Design Pattern Matrix

CREATIONAL PATTERNS

Design Pattern Matrix

CREATIONAL PATTERNS

Pattern Notes on the patterns How it is implemented Class Diagram/Implementation Pattern
Abstract Indicators in analysis: Different cases exist that require different implementations of common rules. Dqﬁne an abstract class that spemﬁes which Abstract
factory objects are to be made. Then implement one e factory
Indicators in design: Many polymorphic structures exist that are used in pre-defined combinations. These concrete class for each family. Tables or files can A
combinations are defined by there being particular cases to implement or different needs of client objects. also be used to essentially accomplish the same :Cfea‘e‘/"'mW())
thing. Names of the desired classes can be kept in PMWindow MotifWindow
Indication pattern is not being used when it should be: A variable is used in several places to determine which object a database and then switches or run-time type é
to instantiate. identification (RTTI) can be used to instantiate the MotifFactory PMFactory ScrollBar
correct objects.
Relationships involved: The Abstract Factory object is responsible for coordinating the family of objects that the client o ot || Mot ‘ ‘
object needs. The client object has the responsibility for using the objects. ‘ PMScrollBar J MotifScrollBar
Builder Indicators in analysis: Several different kinds of complex objects can be built with the same overall build process, but Create a factory object that contains several Builder
where there is variation in the individual construction steps. methods. Each method is called separately and »;_,
performs a necessary step in the building process. T T Builder
Indicators in design: You want to hide the implementation of instantiating complex object, or you want to bring When the client object is through, it calls a method T puildStept()
together all of the rules for instantiating complex objects. to get the constructed object returned to it. Derive builder->buildStep1() + buildStep2()
classes from the builder object to specialize steps. builder->buildStep2() + getObject()
getObject() %
ConcreteBuilder1 ConcreteBuilder2
+ buildStep1() + buildStep1()
+ buildStep2() + buildStep2()
+ getObject() + getObject()
Factory Indicators in analysis: There are different commonalities whose implementations are coordinated with each other. Have a method in the abstract class that is abstract [Appicat ‘ Factory
Method (pure virtual). The abstract class’s code will refer [Document | ‘t’p[')ca on — Method
Indicators in design: A class needs to instantiate a derivation of another class, but doesn’t know which one. Factory to this method when it needs to instantiate a ‘ ‘ createbocumel 0‘
method allows a derived class to make this decision. contained object. Note, however, that it doesn’t
know which one it needs. That is why all classes
Field notes: The Factory method is often used with frameworks. It is also used when the different implementations of derived from this one must implement this method
one class hierarchy requires a specific implementation of another class hierarchy. with the apptOpriate new command to instantiate MyDoc MyAp
the proper object. + createDocument() \“ retum new MyDocﬁ
Note: in this example createDocument is called a
factory method. Application is not a factory object.
Prototype Indicators in analysis: There are prototypical instances of things. Set up concrete classes of the class needing to be Prototype
Indicators in design: When objects being instantiated need to look like a copy of a particular object. Allows for cloned. Each concrete class will construct itself to
dynamically specifying what our instantiated objects look like. the appropriate value (optionally based on input Use clone to instantiate
parAamctcrAs).' When anew objgct is npcdcd, clone
an instantiation of this prototypical object.
‘ ConcretePrototype1 ‘ ‘ ConcretePrototype2 ‘
‘+ clone() ‘ ‘4— clone()
retumn copy return copy
of self of self
Singleton Indicators in analysis: There exists only one entity of something in the problem domain that is used by several Add a static member to the class that refers to the | PSEUDO CODE Singleton

different things.

Indicators in design: Several different client objects need to refer to the same thing and we want to make sure we don’t
have more than one of them. You only want to have one of an object but there is no higher object controlling the
instantiation of the object in questions.

Field notes: You can get much the same function as Singletons with static methods. Therefore, the Singleton
should be used only when statics don’t work well. This occurs when you need to control when the class is
instantiated (that is, static members are allocated). Another case is if you want to use polymorphism on the
Singleton.

first instantiation of this object (initially it is null).
Then, add a static method that instantiates this
class if this member is null (and sets this
member’s value) and then returns the value of this
member. Finally, set the constructor to protected
or private so no one can directly instantiate this
class and bypass this mechanism.

(if C++, _instance should be pointer)

class Singleton {
public static Singleton Instance();
protected Singleton() ;
private static _instance= null;

Singleton Instance () {
if _instance== null)
_instance= new Singleton;
return _instance

}

Design Pattern Matrix

STRUCTURAL PATTERNS

Design Pattern Matrix

STRUCTURAL PATTERN

Pattern Notes on the patterns How it is implemented Class Diagram Pattern
Adapter Indicators in analysis: Normally don’t worry about interfaces here, so don’t usually think about it. However, if you Contain the existing class in another class. Adapter
know some existing code is going to be incorporated into your system, it is likely that an adapter will be needed since Have the containing class match the required cli TargetAbstraction
it is unlikely this pre-existing code will have the correct interface. interface and call the contained class’s ient
Indicator in design: Something has the right stuff but the wrong interface. Typically used when you have to make methods + operation()
something that’s a derivative of an abstract class we are defining or already have.
Field notes: The adapter pattern allows you to defer concern about what the interfaces of your pre-existing objects ﬁ
look like since you can easily change them. Adapter ExistingClass
+ operation() + itsOperation()
operation:
existingclass->itsOperation ﬁ
Bridge !ndicators ip analysis: There are a set of related objects using another set of objects. This second set represents an Encapsulate the implementations in an abstract : : Bridge
implementation of the first set. class and contain a handle to it in the base Abstraction Implementation
Indlca't orsin deSlgp: . . . class of the abstraction being implemented. In
There is a set of derivations that use a common set of objects to get implemented. Java can also use interfaces instead of an + operation() + oplmp()
Indication pattern is not being used when it should be: There is a class hierarchy that has redundancy in it, in abstract class for the implementation. |
particular, in the way these objects use another set of object. Also, if a new case is added to this hierarchy or to the imp->opimp()
classes being used, that will result in multiple classes being added. L Imp->opimp
Relationships involved: The using classes (the GoF’s “Abstraction”) use the used classes (the GoF’s Imp_A Imp_B
“Implementation”) in different ways but don’t want to know which implementor is present. RefinedAbstraction = =
Field notes: +oplmp()| |+ oplmp()
Although the implementer to use can vary from instance to instance, typically only one implementer is used for the life
of the using object. This means we usually select the implementer at construction time, either passing it into the
constructor or having the constructor decide which implementer should be used.
Composite Indicators in analysis: There are single things and groups of things that you want to treat the same way. The groups Set up an abstract class that represents all Composite
of things are made up of other groups and of single things (i.c., they are hierarchically related). clements in the hierarchy. Define at least one 3 Component
Indicators in design: Some objects are comprised of collections of other objects, yet we want to handle all of these derived class that represents the individual Client
objects in the same way. o)) components. Also, define at least one other + operation()
Indication pattern is not being used when it should be: The code is distinguishing between whether a single object class that represents the composite elements
is present or a collection of objects is present. (ic., those elements that contain multiple / \
components). In the abstract class, define
abstract methods that the client objects will Leaf Composite
use. Finally, implement these for each of the
derived classes. + operation() + operation()
Facade Indicators in analysis: A complex system will be used which will likely not be utilized to its full extent. Define a new class (or classes) that has the - Facade
Indicators in design: Reference to an existing system is made in similar ways. That is, you see combinations of calls required interface. Have this new class use the Client
to a system repeated over and over again. existing system. I~
Indication pattern is not being used when it should be: Many people on a team have to learn a new system although Facade ComplexSysA
each person is only using a small aspect of it.
Field notes: Not usually used for encapsulating variation, but different facades derived from the same abstract class /
can encapsulate different sub-systems. This is called an encapsulating fagade. - -
provides simpler ComplexSysB
interface
Proxy — Indicators in analysis and design: Performance issues (speed or memory) can be foreseen because of the cost of The Client refers to the proxy object instead of - Proxy -
virtual having objects around before they are actually used. an object from the original class. The proxy Client —_to prox Abstract virtual
Indication pattern is not being used when it should be: Objects are being instantiated before they are actually used object remembers the information required to l:| proxy=r, operation()
and the extent of this is causing performance problems. instantiate the original class but defers its ;
Field notes: This pattern often comes up to solve scalability issues or performance issues that arise after a instantiation. When the object from the [\
system is working. original class is actually needed, the proxy
object instantiates it and then makes the
necessary request to it. Proxy_Virtual RealSubject
+ operation() W+ operation() ‘
N
N

Design Pattern Matrix

BEHAVIORAL PATTERNS

Pattern

Notes on the patterns

Decorator

Indicators in analysis: There is some action that is always done, there are other actions that may need to be done.
Indicators in design: 1) There is a collection of actions; 2) These actions can be added in any combination to an
existing function; 3) You don’t want to change the code that is using the decorated function.

Indication pattern is not being used when it should be: There are switches that determine if some optional function
should be called before some existing function.

Variation Encapsulated: The functionality to be added before or after an existing function.

Field notes: This pattern is used extensively in the JFC for file handling.

Design Pattern Matrix

BEH

IORAL PATTER

Proxy —
adding
function

Indicators in design: We need some particular action to occur before some object we already have is called.
Indication pattern is not being used when it should be: We precede a function with the same code every time it is
used. Or, we add a switch to an object so it sometimes does some pre-processing and sometimes doesn’t.

Field notes: Proxies are useful to encapsulate a special function that is sometimes used prior to calling an existing
object.

State

Indicators in analysis and design: We have behaviors that change, depending upon the state we are in.
Indication pattern is not being used when it should be: The code keeps track of the mode the system is in. Each
time an event is handled, a switch determines which code to execute (based on the mode the system is in). The rules
for transitioning between the patterns may also be complex.
Field notes:
We define our classes by looking at the following questions:

1. What are our states?

2. What are the events we must handle?

3. How do we handle the transitions between states?

Strategy

Indicators in analysis: There are different implementations of a business rule.

Indicators in design: You have a place where a business rule (or algorithm) changes.

Indication pattern is not being used when it should be: A switch is present that determines which business-rule to
use. A class hierarchy is present where the main difference between the derivations is an overridden method.
Relationships involved: An object that uses different business rules that do conceptually the same thing (Context-
Algorithm relationship). A client object that gives another object the rule to use (Client-Context relationship).
Variation encapsulated: The different implementations of the business rules.

Field notes: The essence of this pattern is that the Context does not know which rule it is using. Either the Client
object gives the Context the Algorithm to use or the Context asks a factory (or configuration type) object for the
correct algorithm object to use.

Template

Indicators in analysis: There are different procedures that are followed that are essentially the same, except that each
step does things differently.

Indicators in design: You have a consistent set of steps to follow but individual steps may have different
implementations.

Indication pattern is not being used when it should be: Different classes implement essentially the same process
flow.

Field notes: The template pattern is most useful when it is used to abstract out a common flow between two similar
processes.

Visitor

Indicators in analysis and design: You have a reasonably stable set of classes for which you need to add new
functions. You can add tasks to be performed on this set without having to change it.

Variation encapsulated: A set of tasks to run against a set of derivations.

Field notes: This is a useful pattern for writing sets of tests that you can run when needed.

NOTE: The Decorator and Proxv natterns are clascified ac Strietiral natterns by the GoF Since thev hath add fimetionalitv however incstead of cimnlv

How it is implemented Class Diagram Pattern
Set up an abstract class that represents both the original Decorator
class and the new functions to be added. Have each
contain a handle to an object of this type (in reality, of a
derived type). In our decorators, perform the additional
function and then call the contained object’s operation ‘ CO”C’S‘_SC°'"°°"9"“ [Decorater | 1
method. Optionally, call the contained object’s [+ operation) [+ operation |~ ()
operation method first, then do your own special ‘ 4 ‘
function. [ConcreteDect | [ConcreteDec | [addeBehavior()
+ operation() + operation() Decorator::operation()
The Client rf:ff:rs to the proxy object inst§ad of an object o TR Proxy —
from the original class. The proxy object creates the to proxy->— T adding
RealSubject when it is created. Requests come to the SoeEind functi
Proxy, which does its initial function (possibly), passes uncfion
the request (possibly) to the RealSubject and then does
(possibly) some post processing. Proxy RealSubject
+ operation() + operation()
realsubject->operation() 1
Dcﬁpc an abstrapt class that represents 'thc state of an el el State
application. Derive a class for each possible state. Each E—
of these classes can now operate independently of each + request() + handle()
other. State transitions can be handled either in the \
contextual class or in the states themselves. Information = >h‘ T
that is persistent across states should be stored in the state->handie() [State_Movet | [State_Moez |
context. States likely will need to have access to this ‘+ hz :Je((; e ‘ ‘+ hz :Je(l; e ‘
(through get routines, of course).
Have the class that uses the algorithm contain an abstract Strategy
class that has an abstract method specifying how to call Context Strategy
the algorithm. Each derived class implements the .
algorithm as needed. drequest) idalgorthm()
Strategy_A Strategy B
+ algorithm() + algorithm()
Cr@ate an abstract class that implements a procedure T Template
using abstract methods. These abstract methods must be + templateMethod()
implemented in derived classes to actually perform each + operation{ () templateMethod:
step of the procedure. If the steps vary independently, SCEEEE) (| = c
each step may be implemented with a strategy pattern. f’_‘_’era"on 0
operation2()
ComcreteClass
+ operation1()
+ operation2()
Make an abstract class that represents the tasks to be e [Giont e Visitor

performed. Add a method to this class for each concrete
class you started with (your original entities). Add a
method to the classes that you are working on to call the
appropriate method in this task class, giving a reference
to itself to this method.

+ ViSHEITypeA()

+ ViSItEITypeB()

Element
TaskA TaskB |+ accept(task)|

+ VsitEITypeA(typeA)| |+ VsitETypeA(typeA)

+ ViSitEIT + VSitEITypeB(typ
ElementTypeA ElementTypeB
+ accept(task) + accept(task)

Design Pattern Matrix

DECOUPLING PATTERNS DECOUPLING PATTER

Design Pattern Matrix

Pattern Notes on the patterns How it is implemented Class Diagram Pattern
Chain of Indicators in analysis: We have the several af:tions that may be done by' different things.)) Define an abstract class that represents possible handlers of a Chain of
responsi- Indicators in design: We have several potential candidates to do a function. However, we don’t want the client object function. This class contains a reference to at most one other responsi
bilit to know which of these objects will actually do it. . . o . object derived from this type. Define an abstract method that Handler . .p
y Field notes: This pattern can be used to chain potential candidates to perform an action together. A variation of Chain the client will call. Each derived class must implement this 2 bility
of Responsibility is to not stop when one object performs its function but to allow each object to do its action. method by either performing the requested operation (in its + handleRequest()
own particular way) or by handing it off to the Handler it refers
to. Note: it may be that the job is never handled. You can
implement a default method in the abstract class that is called
. Handler_ A Handler_B
when you reach the end of the chain.
+ handleRequest() + handleRequest()
Iterator Indicators in analysis and design: We have a collection of things but aren’t clear what the right type of collection to Define abstract classes for both collections and iterators. Have Catection P Iterator
use is. each derived collection include a method which instantiates the + 0 Client +first()
You want to hide the structure of a collection. Alternatively, you need to have variations in the way a collection is appropriate iterator. The iterator must be able to request the + append() — + next()
d. + remove() + currentltem()|
traversed. required information from the collection in order to traverse it
Indication pattern is not being used when it should be: Changing the underlying structure of a collection (say from appropriately.
a vector to a composite) will affect the way the collection is iterated over. Vector
Variations encapsulated: Type of collection used. et - me—r—
Field notes: The Iterator pattern enables us to defer a decision on which type of collection structure to use. —
Mediator Indicators ip analysis and design: Many objects need to communicate with many other objects yet this Define a central class that acts as a message routing service to Mediator
communication cannot be handled with the observer pattern. all other classes.
Indication pattern is not being used when it should be: The system is tightly coupled due to inter-object
communication requirements.
Field notes: When several objects are highly coupled in the way they interact, yet this set of rules can be encapsulated
in one place.
aColleague
Memento Indicators in analysis and design: The state of an object needs to be remembered so we can go back to it (e.g., undo Define a new class that can remember the internal state of Memento
an action). another object. The Caretaker controls when to create these,
Indication pattern is not being used when it should be: The internal state of an object is exposed to another object. but the Originator will actually use them when it restores its Originator
Or, copies of an object are being made to remember the object’s state, yet this object contains much information that is state
. N . + setMemento(m : Memento)| Memento
not state dependent. This means the object is larger than it needs to be or contains an open connection that doesn’t + createMemento() >
need to be remembered. + getState()
Field notes: This pattern is useful only when making copies of the object whose state is being remembered would be
inefficient. Originator creates memento and can later
ask it for information about an earlier state.
Observer Indicators in analysis and design: Different things (objects) that need to know when an event has occurred. This list Have objects (Observers) that want to know when an event - Observer
of objects may vary from time to time or from case to case. happens, attach themselves to another object (Subject) that is Subjech | attach/detach__| Observer
Indicaﬁon pattern is not being used when it ;hould be: When a new object needs to be notified of an event actually looking for it to occur. When the event occurs, the : 322.3% [+ update))
occurring the programmer has to change the object that detects the event. subject tells the observers that it occurred. The Adapter + notify()
Variation encapsulated: The list of objects that need to know about an event occurring. pattern is sometimes needed to be able to implement the T
Field notes: This pattern is used extensively in the JFC for event handling and is supported with the Observable class Observer interface for all the Observer type objects. \
and Observer interface. | OtsenerAl Otsenet
o + update() + update()
notify:
for all obsenvers:
call update() Use adapters if obseners
have different interfaces
Proxy — Indicators in analysis and design: Are any of the things we work with remote (i.e., on other machines)? An existing The Proxy pattern has a new object (the Proxy) stand in place Proxy _
access- object needs to use an object on another machine and doesn’t want to have to worry about making the connection (or of another, already existing object (the Real Subject). The _AbStr?Ct access
. 5 -
abilit even know about the remote connection). proxy encapsulates any rules required for access to the real operation() .
1ty Indication pattern is not being used when it should be: The use of an object and the set-up of the connection to the subject. The proxy object and the real subject object must ability
object are found together in more than one place. have the same interface so that the Client does not need to
Field notes: The Proxy is a useful pattern to use when it is possible a remote connection will be needed in know a proxy is being used. Requests made by the Client to [Proxy_Remote | | RealSubject |
the future. In this case, only the Proxy object need be changed - not the object actually being used. the proxy are passed through to the Real Subject with the ‘+ operation() ‘ ‘+ operation() ‘
proxy doing any necessary processing to make the remote
connection. realsubject->operation()

Design Pattern Matrix

MODEL VIEW CONTROLLER and ANALYSIS MATRIX

Model-
View- Observer eI
Controller
subject + update()
/\
Y T
Model 4‘;
; ConcreteObservers
- CoreData [Wew |
- SetOfObservers -myModel i
-myController .
+attach(Observer) <—getdata____ |
+ detach(Observer) +initialize(Model)
+ notify() +makeContmoller()
+ getData() + activate()
+display() display Controller
*update() - myModel
-myView
service —_—
/' + initialize(Model, View)
there is no concrete subject in attach - + handleEvent()
thisexample + update()
The Model-View-Controller (MVC) is primarily used when building GUIs. However, it can be used
anytime you have an interactive type system. It is used to de-couple your data, your presentation of the
data and the logic for handling the events from each other.
The Use the Analysis matrix to collect variation between the different cases you have to deal with. Do not try
Analysis to make designs from it while you are collecting it. However, the consistencies and inconsistencies
Matrix between the cases will give you clues. Remember, we will implement the rows as Strategies, Proxies,

Decorators, Bridges, etc. We will implement the columns with the Abstract Factory.

Case 1 | Case 2 | Case 3 | Case 4

These are the concrete implementations for the ways to whatever is
varying thaf is listed on the lelﬁ. |

1 1 1
These are the concrete implementations for the ways to whatever is
varying tha} is listed on the lelft. |

1 1 1
These are the concrete implementations for the ways to whatever is

one thing that
is varying

another thing
that varies

still another

thln‘g that varying that is listed on the left.
varies
LN) LN]

Design Pattern Matrix

THINGS TO LOOK FOR

Guide to finding patterns in the problem domain

Is there variation of a business rule or an implementation?
Do we need to add some function?

Strategy — do we have varying rules?

Bridge — do we have multiple implementations?

Proxy — do we need to always add some new functionality to something that already exists?
Decorator— do we have additional functionality we may need to apply, but what we add varies?
Visitor — do we have new tasks that we will need to apply to our existing classes?

Are you concerned with interfaces, either changing, simplifying or handling disparate type objects in the same way?

Adapter — do we have the right stuff but the wrong interface? (used to fit classes into patterns as well)
Composite — do we have units and groups and want to treat them the same way

Facade — do we want to simplify our interfaces?

Proxy — do we want to incorporate a rule to access something without affecting any other class?

Are we trying to decouple things?

Observer — do things need to know about events that have occurred?
Chain of Responsibility — do we have different objects that can do the job but we don’t want the client object know
who is actually going to do it?

Iterator — do we want to separate the collection from the client that is using it so we don’t have to worry
about having the right collection implementation?
Mediator — do we have a lot of coupling in who must talk to who?
State — do we have a system with lots of states where keeping track of code for the different states is difficult?

Are we trying to make things?

Abstract Factory — do we need to create families (or sets) of objects?
Builder - do we need to create our objects with several steps?
Factory Method — do we need to have derived classes figure out what to instantiate?

Case 1 Case 2 Case 3 Case 4
one thing that is
varyin
rying _ = - o —— - —— -] —
another thing that z 2« 2 2 <
. 3)) =)
varies ° 2 | o & [/ oz || oz |
still another thing 5 E 3 R b] E o) E S
that varies £5 32 g8z g5z g8z
=g g 282 [T S€<€ [T]2€< [
28 s 28 g 98 g 28 g
552 £52 252 g5
=
EEE® E gz EE = EEB

Remember the relationship between commonality/variability analysis, the conceptual, specification, implementation
perspectives and how these are implemented in object-oriented languages.

by looking at what

these objects must do
(conceptual perspective)
we determine how to
call them (specification
perspective)

Commonality ———> Conceptual
analysis perspective

Abstract
class

Operations

Specification
perspective

Concrete
class

Concrete
class

Operations Operations

Variability ———)> Implementation

. . When implementing these classes, ensure that
analysis perspective

the API provides sufficient information to
enable proper implementation and decoupling

