

Transaction Processing
Concepts

Transaction

A transaction is a sequence of database operations
(actions) that transformes a database from one consistent
state into another one. The actions that can be executed by
a transaction include reads and writes of database objects.
In addition to reading and writing, each transaction must
specify as its final action either commit (i.e. complete
successfully) or abort (i.e. terminate and undo all the
actions carried out so far).

Example
Transfer the amount N from account A to account B:

begin

// subtract amount N from account A;
UPDATE account

SET balance = balance - N
WHERE account_id = A;

// deposit amount N on account B;
UPDATE account

SET balance = balance + N
WHERE account_id = B;

COMMIT;
 end

Problems with writing database
applications

•••• Creating an inconsistent results. Our application is

transfering money from one account to another. After the
first account has had money subtracted from its balance
and this change has been recorded on disk, the system
crashes due to a power failure. When the machine back
up, our application does not remember what logic it was
executing – the application has destroyed money with
the single account record update it made.

•••• Errors of concurrent execution. Concurrent access to
the same data may lead to database anomalies:
inconsistent analysis, dirty updates, etc.

•••• Uncertainity as to when changes become permanent.
Popular pages remains in memory (buffer) for an
extended period. After crash, we can only remember
what has been written to disk – so, all pages remaining
in the memory are lost.

Transaction properties

A(tomicity)C(onsistency)I(solation)D(urability)

Atomicity. The property guarantees that a set of updates
that are part of a transaction is atomic. Thus either all
updates of a transaction occur in the database or none of
them occurs (it solves the firs problem).

Consistency. Correct execution of a transaction
transformes a database from one consistrent state into
another.

Isolation. Transactions are isolated which means that one
transaction can only affect another as it would if they were
not concurrent. This guarantee solves problem 2.

Durability. The property guarantees that when the system
returns to the program logic after a Commit statement, the
transaction is guaranteed to be recoverable In other words,
a transaction is resistant to a crash (it solves the third
problem).

State transition diagram for transaction
execution

Active Partially
committed Committed

Faild Terminated

Begin
Transaction

End
Transaction Commit

Abort
Abort

Read
Write

•••• Begin_transaction: this specify the beginning of

transaction execution.
•••• Read, Write: these specify read and write operations on

the database items that are executed as part of a
transaction.

•••• End_transaction: this specifies that read and write
operations have ended and marks the end limit of
transaction execution. At this point it may be necessary
to check whether the changes introduced by the
transaction can be permanently applied to the database
(committed0 or whether the transaction has to be
aborted.

•••• Commit: this signals a successful end of the transaction
so that any updates executed by the transaction can be
safely committed to the database and will not be undone.

•••• Rollback: this signals that the transaction has ended
unsuccessfully, so that any chages or effects taht the
transaction may have applied to the database must be
undone.

 Begin_transaction;
UPDATE employee
SET salary = 1.15 * salary
WHERE work_period > 5;

Read (A);
Write (A);
...
Read (Z);
Write (Z);

COMMIT; Commit;

Why concurrency control is needed?

•••• Lost update •••• Dirty read

T1 T2 T1 T2
read(X);
X := X-N;

 read(X);
X := X-N;

 read(X);
X := X+M;

 write(X);

read(X);

write(X);
read(Y);

 X := X+M;
write(X);

 write(X);
commit;

read(Y);

commit;

Y := Y+N;
write(Y);
commit;

 abort;

•••• Incorrect Summary
T1 T3

 sum := 0;
read(X);
X := X-N;
write(X);

 read(X);
sum := sum+X;
read(Y);
sum := sum+Y;
commit;

read(Y);
Y := Y+N;
write(Y);

