 
system, the buffer manager must make sure not to 
violate the ACID properties, this requires some 
synchronization with both the log manager and the 
transaction manager. 
 
Each time the page is written out to disk after 
modification, the old state of that page is lost. On the 
other hand, if a transaction modifies a page and then 
commits, and the buffer manager has not yet written that 
page to disk, a subsequent crash will leave a file system 
with the old (invalid) page.  
 
Therefore, if the buffer manager decides to write out a 
modified page belonging to an incomplete transaction, 
atomicity can be violated; if it does not write out the 
modified page of a committed transaction, durability 
can be violated. 

The buffer manager’s rule in preserving transaction 
atomicity and durability 

 
State of 
transaction 

Page A Page B State of the 
 database 

Aborted In buffer 
(old) 

In buffer 
(old) 

Consistent 
(old) 

Aborted In buffer 
(old) 

On disk 
(new) 

Inconsistent 

Aborted On disk 
(new) 

In buffer 
(old) 

Inconsistent 

Aborted On disk 
(new) 

On disk 
(new) 

Inconsistent 

Committed In buffer 
(old) 

In buffer 
(old) 

Inconsistent 

Committed In buffer 
(old) 

On disk 
(new) 

Inconsistent 

Committed On disk 
(new) 

In buffer 
(old) 

Inconsistent 

Committed On disk 
(new) 

On disk 
(new) 

Consistent 
(new) 

 
At the time of crash, a page is either “in buffer” or “on 
disk”. If “in buffer”, then after the crash only the old 
state is available. If “on disk”, then after the crash only 
the new state is available. 
 

If the transaction T modifies two pages, A and B, and if 
there are completely autonomous decisions by the 
buffer manager, then any of the eight constellations 
shown above can occur.  
 
 
In order to guarantee the correct execution of recovery 
during restart, the buffer manager and the log manager 
have to exchange information at run time that indicates 
whether a given log entry should be applied to a page in 
the database. The simplest way to do this is to assign a 
state identifier or version number to a page and to 
record with each log entry the value of the state 
identifier of the page to which it refers. During 
recovery, the state of the page found on disk can then be 
compared with the state recorded with the log entry. To 
this purpose we use the log sequence numbers (LSN). 
 
There are three rules governing the interaction between 
the buffer manager, the log manager, and the recovery 
manager that take care of the LSN dependencies: the fix 
rule, the write-ahead-log rule, and the force-at-commit 
rule. One should keep in mind, however, that these rules 
essentially constraint the buffer manager’s autonomy of 
when to write which page to disk. 
 
Some buffer managers restrict themselves to a smaller 
class of protocols either to simplify the implementation 
or to optimize system performance. 
 



Steal versus No-Steal Buffer Management 
 
 
 
A page with modifications by an uncommitted 
transaction is a dirty page until either commit or 
rollback processing for that transaction has been 
completed. The buffer manager can either distinguish 
dirty pages from clean pages when deciding which page 
to remove from the buffer pool, or it can ignore the 
update status of a page. 
 
In the later case, the buffer manager uses a steal policy, 
which means pages can be written out to disk even if the 
transaction having modified the pages is still active. 
 
The alternative is the no-steal policy, in which case all 
dirty pages are retained in the buffer pool until the final 
outcome of the transaction has been determined. 

Advantages: 
 
The steal policy implies that rollback of a transaction 
requires access to pages on disk in order to reestablish 
their old state. 
 
With the no-steal policy, no page on disk ever has to be 
touched when rolling back a transaction. Consequently, 
no log information for UNDO procedure will be needed. 
Roll back of a transaction during normal processing is 
also facilitated by the no-steal policy since all pages 
modified by such a transaction are simply marked 
“invalid” by the buffer manager. The problem with this 
policy is the size of the buffer pool + necessity of page 
locking. 
 

Force versus No-Force Buffer Management 
 
 
 
Force versus no-force concerns writing of clean pages 
from the buffer pool. The simple question here is: who 
decide, and when, that a modified page is written out to 
disk? There are two basic approaches: 
 
Force policy. At phase 1 of a transaction’s commit, 

the buffer manager locates all pages modified by 
that transaction and writes the pages to disk. 

 
No-force policy. This is the liberal counterpart. A page, 

whether modified or not, stays in the buffer as long 
as it is still needed. Only if it becomes the 
replacement victim it will be written to disk. 

 
 
Advantage of the force policy – it avoids any REDO 
recovery during restart. If transaction is successfully 
committed, then, by definition, all its modified pages 
must be on disk. 
 
Why not use it as a standard buffer management policy? 
 
Because of “hotspot” pages. 

The force policy simplifies restart, because no work 
needs to be done for transactions that committed before 
the crash – it avoids REDO. The price for that is 
significantly more I/O for frequently modified pages. 
Another drawback is that a transaction will not be 
completed before the last write has been executed 
successfully, and the response time may be increased 
significantly as a consequence. With no-force policy, 
the only synchronous write operation goes to the log, 
and the volume of data to be written is usually about 
two orders of magnitude less. 


