Extreme89: An XP War Game

Jerzy Nawrocki, Adam Wojciechowski

Poznan University of Technology, Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland

{Jerzy.Nawrocki, Adam.Wojciechowski}@put.poznan.pl

Abstract. Extreme89 is a simulation game designed to introduce software teams – programmers and customers – to Extreme Programming practices. The game is run by a moderator and lasts 89 minutes – this is the reason why we named it Extreme89. Several teams build-up of customer representative and programmers compete to earn maximum number of points. Teams earn points for delivering properly produced artifacts. Artifacts in the game correspond to software modules delivered to customer in real software projects. Every artifact in the game is assigned a Fibonacci-like function. Manual computing values of the functions performed by the programmers substitutes real programming. Rules of Extreme89 closely correspond to XP practices. The game has two releases while each release is build-up of two increments. Extreme89 with its atmosphere of the competition and time-compressed active lesson of XP was successfully introduced to Computer Science students at Poznan University of Technology.

1 Introduction

Extreme Programming (XP) is a paradigm shift in software development. What makes it different from classical approaches is, among others, adaptation to changing requirements, intensive oral communication, many short releases providing rapid feedback from end users, and strong business orientation (a customer makes all the business decisions concerning the project) [1]. Such a radically new methodology requires a new approach to teaching. It is well known that behavioral aspects cannot be effectively learned solely by attending lectures and reading textbooks. Active learning can be very useful.

One of pedagogical patterns for active learning is war game [5, 6]. It is a simulation game based on a metaphor of real situations, where several individuals or teams earn credits while they solve the same problem in parallel or play one against another. We know of two simulation games oriented towards XP. The first war game for XP is Extreme Hour proposed by Peter Merel [3]. In Extreme Hour programming is replaced by designing a fun device e.g. an improved mousetrap. Participation in the game encourages extensive oral communication and resembles brain storming. Unfortunately, there is no distinction between customer's and programmers' knowledge - in XP customer is an expert in business domain but he can be a layman in Information Technology and the programmer is opposite. Another weakness of Extreme Hour is lack of changes in requirements or conditions on the market which may force the customer to change his original preferences during the process.

Another XP 'process miniature' [2] was proposed by Alistair Cockburn [4, p.140]. He changed Extreme Hour by introducing real programming to the game and stretching time to 90 minutes. One must notice that Cockburn’s experience was oriented rather to demonstrate the two iteration XP process than to make it a war game (a war game is a process miniature with a kind of competition). Working in those strict time-limits the most spectacular part of the experience was the Planning Game, when the customer had to make decisions about the scope and functionality of the project. To emphasize our game is not Cockburn’s one, we planned it for 89 minutes and named it Extreme89.
Extreme89 is a war game that aims at introducing programmers and customers to XP practices. The game is run by a moderator. Several teams compete in one session (in parallel) to earn maximum number of points. Each team consists of one customer and at least two programmers (all of the teams should have the same number of programmers). Teams earn points for delivering properly produced artifacts. Artifacts in Extreme89 correspond to software modules delivered to customer in real software projects. A list of the artifacts to be ‘produced’ and their worth is given to the customer in the beginning of the game. The programmers get information on how to ‘produce’ the artifacts. Every artifact in the game is assigned a recursive Fibonacci-like function. To produce an artifact means to compute manually value of the recursive function assigned to the artifact. The winner in the game is the team which collects the maximum total worth of produced artifacts.

Rules of Extreme89 closely correspond to XP practices. To simulate an XP project each session is split into two releases, worth of the artifacts is changing during the game and arguments of the recursive functions are also subject to change reflecting changes in implementation. The customer knows current worth of the artifacts but he does not know how to ‘produce’ them while the programmers get definitions of recursive functions but they do not know how much they earn for delivering artifacts. This way knowledge of the customer and the programmers is clearly separated.

In the following sections of the paper we present roles of Extreme89 participants, rules and complete scenario of the simulation game. In section 4 we show how Extreme Programming practices are mapped onto game activities. Finally we present evaluation of the game conducted at the Poznan University of Technology to try and understand XP practices.

2 Roles in Extreme89

The main aim of Extreme89 is to introduce participants to XP practices and to show the importance of communication and collaboration in a software team. The result of the collaboration between the customer and the programmers is the final product, which scope and quality depends on both – programmers competence and effectiveness of communication in the team. To force communication between team members, knowledge, given to customer and programmers, is separated. To learn ‘what the other side knows’ programmers must talk to the customer and vice versa.

2.1 Programmers

The role of programmers in Extreme89 is ‘producing’ artifacts. They calculate manually values of recursive functions associated with the artifacts. Examples of the functions are given below:

F(a, b, 1)= a

F(a, b, 2)= b

F(a, b, n)= F(a, b, n-2) + F(a, b, n-1) div 2 if n>2

G(a, b, 1)= a

G(a, b, 2)= b

G(a, b, n)= G(a, b, n-2) + G(a, b, n-1) div 10 if n>2

One should notice that function F can be defined as follows:

F(1)= a

F(2)= b

F(n)= F(n-2) + F(n-1) div 2 if n>2

Function G may be defined in analogical way. This form is easier for manual calculations and clearly shows the role of parameters a and b – the initial values in the sequence. However, the advantage of the first form (functions F and G defined with 3 input parameters) is the ease to demonstrate which value of the sequence (beginning with a and b) is the result. For example: F(x1, x2, 5), where x1=1 and x2=7 we have:

F(1)= x1 = 1

F(2)= x2 = 7

F(3)= F(1) + F(2) div 2 = 1 + 7 div 2 = 1 + 3 = 4

F(4)= F(2) + F(3) div 2 = 7 + 4 div 2 = 7 + 2 = 9

F(5)= F(3) + F(4) div 2 = 4 + 9 div 2 = 4 + 4 = 8

Associations of artifacts and functions are given to programmers. They know how to ‘produce’ the artifact. An example list of artifact-function associations is given below:

Counter
= F(x1, x2, 18)
Data
= F(x3, x4, 18)

Stylesheet
= F(x5, x6, 18)
Web-page
= Data + F(x5, x6, 35)

Catalogue
= F(x7, x8, 18)
Search
= F(x9, x10, 18)

Orders
= Search + F(x7, x8, 35)
Invoice
= F(x11, x12, 18)

Credit-card
= F(x13, x14, 18)
Payment
= Invoice + F(x13, x14, 35)

E-shop
= G(Orders div 100, Payment div 100, 70)

It is possible to start calculations only if programmers know actual values of functions’ parameters. An example set of parameters xi is given below:

	x1 = 2
	x2 = 3
	x3 = 2
	x4 = 4
	x5 = 2
	x6 = 5
	x7 = 2

	x8 = 6
	x9 = 2
	x10 = 7
	x11 = 2
	x12 = 8
	x13 = 2
	x14 = 9

2.2 Customer

The customer represents business aspects of the project. He knows the market value of each artifact (see table 1.), which is the current worth that team earns for delivering particular artifact. The customer expects that programmers are able to ‘produce’ all the artifacts, however he does not know how difficult it is. The customer is aware that within limited time of the game (89 minutes) the team has no chance to ‘produce’ all the artifacts. Thus he must communicate with his programmers to learn how much time they need to calculate functions associated with particular artifacts and what is the risk of an error in calculations. It is customer’s job to make strategic decision what artifacts will be ‘produced’ in particular release.

Table 1. Current worth (market value) of the artifacts

	Artifact
	Worth
	
	Artifact
	Worth

	Counter
	3
	
	Orders
	20

	Data
	3
	
	Invoice
	5

	Stylesheet
	4
	
	Credit-card
	3

	Web-page
	24
	
	Payment
	20

	Catalogue
	4
	
	E-shop
	100

	Search
	4
	
	
	

The artifacts correspond to modules of a system and some of them are logically dependent, e.g. in order to ‘produce’ artifact web-page the programmers need to calculate functions associated with stylesheet and data (however, web-page is not a sum of stylesheet and data). Those logical dependencies between artifacts are given to the customer on a graph (see fig. 1.).

[image: image1.wmf]

Fig. 1. Dependencies between artifacts

Except the current worth of the artifacts, customer knows ranges (upper and lower bound, see table 2.) associated with all the artifacts. Proper value of an artifact calculated by programmers is always located within the corresponding range. It corresponds to acceptance tests. If value of an artifact calculated by the programmers is located within the corresponding range the customer cannot reject this result. One may say – ‘the artifact passes acceptance test based on customer’s knowledge’. However, one cannot exclude a situation where implementation defect is not detected during acceptance tests. Thus the customer knows only the ranges and any value of an artifact beyond its bounds must be rejected.

Table 2. Ranges for artifacts

	Artifact
	Range
	
	Artifact
	Range

	Counter
	100..400
	
	Orders
	14100..15900

	Data
	150..450
	
	Invoice
	250..800

	Stylesheet
	170..190
	
	Credit-card
	300..330

	Web-page
	12500..12800
	
	Payment
	21200..22900

	Catalogue
	210..230
	
	E-shop
	5400.5700

	Search
	200..700
	
	
	

Range bounds (given in Table 2) help the customer to eliminate results that are definitely faraway from the correct solution. Customer and programmers may freely exchange their knowledge but they must communicate orally. Customer cannot read programmers’ sheet of knowledge and vice versa.

2.3 Moderator

The game is run by the moderator. He is responsible for:

· Preparing materials with knowledge for customer and programmers.

· Animating the game by giving new portions of knowledge to the participants according to game scenario.

· Acceptance test and final assessment of collected results.

3 Game scenario

3.1 Accessories

Extreme89 war game can be organized almost everywhere. Although it simulates work in a software team there is no need to use computers, because programming is replaced by computing values of recursive functions. The list of required accessories include:

· Printed materials with domain knowledge for customer and programmers

· Sheets of paper and ball-pens for programmers

· Table, chairs and a partition used as a holder for sheets with domain knowledge presented separately to programmers and customer

· A clock for precise time management during the game.

All the team members sit around one table (customer face to face with his programmers). It corresponds to work in the open space, one of key XP practices [1]. Entire team may easily communicate during the game. Partition placed on the table should guarantee that knowledge presented to programmers cannot be red by customer and vice versa (see Fig. 2.).

[image: image2.wmf]

[image: image3.wmf]

[image: image4.wmf][image: image5.wmf]

[image: image6.wmf]

Fig. 2. Extreme89 war game. Teams compete to earn maximum worth for produced artifacts

3.2 Timetable

The game is run according to strict time-limits described in form of scenario (see table 3.). The process is split into two releases while each release consists of two increments. Product – set of artifacts delivered at the end of each release – goes to moderator for assessment. Only the moderator has the list of proper values of the functions associated with the artifacts.

Table 3. Extreme89 timetable.

	Time
	Action
	Period

	0
	Customer and programmers read and learn their domain knowledge
	5 min.

	5
	Planning release I
	5 min.

	10
	Planning increment I.1
	5 min.

	15
	Work
	12 min.

	27
	Planning increment I.2
	5 min.

	32
	Work
	12 min.

	44
	First release goes to the moderator for assessment
	3 min.

	47
	Planning release II
	5 min.

	52
	Planning increment II.1
	5 min.

	57
	Work
	12 min.

	69
	Planning increment II.2
	5 min.

	74
	Work
	12 min.

	86
	Final product goes to the moderator for assessment
	3 min.

	89
	Congratulations for the winners
	

Meaning of the icons on the left side of the table:

New (more precise) domain knowledge delivered to team members.

New (corrected) set of initial function parameters delivered to the programmers.

Product (artifacts produced by the programmers and accepted by the customer) is assessed by the moderator. The team gets the information about earned credits.

Knowledge of programmers, customer’s experience and conditions on the market are subject to change during the process of producing software system. In Extreme89 programmers’ competence and customer experience grow systematically. In the beginning of the game programmers have blanks in function definitions – they do not know how to produce an artifact. At particular stages of the game (according to the timetable) participants get new, more precise, data from moderator. On programmers’ side some blanks in function definitions are filled and some parameters are corrected. Customer get better acceptance tests (ranges are getting narrow and narrow), but there are possible surprises on the market – worth of the artifacts may change.

4 Extreme89 vs. Extreme Programming

Extreme89 was proposed to give participants a chance to experience the atmosphere of team work according to XP practices. Here we present mapping of main XP practices that have very evident parallel in rules of the game.

· On-site customer. Live contact of the customer who knows the business aspects of the project with programmers who have competences and technical skill to produce artifacts.

· Planning Game. Strictly limited time of the game requires proper planning. Scope of the project must be adjusted to programmers possibilities and to conditions on the market to earn maximum worth for delivered product.

· Coding standard. In many cases calculations used to ‘produce’ an artifact may be reused by the same or another programmer to calculate another artifact. It easier to find an error in somebody’s calculations if they are in compliance with agreed standard.

· Small increments. Very short time for increments forces planning small task that add value to product ‘produced’ by the team.

· No overtime. Artifacts delivered late do not add value to final score of the team.

· Pair programming. Programmers are not forced to work in pairs, however they may try it and observe differences in quality of work produced by pairs and individuals.

· Simplicity. There is no place for adding ‘functionality’ to artifacts produced in Extreme89.

5 Initial experience with Extreme89
Extreme89 was played for the first time in March 2003 at Poznan University of Technology. Participants of the war game were 3rd, 4th and 5th year students of Computer Science. All together is was 120 students divided into teams of 3 to 6 persons. For about 80 3rd year students it was the first experience with XP practices while older students already had some practical experience from managing projects being developed according to XP. To enforce emotional engagement in the game the winners in each group were rewarded with computer accessories and sweets.

Right after the game all the participants filled a questionnaire where they expressed their impression of the Extreme89. The game was welcomed very warmly and more than 80% of participants assessed the tutorial to XP with the highest mark. Among the strongest advantages of the game students indicated:

· Intensive course of Extreme Programming

· Possibility to observe and experience how much depends of fluent communication in a project team (especially when knowledge of a customer and programmers is separated).

· Good fun.

Ten months later we played Extreme89 again with a group of 20 students. At that time all of them had some experience with team work on a software project and much better theoretical background in XP in general. After the game they were asked to assess their impression of the game once again. Here are some of the results:

Question
Yes
No
No clue

Does Extreme89 help to understand XP?
95%
-
5%

Would you recommend Extreme89
 for younger students as intro to XP?
95%
-
5%

Did the game convince you to XP?
65%
20%
15%

Would you like to play from time to

 time to remind XP practices?
45%
45%
10%

Since the first time Extreme89 was played we did several experiments playing the game with various groups of participants. We tried to play the game prior to and after the lecture on eXtreme Programming. Playing Extreme89 before giving the lecture introducing to XP practices is an opportunity for a team to practice and discover the most effective way of team work by themselves. A significant outcome from that experiment was that majority (above 70%) of winning teams developed their own practice of pair work. It seemed to appear very naturally when the Customers observed many mistakes in artifacts delivered by singles. During the lecture following the game participants could compare XP practices to their natural behavior. Students tried to relate their way of playing the game to XP practices. After the lecture, during a discussion, some of students (Programmers in the game) confirmed that they underestimated importance of Planning Game and instant communication with the Customer. Strong pressure to produce quickly, closed some programmers’ eyes to wider understanding of system being build. Calculations performed to deliver particular component might be re-used during calculating values of other artifacts but some Programmers did not noticed that fact.

Extreme89 was also played during a commercial workshop dedicated to software engineering. Participants of the event were mainly software project managers and programmers. In this case Extreme89 followed a lecture introducing to XP practices. A significant observation reported by participants was underestimating the importance of communication within the team. It happened that two or more persons worked on the same artifact without knowing that they do the same task. Although in the context of the game it might make some sense to confirm results produced independently by two programmers, participants reported this case as lack the control over the project. The workshop participants assessed the game very good.

6 Further development of Extreme89

Currently we work on a web-based version of Extreme89. Electronic system makes it possible to observe which team delivered an acceptable solution and instantly lower the number of points that other teams may get for the same solution delivered later. It is to simulate market behavior where the first deliverer of a product wins the biggest profit. Another important feature of the new Internet version of Extreme89 will be the possibility of introducing various task – including also programming. The game will be played in computer laboratories and there will be no restrictions for using computers to obtain the results. What must remain not changed from first version of the game is separation of Programmers’ and Customers’ knowledge. In the web-based edition the Programmers and Customers will have separate logins and different pieces of information on their screens. Equipped with the new tool we will try to assess how far e-mails, telephones and messengers can substitute personal contact between Programmers and Customer.

Moving the game to computer network environment will provide the basis for running the game simultaneously in several locations. This way we will prepare a platform to play national contest in XP team work.

7 Summary

In the paper we presented Extreme89 – a war game designed to introduce software teams to XP practices. Emotional engagement in the game of the participants is stimulated by competition between teams. First assessment of Extreme89 was quite positive, however it revealed also some weaknesses. For instance students suggested to simplify calculations in order to produce more artifacts during the game. Evaluation showed that participants consider the game a very attractive form of learning XP.

An Internet-based version of Extreme89 (currently under development, soon to appear) will provide us with a tool for estimation the influence of personal contact of the customer and programmers on project progress.

References

[1]. Beck K., Extreme Programming Explained. Embrace Change, Addison-Wesley, 2000.

[2]. Cockburn A., Process Miniature, http://c2.com/cgi/wiki?ProcessMiniature.

[3]. Cockburn A., Process Miniature, http://c2.com/cgi/wiki?ExtremeHour.

[4]. Cockburn A., Agile Software Development, Addison-Wesley, 2002.

[5]. O’Callaghan A., Simulation Game Workshop Pattern,

 http://sol.info.unlp.edu.ar/ppp/pp22.htm,

 Model and Implement, http://sol.info.unlp.edu.ar/ppp/pp23.htm.

[6]. Eckstein J., Bergin J., Sharp H., Patterns for Active Learning, Pedagogical Patterns Pro
 ject, http:// www.jeckstein.com/pedagogicalPatterns/activelearning.pdf

Web-page

Invoice

Payment

Orders

E-shop

Data

Stylesheet

Search

Catalogue

Credit-card

Counter

[xi]

[xi]

[xi]

New information for customer and programmers

Partition – separator and holder for sheets with domain knowledge

Programmers

Customer

Moderator

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[xi]

� This work was financially supported by State Committee for Scientific Research as a research grant 4 T11F 001 23 (years 2002-2005).

_1114793078.doc

