AUTOMATIC BAD-SMELL DETECTION IN JAVA PROGRAMS

Błażej PIETRZAK
, Bartosz WALTER

, Jerzy R. NAWROCKI†



Abstract. Nearly 70% of the overall effort of producing a software system is spent on software maintenance. The software maintenance is based on code modification. The code is modified so as to eliminate defects or to adapt it to the changing requirements. Such modifications are very dangerous because new bugs may be introduced in this way. Refactoring is a secure code modification technique. It is based on programs transformations. Some of the transformations aim at improving the program structure. Characteristics of ill-structured programs are called bad smells. They include too long methods, message chains etc. Manual detection of a badly smelling code is a tedious task. Thus, there is a need for automatic bad smell detection. In the paper the problem of the automatic bad smell detection in the Java programmes is discussed. The focus is on two types of bad smell: duplicated code and message chains. 

1. Introduction

Software maintenance is one of the most important issues in Software Engineering. Nearly 70% of the overall effort of producing a software system is spent on the software maintenance [1]. The software maintenance is based on code modification. The code is modified to adapt it to the changing requirements or to eliminate defects.

Such modifications are very dangerous because new bugs may be introduced. To make the code modification more secure, Kent Beck, Martin Fowler, William Opdyke and others introduced a programming practice called refactoring [2]. It is based on two observations:

· Code modifications often make the code difficult to understand and complicated. Further modifications are very dangerous because they are very likely to introduce a defect.

· Software testing is one of the core practices of software quality assurance. In some methodologies, e.g. Extreme Programming, automatic regression testing is one of the basic practices. If test cases are automated, a programmer can easily check if his modifications introduced a bug or not.

Refactoring is a secure code modification technique. It assumes that the code is developed together with automatic test cases. There are many tools that are intended to support a programmer in writing tests. One of the most popular is a family of the xUnit libraries [3]. Before adapting the code to the new requirements, an inappropriate code structure is modified. After modification the regression tests are re-run to ensure that no bugs have been introduced. If all tests are successful, the modification is correct. The refactored code is more adaptable to the new requirements. The refactoring aims at changing the internal structure of the software to make it easier to understand and less expensive to modify without changing its observable behaviour [2].

A formal code review is one of the most important quality assurance techniques. A typical follow-up of the code review is refactoring of the source code. “As a code base increases in size and complexity, it becomes unlikely that a manual review process, no matter how frequent, can uncover all issues with a high degree of accuracy” [4]. Therefore, automation is necessary.

The refactoring is ideally suited for automation: the programmers want to apply refactorings to the identified bad smelling areas of code, but applying them manually is error-prone.

Nearly all related work focuses on automatically applying refactorings once the programmer has identified a bad smell. Unfortunately, detection of the bad smelling code requires the experienced programmers as reviewers. A tool automatically identifying an improper code structure would be a valuable source of information of the best programming practices for inexperienced developers.

The purpose of this work is to propose and evaluate an approach to the automatic bad smells detection in the Java programs. A prototype version of a bad-smells detection tool called XSmells has been proposed and implemented as a plug-in to Eclipse IDE [5], a popular programming environment developed under the auspices of IBM. Among other integrated development environments, Eclipse IDE contains automatic code testing, and refactoring transformations. The Java [6] programming language was chosen because of its popularity and easy syntax in comparison to the other object-oriented languages. The popularity of Java gives an opportunity to evaluate XSmells practically. 

This work describes two of a variety of smells detected by the plug-in: Duplicated Code and Message Chains [2].

The duplicated Code is the leader in a ranking of the most frequent smells in the code. The existing research suggests that a considerable fraction 5-10% of the source code of the large-scale computer programmes is a duplicated code [7].

The message Chains are violation of the Law of Demeter. The Law of Demeter [8] is a simple, programming-language independent rule for designing the object-oriented systems. It is an instance of the information hiding principle and restricts the number of methods called subsequently by the external objects participating in the method chain.

Section 2 discusses the Duplicated Code in more detail. The proposed approach to detecting the Duplicated Code is based on the idea of Kontogiannis et al. concerning clone and concept detection in a set of programs [10]. Kontogiannis's work is summarized in Section. 3. Our idea of improving Kontogiannis's set of metrics is described in Section 4. Implementation issues are discussed in Section 5. The evaluation experiments that have been conducted are presented in Section 6. The research reported in the paper concerned detecting two kinds of bad smell: Duplicated Code and Message Chains. Section 7 is devoted to the problem of Message Chains detection. 

2. Duplicated Code

The most widely occurring smell is a duplicated code. The duplicated code or a clone code is the code fragment which is the effect of copy-paste programming.

This results from the fact that the programmers are overworked and usually have no time to restructure the method to make it more reusable, so they copy a piece of code and modify it a little bit to fit it to a new environment. The modification of the code does not cause the change of its behaviour.

2.1. Motivation

Understanding the code, where the modification is to be applied demands great effort.

The duplicated Code removal reduces the size of the code to understand thus making the structure easier to understand and, in consequence, makes software easier to modify.


Additionally, it reduces the number of failures in software because the duplicated fragments of the codes containing bugs are removed.

The existing research suggests that a considerable fraction 5-10% of the source code of the large-scale computer programs is a duplicated code [7]. The removal of such clones decreases software maintenance costs. Unfortunately, the manual detection of the duplicated code is a hard and strenuous process. For the large scale projects, the manual detection is practically impossible, so it is necessary to use the duplicated code detection tools.

2.2. Detection

There are several ways of the clones detection. The simplest one is a string comparison.

It has an advantage of being a programming language independent approach. But its effectiveness is low, because, for example, the variable names may differ in clones. There are also solutions, based on little knowledge about the programming language, which remove comments and/or transform variable names into a predefined format. MatchLoc [9] is an example of this approach. Unfortunately, effectiveness of those solutions is not significantly greater than effectiveness of detection of copy-paste duplicates. It is enough to modify slightly a code fragment to 'cheat' such a detector. 

The other solution is to build an abstract syntax tree for the code in a given programming language. Such trees are compared, for instance, by appropriate software metrics. Figure 1 shows the concept of this approach. Basing on the source code, the abstract syntax tree is constructed. It represents the functional structure of the code and does not contain such non-functional elements like comments. Next, during the tree traversal for each fragment of the code, the software metrics describing the fragment are calculated. Pairs of the code fragments are compared with each other. The fragments recognized as similar are marked as the Duplicated Code.


[image: image1.png]Source Code

abstract
syntax tree

Split into fragments

fragment

fingerprint

Compare




Figure 1. The metric fingerprint duplicate detection concept [11].

XSmells is based on the software metrics proposed by Kontogiannis et al. [10]. Their metrics have been designed to help with finding the fragments of the code implementing the same algorithm – the programming concepts that are the programming language independent. As “fragment”, they introduced a begin-end block of the code. For each block, a vector of metrics is calculated – it is called a block’s “fingerprint”.  Next, the vectors describing the blocks being investigated for duplication are compared.

XSmells treats a method as a code fragment. According to the results, the [11] begin-end blocks of the code are not investigated because they contain little information increasing false matches.

For each method being analyzed, a vector of software metrics is calculated. A pair of methods is recognized as similar if their Euclidean distance is less or equal to (d, where (d is a configurable parameter.

3. Kontogiannis Approach to Duplicated Code Detection

The metrics proposed by Kontogiannis et al. are the following:

Structural Complexity



[image: image2.wmf]2

)

(

)

(

fragment

fanOut

fragment

S

complexity

=


(3.1)

where fanOut(fragment) is the number of distinct function calls in the fragment’s body.

Data Complexity



[image: image3.wmf]1

)

(

)

(

)

(

+

=

fragment

fanOut

fragment

globals

fragment

D

complexity


(3.2)

where globals(fragment) is the number of individual declarations of the global variables used or updated within the investigated fragment. A global variable is not declared in the fragment under investigation.

McCabe cyclomatic complexity



[image: image4.wmf]2

)

(

+

-

=

n

e

fragment

McCabe


(3.3)

where:

e is the number of edges in the control flow graph of the fragment. One edge out of a statement indicates a sequential flow, two links point to a decision.

n is the number of nodes in the same graph. Edges represent statements.

Modified Albrecht’s function point metric


[image: image5.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

+

+

+

+

=

)

(

*

)

(

*

))

(

)

(

(

*

)

(

*

)

(

4

3

2

1

fragment

fileInput

p

fragment

userInput

p

fragment

pdated

parmsByRfU

fragment

ated

globalsUpd

p

fragment

globals

p

fragment

Albrecht


(3.4)

where:

globals(fragment) is the number of the individual declarations of the global variables used or updated within the investigated fragment. A global variable is not declared in the fragment under investigation.

globalsUpdated(fragment) is the number of the individual declarations of the global variables, updated within the fragment.

parmsByRefUpdated(fragment) is the number of the pointer type variables in the formal parameter list of the enclosing function which are updated within the fragment.

userInput(fragment) is the number of the input statements in the fragment.

fileInput(fragment) is the number of the file opening statements in the fragment.

Kontogiannis suggests the following factor values: p1 = 4; p2 = 5; p3 = 4; p4 = 7.

Modified Henry-Kafura’s Information flow quality metric


[image: image6.wmf]2

))

(

*

)

(

(

)

(

fragment

kafuraOut

fragment

kafuraIn

fragment

kafura

=


(3.5)

where:

kafuraIn(fragment) is the sum of the number of the formal parameters, the number of variables used in fragment, and the number of function calls in the fragment.

kafuraOut(fragment) is the sum of the number of the functions called by the fragment, the number of individual declarations of the global variables updated within the fragment, the number of the pointer type variables in the formal parameter list of the function in which the fragment is contained and whose variables are updated within the construct.

4. XSmells Approach to Duplicated Code Detection

4.1. Additional Metrics in XSmells

The preliminary analysis revealed, however, that for the specific code, the Kontogiannis et al. metrics may introduce the false matches recognizing as duplicates the code that is not cloned. 

They may also not detect some duplicates. To reduce the number of the false matches, three new metrics were added:

Number of the loops in the method (NOLOOP)

It is the number of the loop statements in the method.

Number of returns from the method (NORET)

It is the number of the return statements in the method.

Cardinality of the subset of methods called (CARDMC)

It is the cardinality of the subset of two sets. Both sets contain the distinct names of methods called within the method to which they refer. When the methods are compared for an occurrence of being duplicates their sets are subsetted and the subset cardinality is computed. 

4.2. Methods Comparison

Two methods are recognized as similar if the distance of their vector metrics is less or equal to (d where (d is a configurable parameter.

For the Kontogiannis et al. [10] approach, the distance of the two vector metrics is their Euclidean Distance.

For the approach introducing the additional metrics, the distance of the two methods met1 and met2 is represented by the following equation:


[image: image7.wmf]2

2

2

2

2

2

2

2

))

2

,

1

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

))

2

(

)

1

(

(

)

2

,

1

(

met

met

CARDMC

met

fanOut

met

NORET

met

NORET

met

NOLOOP

met

NOLOOP

met

Kafura

met

Kafura

met

Albrecht

met

Albrecht

met

McCabe

met

McCabe

met

D

complexity

met

D

complexity

met

S

complexity

met

S

complexity

met

met

d

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

=

D


(3.6)

5. Implementation of the Metrics

The Kontogiannis et al. metrics and the additional metrics proposed in XSmells are the programming language independent, so the proper interpretation is crucial for the duplicates detection.

There are many possible ways of interpreting the Kontogiannis et al. metrics [10] because of their language independence. XSmells uses observations and interpretation proposed in [11]:

fanOut
fanOut(fragment) is the number of the distinct function calls in the fragment’s body.

Identifying a method only by its name may lead to less precise matches because the method with the same name may exist in the different classes. Additionally, the classes with the same name may exist in the different packages. That is why the method is identified by its qualified name, where qualified means qualification by its package name, class name and method’s name. Such identification does not solve the problem completely because in the same class there may exist the overloaded methods with the different parameters lists. However, it is considered as a good programming practice to use the same name only for the methods which have the same functionality. That is why this solution is recognized as sufficient.

globals

globals(fragment) is the number of the individual declarations of the global variables used or updated within the investigated fragment. A global variable is not declared in the fragment under investigation.

The class fields and these fields are considered as global variables. By invoking objects on, this reference can also change the field values in the class, so this reference is considered as a global object.

Only the distinct variable names are counted. Every single variable is identified by its qualified name containing a package name and a class name.

The method’s parameters are also considered as global variables because, similarly to the other global variables, they are input output channel for the program. Literals are also included, in spite of not being variables – their value cannot be changed. Figure 2 shows the code fragment that motivates this assumption.

Figure 2. Literal as a variable.

Both fragments realize the same task. A literal can be seen as a concrete variable value. Practical tests state that when literals are considered as global variables the number of correct matches increases decreasing the number of the false matches. More precise information can be obtained from [11].

globalsUpdated
globalsUpdated(fragment) is the number of the individual declarations of the global variables updated within the fragment.

This metric counts updated the global variables in the method’s body.

parmsByRefUpdated
parmsByRefUpdated(fragment) is the number of the pointer type variables in the formal parameter list of the enclosing function and which are updated within the fragment.

The Java language does not contain the pointer type variables, so this metric always equals zero.

userInput

userInput(fragment) is the number of the input statements in the fragment.

This metric is always equal to 0, because an input statement is difficult to define.

fileInput

fileInput(fragment) is the number of the file opening statements in the fragment.

The constructor invocations of java.io.RandomAccessFile, java.io.FileInputStream, java.io.Reader classes and the constructor invocations of classes inheriting from those classes are counted.

Additionally, the following method invocations createNewFile, createTempFile of class java.io.File are also counted.

kafuraIn

kafuraIn(fragment) is the sum of the number of formal parameters, the number of variables used in the fragment, and the number of function calls in the fragment.

A formal parameter is a parameters list of a method. The number of the function calls in the fragment is not counted because of computational complexity. Furthermore, the metric has a bad effect on the detection of the duplicated code. The real duplicates often remain undetected because one of them is called more frequently than the other.

kafuraOut
kafuraOut(fragment) is the sum of the number of the functions called by the fragment, the number of individual declarations of the global variables updated within the fragment, the number of the pointer type variables in the formal parameter list of the function in which the fragment is contained and whose variables are updated within the construct.



[image: image8.wmf])

(

Re

)

(

)

(

)

(

metoda

fUpdated

parmsBy

metoda

ated

globalsUpd

metoda

fanOut

metoda

kafuraOut

+

+

=


(3.7)

McCabe



[image: image9.wmf]2

)

(

+

-

=

n

e

fragment

McCabe


(3.3)

where:

e is the number of edges in the control flow graph of the fragment. One edge out of a statement indicates a sequential flow, two links point to a decision.

n is the number of nodes in the same graph. Edges represent statements.

Loop statements, conditional expressions, return, continue, break statements, try-catch, try-catch-finally, try-finally clauses are treated as nodes in the control flow graph. Variable declarations, variable access and method invocations are omitted. There is always at least one node in the control flow graph – it is the end of a method node.

XSmells is equipped with three additional metrics that improve the matching accuracy. Their interpretation is the following:

Number of the loops in the method (NOLOOP)

It is the number of the loop statements in the method. Every for, do … while, and while statement occurrence is counted.

Number of returns from the method (NORET)

It is the number of the return statements in the method, but the return statement is only counted for methods returning a value. The methods returning void are not counted, because the return statement does not have to be in such a method.

Cardinality of the subset of methods called (CARDMC)

It is the cardinality of the subset of two sets. Both sets contain the distinct names of methods called within the method to which they refer. When the methods are compared for an occurrence of being duplicates their sets are subsetted and the subset cardinality is computed.

6. Evaluation of the Duplicated Code Detector

The evaluation of a Duplicated Code detector was made on two testing sets: specially prepared test cases and on two projects developed in TiP Sp z o.o.

6.1. Initial Evaluation of the Kontogiannis's Approach

Figures 3 to 9 show false matches for the specially selected test cases. The code fragments shown in Figures 3 and 4 are recognized as duplicates because the cyclomatic complexity and the number of global variables are the same. Those metrics do not recognize the difference between the conditional expression and the loop statement.


Figure 3. False duplicate detection. 'Switch' and 'for' statements.

Figure 4. False duplicate detection. 'Switch' and 'while'.

The code fragments shown in Figures 3 and 4 are recognized as duplicates, because the cyclomatic complexity and the number of global variables are the same for both and equal 2 and 2. Those metrics do not recognize the difference between the conditional expression and the loop statement.

Figure 5. Different method invocations.


Figure 5 shows that Kontogiannis et al. metrics are not taking method names into consideration. The number of distinct method invocations is the same. That is why both methods are recognized as duplicates.

Figure 6. Distinct method calls example.

The Kontogiannis et al. metrics counts only the distinct method calls omitting the consecutive method calls of the same method. The number of the distinct method calls for both examples in Figure 6 is the same and equal to 1. That is why both examples are falsely matched.

Figure 7. Getter/setter example


The constructs in Figure 7 occur very often in the object-oriented codes. The number of the global variables used in both programmes is the same and equal to 2, the number of the updated global variables is also equal. But the methods are different.

Figure 8. Different semantics example.

In the examples in Figure 8, the number of the global variables used and cyclomatic complexity are the same, so the methods are falsely matched as duplicates. It shows that there is a need for a metric describing the expression complexity.

Figure 9. Functionally identical methods with different complexity.


In contrast to the previous examples, the construct presented in Figure 9 is a real duplicate. Unfortunately, it is not found because the cyclomatic complexity of two methods is different although their functionality is identical.

6.2. Initial Evaluation of the XSmells Approach


The same specially prepared test cases as in evaluation of the Kontogiannis et al. metrics were used. 


XSmells equipped in the additional metrics correctly recognized the cases in Figures 3, 4, 5, 7. The constructs in Figures 6,  8, and 9 were still falsely matched.


For the construct in Figure 6, no appropriate metric was found that could eliminate this false match. Counting the number of calls to the concrete method is of no use because there could be a situation where one call can be equipoised to more calls of this method.


Finding the metric that could express the semantics of the expression is very difficult. Until now, no metric that could be used successfully was found. That is why the example in Figure 8 is still falsely classified.


The construct presented in Figure 9 is a real duplicate which is not classified as so. In this case loops should be “unwinded”. Still it is a difficult task because there are loops with no specific number of cycles. Despite that, loops with the specified number of cycles often contain the break, or continue statements causing the change in loop’s behaviour.

6.3. Evaluation Based on Real-Life Projects

To demonstrate the feasibility of the approach proposed in XSmells and to gather informal empirical data about its effectiveness, XSmells was applied to two distinct projects realized in TiP Sp. z o.o. 

The first project is an application for mobile phones written in a Java MicroEdition technology. Such applications have constraints regarding their size, so during development the code of this application was reviewed for the Duplicated Code, and shortened many times. That is why the code has only few duplicates.

The second project is a network application used in TiP’s Intranet. There were no constraints for the application’s size, so the code was lesser reviewed for the Duplicated Code and contains more duplicates than the mobile application.

The evaluation was applied as follows:

1. Two methods are recognized as similar if the distance of their vector metrics is less or equal to (d where (d is a configurable parameter. (d=0 in evaluation.

2. Source code was imported as a project to Eclipse IDE equipped with XSmells plug-in.

3. XSmells was ran over the code.

4. Manual evaluation of the usefulness of the information provided by XSmells was taken.

5. If the code was correctly detected as a bad smell, the information was classified as correct.

6. If the code was detected as a bad smell though it was not one, the information was classified as incorrect.

Table 1. Evaluation results for the Kontogiannis et al. metrics

	Project
	LOC
	Methods No
	Duplicates ratio
in code
	Correct
	Incorrect
	Incorrect for
LOC < 4

	J2ME Application
	441
	65
	6%
	6
	16
	6

	Network Application
	1949
	101
	10%
	32
	49
	42


Table 2. Evaluation results for the additional metrics in XSmells

	Project
	LOC
	Methods No
	Duplicates ratio
in code
	Correct
	Incorrect
	Incorrect for
LOC < 4

	J2ME Application
	441
	65
	6%
	6
	6
	6

	Network Application
	1949
	101
	10%
	32
	12
	12


Table 1 and 2 show the results of the evaluation. Both approaches (Kontogiannis et al. metrics and additional metrics in XSmells) recognized the same number of the correct duplicates. The difference between these two approaches lies in the incorrect matches. Most of the incorrect matches are the methods that are less than 4 lines of code. For additional metrics in Xsmells, all of the incorrect matches are the methods that are less than 4 lines of code. If only the methods that are greater than 4 lines of code were taken into consideration, XSmells approach would give 100% of accuracy.

7. Message Chains

The Message Chains are a smell violating the Law of Demeter [8]. The Law of Demeter is a simple, programming language independent style rule for designing the object-oriented systems. The motto of this rule is “Only talk to immediate friends”. In general it means that each unit should have limited knowledge about the external world and communicate only with the units closely related to it. 

The actual cause of this smell is high coupling with other objects and low cohesion within the same class which results from poor design of the inter-object associations. The programmers can only keep a limited set of items in short-term memory and it is easier to keep them in memory if they are closely related. The Law of Demeter [8] covers this issue by minimizing the coupling of methods, restricting the use of message sending and enforcing structure hiding. 

The Message Chains in their most frequent form are a long line of the getThis() methods calls or a sequence of temps (see Figure 10). The refactorings that remove this deficiency are Extract Method, Inline Temp and Replace Temp with Query [2].

Figure 10. Message Chains and Extract Method refactoring

7.1. Detection

The idea standing behind the Law of Demeter is vague, however. It is not clear whether it applies to both classes and objects, and how it relates to the different object-oriented languages. For example, Java implements a single inheritance model only, while C++ allows for multiple superclasses. On the other hand, the Java interfaces can successfully replace the aforementioned feature of C++. Again, Java allows for the internal and anonymous classes, which are rarely met in other languages. These and similar questions are not answered by the Law of Demeter in general.

Thus, there are multiple forms of the Law, suited for a particular language and its constructs. The most important are Object Form and Class Form [8], dealing with coupling of class instances and classes, respectively.

7.1.1. Object Form of the Law of Demeter

In the Object Form, within a method, messages can only be sent to the following closely related units:

· a parameter of the method, including the enclosing object (this or self)

· a global object (for pragmatic reasons)

· an immediate part object (computed or stored):

· an object that a method called on the enclosing object returns, including attributes of the enclosing object

· an element of a collection which is an attribute of the enclosing object

· an object created within the method.

The Object Form, although expresses the style rule of the Law better, is undecidable in a general case. It means that it cannot be proved that it is preserved. The only way of verification is running the programme, which, obviously, gives no proof of correctness. That is the reason why it is difficult to be used in practice.

7.1.2. Class Form of the Law of Demeter

A Complementary Law to the Object Form is based on measuring the classes distance only.

In the Class Form, the unit being considered is method f. Its closely related units are:

· methods of class of this/self of f

· other argument classes of f

· methods of immediate part classes (both computed or stored)  of class f:

· classes that are the return types of methods of class of this/self  (computed)

· the classes of data members (stored)

· methods of the classes of objects that are created in f.

The Class Form has the advantage of being efficiently computable in polynomial time. That is why the Class Form has been chosen for implementation. Detecting smells is usually conducted on huge amounts of code, which make the manual review very costly or impossible, so the computable efficiency is a very important factor.

7.1.3. Strong and Weak Law of Demeter

As stated before, the Law of Demeter in its general form is ambiguous. The rule states that messages may only be sent to the objects which are instances of the classes associated with the instance variable types of the class to which the method is attached. One possible interpretation is that only the instance variables which make up the class exclusively are allowed, the other – that inherited instance variables are also allowed. This ambiguity leads to the Weak and Strong Law of Demeter formulation:

· The Strong Law of Demeter allows for sending messages only to the members that make up a given class. The inherited instance variable  types may not be passed messages.

· The Weak Law of Demeter relaxes the constraint imposed above and allows for accessing the inherited class members.

 Each version carries certain implications. The Strong Law of Demeter guarantees that any change to the underlying data structure will affect the methods related to the changed classes. All methods attached to the unaltered classes will not require modification. This allows the programmer to easily detect a code which may require updating due to the changes in the class hierarchy. The Strong Law appears to have a great advantage, but this advantage is not for free. The code written according to the Strong Law tends to have extra methods for a given solution. In some cases the code can be less readable.

7.2. Implementation of Message Chains Detector in XSmells

The XSmells plugin implements only Class Form of the Law (due to the intractability problem), but in two variants, following either the Strong or the Weak rule. It is up to the user to decide which version will be used in code checking. 

XSmells checks for violations of the Law of Demeter using the following algorithm:

1. Generate an Abstract Syntax Tree (AST) for a given code. Eclipse IDE [5] provides a Java Development Tooling (JDT) library with a programming interface for constructing and traversing the Abstract Syntax Tree.

2. Traverse the tree using the Visitor pattern [12]. Visit every node representing one of the following : the field access, method invocation and qualified name nodes.

The qualified name has the following structure:

Name.Identifier

Where Name can be either an identifier or a qualified name.

The field access node has the following structure:

Expression.Identifier

The method invocation node has the following structure:

[Expression.]Identifier ([Expression{, Expression}])
3. Compute the receiver according to the following rules:

· It is a left-hand Expression  for the field access and method invocation nodes.

· It is a left-hand Name for the qualified name nodes.

4. The Law of Demeter [8] is violated if none of the following conditions is fulfilled:

a. A receiver is null.

b. A receiver is a this.

c. A receiver is a method parameter.

d. A receiver is a computed immediate part of a class. A receiver is a computed immediate part of a class if it is a method invocation of this, or an inherited class or is a static method.

e. A receiver is a stored immediate part of a class. There are two variants:

i. Strong Law: A receiver is a stored immediate part of a class if it is a field of this class or a surrounding class that is being accessed through this class.

ii. Weak Law: A receiver is a stored immediate part of a class if it is a field of this class or an inherited class or a surrounding class that is being accessed through this or an inherited class.

f. A receiver is an object created in the method.

This implementation of Message Chains smell works properly in most cases. The only deficiency found results from the Class Form, which classifies some cases as false violations of the Law. For example, assume that priorities map is a collection attribute in the enclosing object being investigated. The collection maps the task priorities to some numbers, e.g. their cost.

class Job {

   Map priorities = new HashMap(); 

   int getTaskCost(Task task) {

      ((Integer) 

          priorities.get(task.getPriority())).intValue();

   }

}

Therefore a method containing statement in the enclosing object

((Integer) priorities.get(task.getPriority())).intValue()

would be considered violating the Law of Demeter by XSmells, although it would pass the Object Form verification. Fortunately, Class Form is a superset of Object Form, thus it does not skip any cases.

8. Conclusions

The reported research indicates that the approach applied in XSmells can be effective in detecting bad smells.

The proposed approach to the automatic detection of the Duplicated Code is an extension of the Kontogiannis approach. The results of the performed experiments, although preliminary, are promising. They show that, due to the proposed improvements, the accuracy of the Duplicated Code detection can increase even by 75%.

The approach to the Duplicated Code detection presented in the paper is based on the Euclidean distance. Consequently, a low value of one attribute (e.g. McCabe’s complexity) can be compensated by a big value of another attribute (e.g. the number of referenced global variables). That can lead to false matches. An alternative approach should be identified and investigated. Moreover, more experiments are necessary to evaluate the XSmells approach to the bad – smell detection.

Acknowledgements

This work has been supported by the Polish State Committee for Scientific Research as a research grant KBN/91-0824 realized in years 2002-2005.

References

[1] Sommerville I., Software Engineering, Addison-Wesley, fifth edition, 1996.

[2] Fowler M., Refactoring, Improving Design of Existing Code, Addison Wesley, 1999.

[3] Beck K., Simple Smalltalk Testing: With Patterns, Smalltalk Report, 1994.

[4] Gronback R., Software Remodeling: Improving Design and Implementation Quality using audits, metrics and refactoring in Borland Together Control Center, http://www.borland.com/products/white_papers/tgr_software_remodeling_improving_design.html, 2003.

[5] Object Technology International, Inc., Eclipse Platform Technical Overview, http://www.eclipse.org/whitepapers/eclipse-overview.pdf, 2003.

[6] Sun Microsystems, Inc., Java 2 SDK 1.4.1 API Docs, http://java.sun.com/j2se/1.4.1/docs/api/index.html, 2002.

[7] Baxter I., Yahin A., Moura L., Sant’Anna M., Bier L., Clone Detection Using Abstract Syntax Trees, Proceedings of the International Conference on Software Maintenance (ICSM’98), November 1998, pp. 368-377.

[8] Lieberherr K., Holland I., Assuring good style for object-oriented programs, IEEE Software, September 1989, 38-48.

[9] Van den Heuvel G., Parameterized matching: a technique for the detection of duplicated code, Master Thesis at University of Antwerp, 2001.

[10] Kontogiannis K., DeMori R., Merlo E., Galler M., et al., Pattern matching for clone and concept detection, Automated Software Engineering, 3(1-2):77-108, June 1996.

[11] Van Rysselberghe F., Finding Duplicated Code Using Metric Fingerprinting, Master Thesis at University of Antwerp, 2002.

[12] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

public void proc1() {


    show(0);


}





private static final


    int PARAM = 0;





public void proc1() {


    show(PARAM);


}





public int switchTest() {


int i = 0;


		


switch (i) {


    default: return 1;


}


}








public int loopFor() {


  for (int i = 0; i < 10; i++);


		


  return 0;


}








public int switchTest() {


    int i = 0;


		


  switch (i) {


      default: return 1;


  }


}








public int loopWhile() {


    int i = 0;


		


  while (i < 10) {


      i++;


  }


		


  return i;


}





public void procA() {


    procB();


}





public void proc2() {


    proc1();


}





public void proc1() {


    show(0);


}





public void proc3() {


    show(0);


    show(0);


    show(0);


}





public void setOne() {


    c = 1;


}





public int getNext() {


    c = c + 1;


    return c;


}





public int multiply() {


    return c * c;


}





public int add() {


    return c + c;


}





public void proc4() {


for (int i=0; i<3; i++){


     show(i);


}


}





public void proc5() {


    show(0);


    show(1);


    show(2);


}





public char getThirdLetter(String text) {


    CharSequence sub = text.subSequence(3, text.length() + 3);


    


    return sub.charAt(0);


}





private CharSequence subSeq(String s) {


    return s.subSequence(3, text.length() + 3);


}


public char getThirdLetter(String text) {    


    return subSeq(text).charAt(0);


}














� TiP sp. z o.o., Poznan. Email: blazej.pietrzak@tip.net.pl


� Institute of Computing Science, Poznan University of Technology, Poland. Email: Jerzy.Nawrocki@put.poznan.pl


� Holder of the Stipend for Young Researchers funded by the Foundation for Polish Science in year 2003.





�PAGE \# "'Strona: '#'�'"  ��Nie wiem czy kolejność, opisy oraz liczba mejli jest prawidłowa itd. W szablonie nie było przykładu a ja nigdy nie pisałem i nie widziałem artykułu w FCDS (


�PAGE \# "'Strona: '#'�'"  ��Czy nie lepiej to usunąć?


Bartek: Usunąć (





_1119795273.unknown

_1119804548.unknown

_1125818161

_1119795686.unknown

_1119795361.unknown

_1119751882.unknown

_1119795234.unknown

_1114569840.unknown

