Toward Maturity Model for eXtreme Programming

Jerzy Nawrocki, Bartosz Walter, Adam Wojciechowski

Poznan University of Technology, 60-965 Poznan, Poland

Abstract

Extreme Programming (XP) is a lightweight software development methodology. It attracts attention of many software development teams and its popularity is growing very fast. A part of success comes from interesting composition of programming practices included into XP. But what particularly appeals to programmers and makes XP especially interesting to them is resignation of inspection meetings, thick documentation etc. Many people do not understand XP and they find XP a good excuse for not using approved programming practices. Thus, a maturity model for XP is needed that would indicate the risk associated with a project and in some cases made it clear that a project is not following neither CMMISM nor XP practices. In the paper we propose a simple 4-level maturity model for XP.

1. Introduction

Lightweight software development methodologies like eXtreme Programming (XP) are getting more and more popular. A part of success comes from interesting composition of programming practices included into XP. The XP practices have been selected to form a complementary set in which one of them supports another [2, 3]. But what particularly appeals to programmers and makes XP especially interesting to them is resignation of inspection meetings, thick documentation etc.

However, our experience is that many people find XP a good excuse for not using approved programming practices. They do not follow neither classical practices nor XP ones. One of the reasons is that some of the XP practices are very hard to be followed in 100%. For example XP requires to have an on-site customer representative capable of making business decisions concerning the project. In many cases a person who has the power of making business decisions and is not afraid of political conflicts [1] is so important to the client organization that he/she will be hardly available to the project.

Thus, one needs to distinguish between different levels of advancement in XP practices. Those levels could be indication of risk associated with a project (the higher level, the lower risk) and those levels – like in case of CMMISM [5] – could also show the directions of improvement.

In the paper a simple 4-level maturity model for XP is proposed. The model resembles CMM(I) and PSP. In Section 2 basic XP practices are presented. Section 3 contains a brief survey of different types of maturity models and we explain why we decided to use a CMM-like model with four levels. In Section 4 we present a concept of maturity model for eXtreme Programming. The maturity levels are describe in Sections 5 – 7. The assessment problems are briefly discussed in Section 8.

2. The rules and practices of XP

Extreme Programming, XP is a lightweight methodology for software development [2]. XP is oriented towards delivering incrementally growing software products. Its flexible character comes from experience of software project managers, programmers and business-oriented people involved in software development. It gives strong preference to informal oral communication in development teams over methods of written documentation of design. Direct contact with the customer representative leads to introducing changes to the project at very early stages. Before we describe the proposed maturity model for XP, we need to list the rules and practices of XP that will be later on assigned to the maturity levels. As in [3], we split the practices into four areas: Planning, Designing, Coding, and Testing. Here are the XP practices:

Planning

· P0. The planning game is used to create project plans. A customer representative is making business decisions (choosing the project scope) and developers are making technical decisions (evaluating risk factors and estimating the effort).

· P1. The project team is traveling light. It means that the only artifacts the team is writing and using are test cases and code.

· P2. User stories are written. They resemble much more usage scenarios than requirements [11].

· P3. Release planning creates the schedule.

· P4. Make frequent small releases. Having a running system with reduced, but incrementally growing functionality, is a base for quick feedback from client side. Such an approach minimizes costs of radical changes in the project because new needs and requirements might be taken into account in the nearest increments.

· P5. The Project Velocity is measured. Effort is estimated in so-called Ideal Engineering Time, which assumes no interruption, no meetings etc. The Project Velocity describes the amount of Ideal Engineering Time per month [2].

· P6. The project is divided into iterations.

· P7. Iteration planning starts each iteration.

· P8. Move people around. This refers to pair programming, which is one of key practices of XP and requires moving people between the pairs.

· P9. A stand-up meeting starts each day.

· P10. Fix XP when it breaks.

Designing

· D0. Simplicity. Make your solution as simple as possible.

· D1. Choose a system metaphor. Development is based on a simple story how the system works. It is a communication means between customer representatives, managers, and developers.

· D2. Use CRC cards for design sessions. CRC stands for Class, Responsibility, Communication. That technique is not mentioned in [2], so it seems to be of a secondary importance.

· D3. Create spike solutions to reduce risk. A spike solution is a small, informal experiment with your idea how to solve a problem.

· D4. No functionality is added early.

· D5. Refactor whenever and wherever possible. Refactoring is changing system’s implementation without changing its behavior. The aim is to increase readability, flexibility, understandability etc.

Coding

· C0. On-site customer. Whenever there is a doubt concerning a user story interpretation, the customer representative is available and can explain. He also participates in the planning game and works on acceptance tests.

· C1. Code must be written to agreed standards. A coding standard is necessary, because code written by one pair of programmers will be read and modified by other people.

· C2. Code the unit test first. It means a programmer first writes test cases, then starts coding. This helps to understand what do we expect from a unit and removes “implementation bias” when testing a unit.

· C3. All production code is pair programmed. Working in pairs on a single computer provides instant code review and is reported by programmers as more enjoyable than individual work [4]. More experiments on pair programming are described in [9, 10].

· C4. Only one pair integrates code at a time.

· C5. Integrate often. Kent Beck calls this practice “continuous integration” and suggests integrating “after a few hours (certainly no more than a day)” [2].

· C6. Use collective code ownership. Everybody can change any piece of code if necessary.

· C7. Leave optimization till last.

· C8. No overtime.

· C9. A version management system is used. It can be CVS, Rational’s ClearCase or any other. XP is oriented towards projects with an intensive stream of changes. Without a version management system such a project will fail very soon.

Testing

· T0. All code must have unit tests.

· T1. All code must pass all unit tests before it can be released.

· T2. When a bug is found test must be created. This allows discovering very early when the bug reappears in the future.

· T3. Acceptance tests are run often and the score is published. Those tests are written by the customer representative (with help of a person called tester) and they show the status of the project from the customer point of view.

· T4. Automated testing is used to support frequent integration tests. If integration is to be performed at least once a day one needs support of automated testing to convince himself and his colleagues that a given extension/modification really works. It will also support refactoring and frequent acceptance tests.

Most of the presented practices can be found on the XP web site [3]. We decided to augment them with some other practices (P0, P1), which are not directly listed on the XP web site, but they are very important to XP and can be found in the XP “manifesto” by Kent Beck [2]. Surprisingly, practices C9 and T4 have not been clearly stated neither by Kent Beck [2] nor by J.D. Wells [3]. However, we feel it is necessary to ask about those practices to be able to assess risk associated with a given project that is supposed to be run according to XP. There is one more rule important for XP that is mentioned by Kent Beck but cannot be assigned to any of the discussed practice areas (i.e. Planning, Coding etc.). That rule is about facilities and can be formulated as follows:

Facilities:

· F0. Create an open workspace for the team. It should have “small private spaces around the periphery and a common programming area in the middle” [2].

3. Types of Maturity Models

Software Engineering Institute's (SEI's) Capability Maturity Model IntegrationSM is a framework representing improvement paths for software organizations [5]. However, CMMISM became also a widely accepted benchmark for assessment of software processes. CMMI is a domain-independent hierarchical structure build on five levels. Except level 1 (Initial), each maturity level is decomposed into a number of key process areas (KPA). Each KPA indicates a cluster of activities that performed collectively, help to achieve a set of goals important for organization’s software process.

Because we are going to propose another maturity model, from our point of view the following characteristic of CMM is important:

· CMM(I) consists of 5 levels. Each level is assigned a number of practices (defined in the descriptions of KPAs) and all the practices associated with a given level must be followed. Our model consists of 4 levels and we also require to follow all the practices assigned to that level. Another approach to defining a maturity model has been taken by Sommerville and Sawyer [6]. They have collected a set of good practices, each practice can bring from 0 to 3 points, and maturity level depends on the number of collected points. Consequently, two organizations having very different practices can be classified on the same maturity level. We decided to follow the CMM path.

· If a software organization does not apply any of the practices specified in the CMMI models, it is classified at level 1. We are also going to place non-compliant projects on level 1 in our model.

· Level 2 of CMM is project oriented, while levels 3, 4 and 5 emphasize organizational focus. To our understanding, XP is oriented towards projects, not organizations (Kent Beck clearly states that XP is for small teams of programmers up to 10 persons [2]). So our model, unlike CMMI, will be entirely oriented towards project teams.

· CMMI is process-oriented. Maturity of an organization depends only on practices that are to be followed, not on the results. But XP promises client satisfaction, no overtime etc. Thus, it would not be a good idea to say that a given project is on the highest level of XP maturity while it suffers from overtime and lacks client’s satisfaction. Because of this we decided to place on the highest XP maturity level a set of requirements concerning performance of the project.

Personal Software Process (PSP) proposed by W. Humphrey [7] is a maturity model oriented towards individual programmers, not organizations. Although the number of levels is different from CMMI and the practices associated with PSP levels are different, the approach to maturity modeling is similar to CMMI.

The ultimate goal of a software process improvement organization is to understand and repeat successes and to understand and avoid failures [8]. NASA proposed their own software process improvement approach. This model is product-oriented and assumes continuous enhancement of software processes within an organization. There are no predefined maturity levels nor good practices within this model. Each improvement is split into three phases: understanding, assessing and packaging. Good practices to be adopted by an organization are identified in the understanding phase, tried out in the assessing phase and spread through the organization in the packaging phase. Because XP practices have been already identified and described, the NASA approach seemed inappropriate for our purpose.

4. Proposed eXtreme Programming Maturity Model, XPMM

How to distinguish if an organization is using XP or not? A set of important XP practices is clearly defined in [2, 3]. How many of them must be satisfied to say that a particular project follows XP methodology? Giving “yes” or “no” decisions in many cases might be prejudicial. Let’s consider the following situations:

· In some cases not all the programmers would be able to spend 100% of their time on pair programming. They are doing pair programming a lot but not always. Would it be enough to say that they are not doing XP?

· It may happen that client representative may not stay on-site with developers for all days.

· In XP configuration management should be fully automated by a version management system. But, can we blame a group which delegates a person in charge of version management and software integration?

· Depending on internal and external factors, a software firm may require their programmers to work overtime, from time to time. Is it a “mortal sin” from XP point of view?

Those are typical assessment problems and to solve them one needs a maturity model that could be used as a reference point. Such a model should be hierarchical and should define practices obligatory at each level.

Fig.1. The eXtreme Programming Maturity Model, XPMM.

Working on a maturity model for XP that could be used in industrial setting one must take into account several aspects of practical utility of the model:

· low cost of introducing the model into an organization;

· clear vision of relationship between maturity level and quality of products developed by an organization;

· ease of understanding (clear hierarchical structure of obligatory practices at each level);

· reaching higher levels of maturity should bring procedural and technological benefits to an organization (growing competence);

· process improvement must be followed by growing quality of software products (guarantee of quality for clients);

· the model should be as light as the XP methodology itself.

Structure of the proposed model (called XPMM for eXtreme Programming Maturity Model) is close to CMM(I) and PSP (see Fig. 1). It consists of four levels:

1. Not compliant at all

2. Initial

3. Advanced

4. Mature

Reaching higher maturity levels goes with rising competences of development team. The set of obligatory XP practices is growing from a lower level to a higher one. To be classified at a given level, a project team has to follow all the practices assigned to that level and all the practices of the lower levels.

Projects in which none or very few XP practices have been applied are located at level 1 (Not compliant at all) in the proposed model.

5. XPMM Level 2 – Initial

XP differs from CMM(I) very much, since it is a light software development methodology. However, it has something in common with the Software Engineering CMM Level 2: it is orientation towards project teams. Thus, it would be interesting to see what is the overlap between the two. We were looking for Specific Practices of CMMI Level 2 [5] related to the XP practices. We found out that two of the XP practices are mostly related to CMMI: T3 (Acceptance tests) and P0 (The planning game). Here is the list of Specific Practices of CMMI Level 2 that are related to them:

T3. Acceptance tests are run often and the score is published:

· Identify inconsistencies between project work and requirements (Requirements, SP 1.5).

· Monitor project risks (Project Monitoring, SP 1.3).

· Specify measures (Measurement, SP 1.2).

· Collect measurement data (Measurement, SP 2.1).

· Communicate results (Measurement, SP 2.4).

· Objectively evaluate work products and services (Quality Assurance, SP 1.2).

P0. The planning game is used to create project plans:

· Obtain commitment to requirements (Requirements, SP 1.2).
· Manage requirements changes (Requirements, SP 1.3).
· Estimate the scope of the project (Project Planning, SP 1.1).
· Establish estimates of project attributes (Project Planning, SP 1.2).
· Reconcile work and resource levels (Project Planning, SP 3.2).
· Obtain plan commitment (Project Planning, SP 3.3).
On the other hand there is almost no relation between XP practices concerning coding and CMMI practices (the only coding practice that is interesting from CMMI point of view is On-site customer). Noticing this, we decided that from the point of view of the second XPMM level the focus should be on two Key Process Areas: Customer Relationship Management and Product Quality Assurance. The practices concerning coding and pair programming have been differed to the next maturity level. Here are the practices assigned to the KPAs of XPMM Level 2 (Initial):

Customer Relationship Management:

· P0. The planning game is used to create project plans. That way business decisions are made by a customer representative, not by the development team.

· P2. User stories are written. They are written by a customer representative in a language he understands (mainly narrative text).

· P3. Release planning creates the schedule.

· P4. Make frequent small releases. This creates a short feedback loop and gives a customer a chance to understand consequences of the proposed solutions.

· P5. The Project Velocity is measured. This is an input parameter to the planning game.

· P6. The project is divided into iterations.

· P7. Iteration planning starts each iteration.

· D1. Choose a system metaphor. This allows a customer representative to understand the systems.

· D3. Create spike solutions to reduce risk. Spike solutions allow for early evaluation of risk factors and show them to the customer representative who can make the right – from the business point of view – decision concerning system development.

· D4. No functionality is added early. The functionality to be implemented must be chosen by a customer representative, not by the development team.

· C0a. Effectively collaborating customer. This is a modification of the C0 practice (On-site customer). We do not require, at this level, that the “customer is always available” (like in [3]), but we expect that the customer representative will have enough time to write user stories, create acceptance tests, and participate in the planning game. We accept that the customer will be collaborating mainly through Internet.

Product Quality Assurance:

· C2. Code the unit test first. That practice is very simple, effective, and it does not impose any extra work on programmers.

· C5a. Integrate often. At this level it could be enough to integrate once a week. The team could decide that they integrate the system each Friday (for instance). Small problems could be resolved immediately, while big problems would be scheduled on the next week and the customer representative would be informed about them. By integrating once a week instead of several times a day one has fewer versions. Consequently, less advanced version management systems and testing tools will do.

· C7. Leave optimization till last. Many optimizations (e.g. very sophisticated algorithms) require a lot of effort and they are sources of potential bugs which are difficult to locate and fix. Thus, it is better for the product quality not to introduce an optimization if it is not necessary.

· T0. All code must have unit tests. That allows regression testing.

· T1a. All code must go through unit tests and the score must be published before it can be released. This is a more liberal version of rule T1 (All code must pass all unit tests before it can be released). Since a development team and a customer representative are just in the beginning of their way to XP, it can happen that they will include into one story a few functionalities of different importance and a functionality of lower importance has a bug. Then they can decide to release such software and solve the problem in the next release.

· T2. When a bug is found test must be created. That supports regression testing.

· T3. Acceptance tests are run often and the score is published. It should be done at least at the end of each iteration.

6. XPMM Level 3 – Advanced

The advanced level of XPMM is focused on pair programming. This is an “internal” attribute of the team, not directly visible to the customer. Each pair of programmers shares responsibility for the created code. One person acts as a coding leader and the other plays the role of testing leader. After some time they switch the roles. XP does not require formal reviews (e.g. Fagan inspections) – pair programming provides continuous reviews. Another nice side-effect of pair programming is that each piece of code has two authors and each of them can help to maintain it. Here are the practices assigned to XPMM Level 3:

Pair programming:

· P8. Move people around. By moving programmers between pairs one can enhance exchange of knowledge between programmers, and increase a chance that the same coding standard will be used by all the team members.

· C0b. The customer pays frequent visits to the development team. He should visit the developers at least once a week to create and sustain personal contacts.

· C1. Code must be written to agreed standards. That way it is much easier to understand and modify code written by somebody else.

· C3. All production code is pair programmed. This is the main practice for this KPA. Please notice that this rule does not concern spike solutions – they can be programmed by single programmers.

· C4. Only one pair integrates code at a time. This is pretty obvious.

· C5b. Integrate often. At this level it is required to integrate at least once a day as suggested by Beck [2].

· C6. Use collective code ownership.

· C8b. Overtime data are collected and published. This is a more liberal version of the rule C8 (No overtime).

· C9. A version management system is used. Without it the idea of frequent integration and collective code ownership would lead to a disaster.

· T4. Automated testing is used to support frequent integration tests.

· F0. Create an open workspace for the team. Pair programming, collective code ownership, and the travel light principle assume effective oral communication. An open workspace is to support it.

7. XPMM Level 4 – Mature

The Mature Level of XPMM addresses issues of customer’s and developer’s satisfaction. Unlike PSP and CMMI, we decided to take into account not only software processes but also results achieved by the team working according to them. The only KPA is Project Performance and it contains the following requirements:

· C0. On-site customer. The customer representative should be available on daily basis, not less than 2 hours per day.

· C8. No overtime. We think that overtime at the level of 10% would be no problem.

· T1. All code must pass all unit tests before it can be released.

· Customer satisfaction is achieved.

8. Maturity assessment

XPMM should be a light maturity model. Therefore, one cannot assume rich process documentation like in case of ISO 9001. Another difficulty with assessing XP maturity comes from the fact that many XP rules and practices are difficult to check. Here are examples of XP practices that are particularly difficult to assess:

· D0. Simplicity. It is very subjective.

· D3. Create spike solutions to reduce risk. Spike solutions are not documented at all. How to check if they have been appropriately applied?

· D4. No functionality is added early. It is very difficult to judge post mortem if a given functionality has been added on time.

To preserve the spirit of XP we believe that the most appropriate method of assessment could be conversation and observation. This is very subjective but it can provide some information. Because one of role in an XP team is tracker who is responsible for collecting measurement data, one could use him for the following information:

Level 2:

· User stories written by the customer.

· Scope of each release and increment (i.e. set of user stories planned for each release and increment and actually implemented).

· Time scope of each release and increment.

· Project velocity for each week.

· The number of spike solutions.

· Log concerning customer involvement in planning meetings (e.g. delays caused by him) and creating acceptance tests (list of test cases and their “time stamps”).

· Date and time of each integration.

· List of unit tests for each unit.

· Test score for each unit at each release.

· A list of bugs and test cases associated with them.

· Date and results of each acceptance test.

Level 3:

· Pairs for each day (who is working with whom).

· Date, time and period the customer is visiting the team.

· Coding standard.

· List of units that have been produced by single programmers.

· Overtime data.

Those data are a good indicator if the team is really working according to XP. They can be accompanied by a simple questioner or a checklist based on the practices listed in Sections 5 and 6.

9. Conclusions

In the paper we have proposed a simple maturity model for eXtreme Programming called XPMM. We tried to make it as simple and light as the XP itself. It consists of 4 levels and its structure resembles CMM(I). The highest maturity level is connected with the team performance (no overtime, all code must pass all unit tests, the customer must be satisfied). The model should help to distinguish between “real” XP projects and pseudo-XP projects, which have only one common characteristic with XP, namely lack of written documentation.

Proposed maturity model is currently experimentally tested at the Poznan University of Technology. Five project teams, each staffed by 6 students (2 managers and 4 developers), develop their projects according to XP. They were asked to organize their work according to XPMM and apply as many XP practices as possible to achieve highest possible competence in XP.

We hope that the proposed model will open a discussion on maturity assessment for XP.

10. References

[1]
E. Yourdon, Death March: The Complete Software Developer's Guide to Surviving 'Mission Impossible' Projects, Prentice Hall, 1999.

[2]
K. Beck, Extreme Programming Explained: Embrace Change, Addison Wesley, Boston, 2000.

[3]
J. Donovan Wells, The Rules and Practices of Extreme Programming, http://www.extremeprogramming.org/rules. html, February 2001.

[4]
L. Williams, R. Kessler, W. Cunningham, R. Jeffries Strengthening the Case for Pair Programming, IEEE Software, vol. 17 (2000), No. 4, 19-25.

[5]
CMMISM for Systems Engineering/Software Engineering/ Integrated Product and Process Development, Version 1.02, CMU/SEI-2000-TR-030 ESC-TR-2000-095, Software Engineering Institute, Carnegie Mellon University, http://www.sei.cmu.edu/pub/documents/00.reports/pdf/ 00tr030.pdf, 12.12.2000.

[6]
I. Sommerville, P. Sawyer, Requirements Engineering. A good practice guide, John Wiley & Sons, 1998.

[7]
W.S. Humphrey, Discipline for Software Engineering, Addison-Wesley, Reading, 1995.

[8]
http://www.ivv.nasa.gov/SWG/docs/process/, Feb. 2001.

[9]
J.T. Nosek, The case for collaborative programming, Communications of the ACM, vol. 41 (1998), No. 3, 105-108.

[10]
J. Nawrocki, A. Wojciechowski, Experimental evaluation of Pair Programming, in: K. Maxwell, S. Oligny, R. Kusters, E. Van Veenendaal (eds.), Project Control: Satisfying the Customer, Proceedings of the 12th European Software Control and Metrics Conference ESCOM 2001, Shaker Publishing, Maastricht, 2001, 269 – 276.

[11] J.M. Carroll et al., Requirements development in scenario-based design, IEEE Transactions on Software Engineering, vol. 24 (1998), No. 12, 1156-1170.
Level 1. Not compliant at all

Level 2. Initial

Customer Relationship Management (CRM)

Product Quality Assurance (PQA)

Level 3. Advanced

Pair programming

Level 4. Mature

Project performance

� This work has been partially supported by a KBN grant.

PAGE

