
Combining Extreme Programming
with ISO 9000 ?

Jerzy R. Nawrocki,
MichaÃl Jasiński, Bartosz Walter, and Adam Wojciechowski

Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland
{Jerzy.Nawrocki, Michal.Jasinski, Bartosz.Walter, Adam.Wojciechowski}

@cs.put.poznan.pl

http://www.cs.put.poznan.pl

Abstract. The main drivers of the growing ICT market are software
products. European Information Technology Observatory estimates, that
in year 2002 the total value of ICT software products in Western Europe
will be more than 70 billions Euro. Unfortunately very few people are
satisfied with quality of the software products and processes. Software
Process Improvement tools, like CMM and ISO 9000 were to cure this
situation, but some people complain that they are too bureaucratic and
inflexible. As a result new, so-called agile, methodologies appeared. One
of them is Extreme Programming (XP) - a lightweight, change-oriented
and customer-oriented approach to software development. Although XP
proposes many interesting practices, it has some limitations. Moreover,
it is not clear how to introduce XP to an organization certified to ISO
9001:2000. The aim of the paper is to present a modified version of XP
that would be acceptable from the point of view of ISO 9000.

1 Introduction

European Information Technology Observatory (EITO) predicts that the total
value of Western Europe ICT market will reach 678 billion Euro in 2002 [7]
and 11% of it (more than 70 billions Euro) will be spent on software products.
However, the market is getting more and more demanding. To be successful,
software companies have to attract customers in various ways. One of possible
steps is certification to ISO 9001:2000.

ISO 9000 is a series of international standards concerning establishment and
maintenance of a quality management system. They are general-purpose stan-
dards comprising vocabulary [3] requirements [4] and recommendations for im-
provement [5]. The only standard an organization can be certified to is ISO 9001.
They can be used in a private factory as well as in a government institution, in a
big shipyard and in a small software company. ISO 9000 originated in UK and it
is getting more and more popular. In 1997 there have been approximately 102 000
registrations worldwide and three years later the number was over 250 000 [15].
? This work has been financially supported by the State Committee for Scientific

Research as a research grant 4 T11F 001 23 (years 2002-2005)



2 Jerzy R. Nawrocki, MichaÃl Jasiński, Bartosz Walter, Adam Wojciechowski

Opinions on ISO 9000 vary significantly. For instance, the Director General of
the British Standard Institute claimed that ISO 9000 ”will save your money”, ”it
will ensure satisfied customers”, and ”it will reduce waste and time-consuming
reworking of designs and procedures” [15]. At the opposite pole is the opinion
of John Seddon. According to him ”by being labelled a quality standard, ISO
9000 has only succeeded in steering quality into troubled waters. Far from being
a first step to quality it has been a step in the wrong direction. The hope is that it
hasn’t conditioned management to lose interest in the subject” [15]. That opin-
ion is somehow confirmed by the fact, that almost 10% of Australian companies
have decided to discontinue registration to ISO 9001 [15]. What is wrong with
ISO 9000? The general impression is that ISO 9000 standard requires too much
documentation and it is too bureaucratic. Moreover, some people consider ISO
9000 too general and different types of software-oriented maturity models have
been proposed [16, 14, 6]. Nevertheless, some software companies decided to go
through the ISO 9001 certification process. The danger is that certification to
ISO 9000 will result in a well-documented but still inefficient system. The initial
enthusiasm of workers for the software process improvement will soon be dissi-
pated if they find out that the ISO 9001 is just a marketing subterfuge, and the
company has no intention to introduce a real process improvement.

On the other hand, a few years ago so-called lightweight (or agile) software
development methodologies have appeared. The most popular is Extreme Pro-
gramming (XP for short). XP emphasizes the importance of on-site customer,
oral communication, product quality, short feedback from customer and end-
users, simplicity, minimal documentation and avoidance of overtime. In the con-
text of Information and Communication Technology it is important that XP is
a change-oriented methodology and it tries to deliver maximum functionality at
a minimum cost in a short time. A typical reaction of a programmer to XP is:
”At last a methodology for people, not people for methodology”. Our idea is to
use this enthusiasm as a starting point for real software process improvement
and to combine it with the requirements of ISO 9000. Unfortunately, that merge
is not straightforward. What we propose is a modified methodology, based on
XP practices and conformant to ISO 9001:2000.

In the next section we will present most important features of Extreme Pro-
gramming. Then, in section 3, we will discuss the Quality Management System
of an ISO-9000 software company. We will show how to put together a gen-
eral Quality Management System proposed by ISO 9000 and a software-oriented
knowledge base which contains documents, artifacts, and data specific to a soft-
ware organization. Our focus will be on two parts of ISO 9001:2000: product re-
alization, and monitoring and measurement. Product realization, which is based
on XP practices and conformant to ISO 9001:2000, will be described in section
4. To gain flexibility, we propose a four-level improvement schema resembling
the Capability Maturity Model [14]. In section 5 we will describe measurements
which are necessary from the point of view of ISO 9000 and useful in the context
of XP practices. In the last section our early experience concerning the proposed
approach will be presented.



Lecture Notes in Computer Science 3

2 XP Overview

Extreme Programming [1, 2, 8] represents a new wave in software development
known as the approach. Tom de Marco, the father of structural analysis, calls
XP the most important movement in software engineering (see the foreword to
[2]). The strong points of XP in the ICT context are as follows:

– Risk minimization. ICT is developing very fast. To catch up with current
developments it is necessary to make investments in new technologies and
try new tools out. On the other hand, new tools and technologies are imma-
ture and one cannot depend on them. The best approach is to make some
(preferably small) investment now and after some time invest more or give
up, depending on the developments (it is like buying an option on the stock
exchange). XP is based on incremental software development and its suites
the strategy very well.

– Customer orientation. In XP all the business decisions are made by the
customer and he has the full control over the development process.

– Lack of excessive paperwork. In XP programmers concentrate on program-
ming, not on writing documentation. The only artifacts they have to produce
are test cases and code.

– Quality assurance through intensive testing. In XP programmers first cre-
ate test cases then they write code. Automated tests and integration are
performed several times a day and they drive the development process.

– Lack of overtime. Short releases and increments allow to gain experience
very fast. This makes planning easier and more dependable. As a result
programmer do not have to (always) work overtime.

XP has also weak points. The most important are problems with software main-
tenance. Since the only artifacts are test cases and code, after some time it can
be very difficult to maintain the software. It would be also the problem from the
ISO 9000 point of view. In the remaining part of the paper we propose how to
solve that problem.

3 Software Development in an ISO 9000 company

ISO 9001:2000 standard defines requirements for a process-oriented Quality Man-
agement System (QMS for short). This means that desired results are achieved
more efficiently when the related resources and activities, together with encom-
passing customer needs and satisfaction, are managed as a process. QMS is
specified in a Quality Manual document featuring a three-tier structure, which
consists of Quality Processes (including Quality Policies), Quality Procedures
and Work Instructions. This structure is presented in Fig. 1.

The problem is that Work Instructions are sometimes too bureaucratic. A
good example of that approach is Tricker’s book on ISO 9000 [18]. According
to it, a Work Instruction takes about 16 pages. Half of them contains purely
administrative data (document data sheet, distribution list, amendments, list of



4 Jerzy R. Nawrocki, MichaÃl Jasiński, Bartosz Walter, Adam Wojciechowski

Quality Processes are usually visualized in form of
so-called process maps. They define inputs and
outputs together with sequence of work to be carried
out. Quality Processes include also Quality Policies
presenting mission statement and describing
intentions as far as achieving quality is concerned.

Quality Processes
incl. Quality Policies

Quality Procedures

Work Instructions

Quality Procedures explain what has to be done to put
Quality Processes and Quality Policies into service.
Quality Procedures can be also regarded as high-level
instructions (i.e. in form of a control-flow diagram)
presenting implementation details concerning particular
Quality Process

Work Instructions contain detailed information on
performing particular actions. Work Instructions
describe issues related to e.g. documents
management, quality records management, checking
customer satisfaction or checking personnel
satisfaction.

Fig. 1. Three-tier structure of Quality Manual.

annexes etc.). That makes the whole QMS documentation superfluously thick.
Another drawback of Tricker’s approach is form-orientation: Work Instructions
focus on how to fill-in the forms used by the Quality Procedures. What we
propose is to make Work Instructions shorter (some elements can be omitted,
some, e.g. terminology, can be put together and placed in one section). Moreover,
Work Instructions should describe practices specific for a given methodology of
software development.

In our opinion, quality organization needs two things: general Quality Man-
agement System operating on a high abstraction level and a Thesaurus (knowl-
edge database), which should materialize company’s knowledge. In the thesaurus
templates of e.g. Quality Plans, historical data concerning past projects etc can
be deposited. This information will be indispensable during planning and im-
proving software processes.

The clauses of ISO 9000:2000 can be split into two parts. One part describes
the general Quality Management System (chapters 4, 5, and 6) while the other
part specifies requirements for a methodology to be adopted by an ISO-9000
company (chapters 7 and 8 of ISO 9001:2000). In the remaining part of the
paper we will focus on requirements imposed by chapters 7 and 8 of the ISO
9001:2000.

4 Product Realization: Modified XP Practices

To adopt XP practices to the needs of ISO-based product realization we suggest
to use the XP Maturity Model (XPMM for short)[12]. That model resembles the
SEI’s Capability Maturity Model[14]. The XPMM’s Key Process Areas associ-
ated with the maturity levels include: Customer Relationship Management and



Lecture Notes in Computer Science 5

Product Quality Assurance (Level 2), Pair Programming (Level 3), and Project
performance (Level 4).

The XPMM maturity levels are useful as they allow to introduce XP to
a company gradually (level by level). That provides flexibility to the software
improvement process.

In the next section we describe XPMM’s Key Process Areas together with
modification, which are necessary to make the software development process
compliant with ISO 9000:2000.

4.1 Customer Relationship Management

Customer satisfaction is of primary importance for both XP and ISO 9000.
However, XP is much more specific about how to obtain that satisfaction. Here
are the main XP practices directly influencing customer satisfaction:

CRM1: User stories are used to describe requirements. They are written on
small pieces of paper using natural language. Usually the are very short
and are just an introduction to the discussion between customer and the
development team, so they do not have to be complete. User stories are not
documented and maintained.

CRM2: A development process is split into short releases (about 6-9 weeks) and
each release is split into iterations (2-3 weeks). Each iteration implements a
set of user stories. When a release is finished the product is made available
to the end users. This provides a fast feedback to the development team.

CRM3: Planning game is used to create a release plan. The user stories brought
by the customer are evaluated by the developers. They estimate the effort
required to implement each story and the technical risk. Knowing that, cus-
tomer chooses the stories to be implemented in the current release.

CRM4: A metaphor is chosen to facilitated communication with the customer.
The system is described in terms the customer is familiar with.

CRM5: No functionality is added early. The functionality to be implemented
must be chosen by a customer representative, not by the development team.

The first problem, in the context of ISO 9000 is lack of written requirements
(XP uses user stories instead of documented requirements). ISO 9001:2000 does
not explicitly specify the need for existence of written requirements. However,
the need for existence of written documentation follows from these clauses:

– ”(. . . )the organization shall determine (. . . ) records needed to provide evi-
dence that the (. . . ) resulting product meets requirements.”([4], clause 7.1),

– ”The organization shall review the requirements related to the product (. . . )
where the customer provides no documented statement requirement, the cus-
tomer requirements shall be confirmed by the organization before acceptance.”
([4], clause 7.2.2),

– ”Inputs relating to product requirements shall be determined and records
maintained. These inputs shall include functional and performance require-
ments (. . . ). Requirements shall be complete, unambiguous and not in con-
flict with each other.”([4], clause 7.3.2).



6 Jerzy R. Nawrocki, MichaÃl Jasiński, Bartosz Walter, Adam Wojciechowski

The need for documented requirements is also emphasized by the CMM model
([14], KPA for Requirements Management, Ability 2). Thus, the problem arises
how to introduce documented requirements to a lightweight methodology. To
solve it one has to notice that XP was created to be lightweight to programmers
and it puts extra work on the shoulders of other people, e.g. customer represen-
tative. We will follow that path. One of the roles in an XP team is the one of a
tester, who implements test cases proposed by the customer. Our suggestion is to
make the tester responsible for requirements documentation and management.

According to Beck, an XP tester is ”responsible for helping the customer
choose and write functional tests” and running them regularly [1]. Requirements
and acceptance tests are on the same abstraction level, so tester seems to be the
best person to take on the job of analyst responsible for requirements manage-
ment.

4.2 Product Quality Assurance

Product quality assurance is addressed in ISO 9000 by clause 7.3.5 Design and
verification: ”Verification shall be performed in accordance with planned agree-
ments to ensure that the design and development outputs have met the design
and development input requirements.”

XP implements this through the following practices:

PQA1: Test-first coding. It means that a programmer first writes a test, then
starts coding. This helps to understand what we expect from a unit and
removes ”implementation bias” during testing.

PQA2: All code must have unit tests. That allows regression testing.
PQA3: When a bug is found a test must be created. That supports regression

testing.

Moreover, XP supplements those practices with two others:

PQA4: Continuous integration. This should provide fast feedback on current
system status.

PQA5: Optimization is left till last. Many optimizations require lots of effort
and they are sources of potential bugs which are difficult to locate and fix.
Thus, it is better for the product quality not to introduce and optimization
if it is not necessary.

4.3 Pair Programming

Pair programming is specific to XP and it does not relate directly to any ISO
9000 clause. However, to implement pair programming in an efficient way, an
open workspace lab is required. That is connected with clause 6.3 Infrastructure
and 6.4 Work environment. Moreover, it is interesting to point out that ISO
9000 requires conformity to product requirements, not to the defined processes.

The pair programming practices are as follows:



Lecture Notes in Computer Science 7

PP1: Code must be written to agreed standards. This way it is much easier to
understand and modify the code written by somebody else.

PP2: All production code is pair programmed. That is the main practice for XP
projects.

PP3: Only one pair integrates code at a time. It is needed to ensure code con-
sistency.

PP4: Collective code ownership. Everybody can change any piece of code if
necessary.

PP5: Use version management system. It supports collective code ownership
and continuous integration.

5 Monitoring and Measurement

In ISO 9001:2000 monitoring and measurement are described in very general
terms. Extreme Programming gives hints how to implement ISO 9001 clauses
related to this issue:

– 8.2.3 Monitoring and measurement of processes. The aim is to ”demonstrate
the ability of processes to achieve planned results”. In the context of XP one
should collect the following process metrics:
• Overtime (day by day). XP assumes no overtime and one should know

how far we are from the ideal process.
• Availability of the customer representative to the development team to

answer questions, resolve conflicts and create acceptance tests
• Project velocity (i.e. the amount of time per week each team member

can spend on his assignments). That data are used during planning.
• Integration log to see how frequently new pieces of code are integrated

with the system (XP suggests to have several integrations per day).
• Mode of production for each piece of production code (pair or individual).
• Programming speed (lines of code per hour, test cases per hour, accep-

tance tests per hour).
– 8.2.4 Monitoring and measurement of product. In the context of software

development the main measurement is test report showing the fraction of
passed unit tests and acceptance tests (both unit tests and acceptance tests
can comprise functional and performance tests).

– 8.3 Control of nonconforming product. ISO 9001:2000 requires that ”when
nonconforming product is concerned it shall be subject to re-verification to
demonstrate conformity to the request”. In XP before a new version of the
system is checked-in to the baseline library all the unit tests should be passed.

– 8.5.2 Corrective action. According to ISO 9001:2000 it is necessary to ”elimi-
nate the cause of nonconformities in order to prevent recurrence.” To prevent
recurrence of software defects XP requires to create test cases for each de-
tected defect. Should the defect recur, the test cases will discover it before
a new version of the system will be released.

The remaining clauses concerning monitoring and measurement (customer sat-
isfaction, internal audit, analysis of data, continual improvement and preventive
action are transparent with regard to XP.



8 Jerzy R. Nawrocki, MichaÃl Jasiński, Bartosz Walter, Adam Wojciechowski

6 Conclusions

The approach described in the paper is being implemented at the Software De-
velopment Studio (SDS for short). SDS is a software organization established at
the Poznan University of Technology to allow students to get practical experience
in software development and software process improvement [9]. Each year there
are 11 projects developed for real customers. Each project involves 8 students: 4
from 3rd year, 2 from 4th year and 2 from 5th year of studies. Students play dif-
ferent roles in subsequent years, gaining experience in design and programming,
project management and quality assurance. Each project lasts an academic year
(9 months). The examples of the projects developed by students include: Network
Database System for Multiple-Choice Questions, Internet-Based Environment for
Requirements Management, Internet-Based Traffic Analysis System.

In the previous academic year the projects were split into two groups. One
group developed software according to CMM Level 2, and the other applied pure
XP. The XP projects suffered, among others, from: absence of precisely defined
process, lack of adequate communication with customer, late delivery, and the
most significant - maintenance problems. One of symptoms of that problems
were the difficulties the 3rd year students had in writing their bachelor thesis
[13].

This year we have used a modification of XP targeting at satisfying selected
ISO 9000 clauses embracing requirements management and maintenance prob-
lems [10]. The aim of this experiment was to introduce ISO 9000 elements to XP
approach.

In order to asses maturity of requirements engineering processes in SDS
projects we used the Somerville-Sawyer model [17] based on a set of good prac-
tices. Sommerville and Sawyer have identified 66 practices and split them into
3 groups: basic, intermediate and advanced. Each practice can bring from 0 to
3 points, depending on how widely it is used by an organization. The highest
maturity level is called Defined. Organizations at that level have more than 85
points in the basic practices and more than 40 points in the intermediate and
advanced practices. The intermediate level is called Repeatable and organizations
at this level have more than 55 points in basic practices. The lowest level is called
Initial and an initial organization has fewer than 55 points in basic practices.

Our experiment shows that Extreme Programming modifications resulted in
significant improvement from the Somerville-Sawyer point of view. Since XP
addresses only 6 of the basic practices, 4 intermediate and 1 advanced prac-
tice, ”classical” XP projects were assessed as Initial [10]. In contrast, this year
projects developed according to the proposed methodology supported most of
the 66 practices more or less directly and therefore were assessed as Repeatable.
That can be considered as an important improvement indicator. However there
is still a need for further research. These studies shall focus on implementing a
Quality Management System combining ISO 9000 and XP.



Lecture Notes in Computer Science 9

References

1. Beck, K.: Extreme Programming: Embrace Change. Addison-Wesley, Boston
(2000)

2. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Boston
(2001)

3. European Committee for Standardization: Quality Management Systems - Funda-
mentals and Vocabulary (ISO 9000:2000). European Committee for Standardiza-
tion (2000)

4. European Committee for Standardization: Quality Management Systems - Re-
quirements (ISO 9001:2000). European Committee for Standardization (2000)

5. European Committee for Standardization: Quality Management Systems - Guide-
lines for Performance Improvements (ISO 9004:2000). European Committee for
Standardization (2000)

6. European Committee for Standardization: Software Process Assessment (ISO
15504:1998). European Committee for Standardization (1998)

7. European Information Technology Observatory: EITO2002 - 10th Edition 2002.
European Information Technology Observatory, Brussels (2002)

8. Jeffries, R., Anderson, A., Hendrickson., C.: Extreme Programming Installed.
Addison-Wesley, Boston (2001)

9. Nawrocki, J.: Towards Educating Leaders of Software Teams: A New Software
Engineering Programme at PUT. Proceedring of SEES 98. Scientific Publishers
OWN, Poznan (1998) 149–157

10. Nawrocki, J., Jasiński, M., Walter, B., Wojciechowski, A.: Extreme Programming
Modified: Embrace Requirement Engineering Practices. Proceedings of the 10th
IEEE Joint International Requirements Engineering Conference. IEEE Press, Inc.,
Los Alamitos (2002) 303–310

11. Nawrocki, J., Wojciechowski, A.: Experimental Evaluation of Pair Programming.
In: Maxwell, K., Oligny, S., Kusters, R., van Veenendaal, E. (eds.): Project Control:
Satisfying the Customer. Proceedings of ESCOM 2001. Shaker Publishing (2001)
269–276

12. Nawrocki, J., Walter, B., Wojciechowski, A.: Toward Maturity Model for eXtreme
Programming. Proceedings of the 27th EUROMICRO Conference, Los Alamitos.
IEEE Computer Society (2001) 233–239

13. Nawrocki, J., Walter, B., Wojciechowski, A.: Comparison of CMM Level 2 and
eXtreme Programming. Proceedings of the 7th European Conference on Software
Quality, Helsinki, Finland. Lecture Notes in Computer Science 2349, Springer-
Verlag (2002) 288–297

14. Paulk, M. C. et al.: The Capability Maturity Model: Guidelines for Improving the
Software Process. Addison-Wesley, Reading MA (1994)

15. Seddon, J.: The Case Against ISO 9000. 2nd edn. Oak Tree Press, Dublin (2000)
16. Software Engineering Institute: Capability Maturity Model Integration. Version

1.1, Staged Representation. Carnegie Mellon University (2002)
17. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide.

John Wiley & Sons, Chichester (1997)
18. Tricker, R., Sherring-Lucas, B.: ISO 9000:2000 in Brief. Butterworth-Heinemann,

Oxford (2001)


