Unified Modeling Language
[image: image1.png]

[1] H.E. Eriksson, M. Penker, UML Toolkit, Wiley, 1998

[2] UML Documentation,

 www.rational.com/cgi-bin/umldocs.cgi

· modeling language – language to create model of a software system

· usable models :

accurate

consistent

easy to change

easy to communicate

understandable

· modeling language : usually visual language – views, diagrams, descriptions in natural language

· UML - unification of :

Booch, OMT, OOSE/Objectory, Fusion, Coad/Yourdon
· defined mostly by

G. Booch, J. Rumbaugh, I. Jacobson
· supported by

DEC, HP, IBM, Microsoft, Oracle, Rational and others
· UML : object – oriented modeling language
· types of software systems
information systems

distributed systems

business systems

technical control systems

embedded real-time systems

system software

· phases of software system development

requirements analysis, system analysis,

design, programming, test

An overview of UML

· visual language to describe static structure and dynamic behavior of a system

· main parts :

views – show different aspects of the system

diagrams – describe the contents of a view

model elements – concepts used in the diagrams

(classes, objects, generalization ...)

 general mechanisms – extra comments, extensions

· tools to model using UML

draw diagrams

consistency check

maintain repository

support navigation

multiuser support

generate code

reverse engineering

cover all levels

cooperate with other tools

Use-Case Modeling

· to model in the most general level what the system should do

functional requirements

agreement between the Developer and the Client

(formal contract)

basis for further development

basis for testing

· creating use-case model

defining the system

finding actors

finding use-cases

describing use-cases

defining relations between use-cases

validating the model

· use-case diagrams

system

use-case

actor

relations

use-case diagram

generalization of actors

extends relationship

uses relationship

· describing use cases : natural language

objective for the use case (goal)

how use case is initiated

flow of messages between actors and

 the use case (main and alternative)

how the case finishes with a value to an actor

· testing use cases

verification and validation (manually)

walking the use case (play roles of actors and the system)

Classes Objects and Their Relationships

A class

Some classes (derived attribute)

Objects of the classes Year and Person

Associations

general association

association with ranges

qualified association

or (association

ternary association, ordered association,

association class

Aggregation (whole(part)

normal aggregation

shared aggregation

composition aggregation (owns its parts)

Generalization

normal generalization

discriminator (fuel)

constraint

(incomplete, complete, disjoint, overlapping)

generalization, abstract class,

virtual function (polymorphism)

dependency relationship

refinement relationship

Interfaces

Packages

Dynamic Modeling

Messages

State Diagrams

Activity

event_signature [guard_condition] /

action_expression ^ send_clouse

Event signature

event_name (parameter, ... ,)

entry, exit, do,

Send_clouse

destination_expression .

 destination_event_name

 (argument, ...)

do / load program

help (mouse_position) / display help

do [date >= deadline] / repeat invoice

left_mouse_btn_down (location) /

color := pick_color (location) ^

pen . set (color)

Transitions

Sending Messages between State Diagrams

Sequence Diagram

object, time, lifeline, activation, simple message, synchronous message, return, guard-condition,

label, generic diagram, instance diagram

Collaboration diagram

predecessor

quard-condition

sequence-expression

return_value := signature

Syntax of a message label

predecessor (sequence-number, ... /

{numbers of messages handled before,

synchronization}

guard-condition ([condition-clause]

sequence-expression ([integer | name]

 [recurrence] :

recurrence (* [iteration-clause]

recurrence ([condition-clause]

Examples

1 : display ()

[mode = first_time] 1.2.2.3 : DrawWindow()

3 * [x = 1 .. number_of_copies] :

Print (file)

9 [n := 1 .. N] : key := NextKey (key)

2.5 [k >= MAX] SlowDown ()

2.6 [k < MAX] SpeedUp ()

1.1a, 1.1b, 2.1/2.2 : SendReady ()

Activity Diagram

transition : when all actions done, no events

(except the first),

 possible : guard-conditions, send-clause,

 action-expression

System Architecture

· logical architecture : functionality of the system

use – case

class / object

package

interface

state

activity

collaboration

sequence

· phisical architecture : software & hardware structure

component

deployment

Component Diagram

· source component

· binary component

· executable component

· compile - time components

« page » « document »

· link - time components

· run - time components

Deployment Diagram

UML Extensions

· adding new semantics to the existing UML elements

· three extension mechanisms:

· tagged value – property attached to UML elements

· constrains – rule, which restricts semantics of a given element

· sterotype – semantics, which overrides standard meaning of the element

Semantic core

· element – abstract base class for most constituents in the UML

· model element – abstract concept
· view element – textual or graphical symbol
· system – whole software being built
· model – diagram representing a piece of a system
· model element
· type – a description of a set of instances

· instance – an individual member of the type

· behavior instance – an instance of a behavior

· note – a comment

· value – an element of a given domain

· stereotype – a type of modeling element which extends semantics

· relationship – a semantic connection between model elements

· tagged value – a definition of a property

· member – a part of type or class

· constraint – a semantic restriction or condition

· message – a communication between elements

· parameter – a variable which can be passed, changed or returned

· action - an invocation of a signal or a procedure

· association role – the role that a type or class plays in an association

· state vertex – a source or target of transition

· collaboration – a context which supports a set of interactions

· event – a significant occurrence in time or space

· behavior – an observable change and its result

· link role – an instance of an association role
Tagged values

· tagged value – explicit definition of a property as a name - value pair
{ tag = value }

{ tag1 = value1 , tag2 = value2 ... }

{ tag }

· standard tagged values for types, instances, operations, attributes

· invariant – preserved over the lifetime on an element

· postcondition – must be true after an operation

· precondition – must be true after an operation

· responsibility – obligation to other elements

· abstract – cannot have objects

· persistence – objects can be stored

· semantics – meaning of a type or an operation

· space semantics – space complexity

· time semantics – time complexity

· other tagged values can be defined by UML users

Constraints

· constraint – semantic condition or restriction on element

· constraints for generalization

· complete – all classes specified

· disjoint - single inheritance

· incomplete – not all classes specified

· overlapping – multiple inheritance

· constrains for association

· implicit – conceptual connection
· or - association with a set of classes

· constrain for association roles

· ordered – implicit order between links

· constraints for messages, link roles, objects

· global – global scope (link role)

· local – local scope (link role)

· parameter – parameter of an operation (link role)

· self – can send message to itself (link role)

· vote – return value is selected through a majority vote of all return values (message)

· broadcast – no order of invoking (message)

· new – an object is created during the execution of an interaction (object)

· destroyed - an object is destroyed during the execution of an interaction (object)

· transient – an object is created and destroyed during the execution of an interaction (object)

· other tagged values can be defined by UML users

Stereotypes

· stereotype – specialization of the semantics of an element already defined in the UML

· stereotypes applied to type

· actor

· interface

· metaclass

· powertype – specifies how a base class is specialized to subclasses
· stereotypes applied to dependency

· becomes – change of state of an instance

· call – allowed to call operations

· copy – an instance is a copy of the other one

· derived – for attributes (/)

· fiend – access to private elements

· import – access to public elements only

· instance – instance of the type

· refinement -

· role

· send - sending a signal
· trace - is created from, one diagram is more detailed description of another diagram

· stereotypes applied to components

· application

· document

· file

· library

· page

· table
· stereotypes applied to note

· enumeration

· utility - static function

· stereotypes applied to generalization

· extends
· uses
· stereotypes applied to packages

· facade – has no own elements only references
· stub – incompletely implemented, represents other package
· stereotypes applied to a class
· signal – an object of the class can be sent as a signal
· boundary – use of a class for presentation and manipulation of data (windows, dialogs ...)

· entity – business objects (debt, invoice,
 insurance ...)
· control – connection of boundary objects to entity objects

Real Time Modeling

· active class – class which own an execution path or process, operations of an active class can be executed without any external signal

· active objects – objects on an active class

· active classes and active objects are used in standard diagrams (state, activity, ...)
system

actor

 actor

u-c

u-c

u-c

Customer

Remote Customer

Personal Customer

specific use case

general use case

« extends »

common activity use case

 use case 1

 use case 2

« uses »

« uses »

Name

Attributes

Operations

ReadYear

SetYear

Number

Year

IncreaseIncome

(amount : Real

= 1000) : Real

Name : String

Age : Integer

Income : Real

Person

+SetX (x : Real)

 : Real

+SetY (y : Real)

 : Real

+GetX () : Real

+GetY () : Real

(XPosition : Real

(YPosition : Real

Point

Boss : Person

Number = 1999

Current : Year

Name = ”Piotr Dzik”

Age = 52

Income = 75000

IncreaseIncome

(amount : Real

= 1000) : Real

Operations

uses (

Name

Book

Attributes

Name

Comment

Student

Name

Customer

Book

 1 has(0..5

ServiceMan

Tool

1..* owns (0..*

(belongs to

CompanyCar

Worker

position id

* (uses

Purchase

contract

Person

Company

{or}

1..*

1..*

0..*

0..*

AssoClass

*

*

{ordered}

Library

Book

 *

Contains

Members

* *

Person

Society

 DialogWindow

Button

Icon

1 1 1..8

 ok

 cl

selection

0..10

DialogWindow

ok : Button

cancel : Button

selection [1..8] :

 Button

info [1..10] : Icon

 info

PowerStation

Thermal

Water

Nuclear

Coal

Picture

Figure

{abstract}

place : Position

draw () {abstract}

consist of(*

fuel

Circle

draw ()

draw ()

Polygon

draw ()

 Line

consist of(*

{incomplete}

SalesContract

PriceList

class

use case

Circle

Radius

/Surface

{Surface =2*(*Radius}

Person

Search

Storable

Runnable

« interface »

Runnable

{abstract}

run () {abstract}

load () {abstract}

save () {abstract}

« interface »

Storable

{abstract}

Subsystem A

Subsystem S

Subsystem SB

Subsystem SA

Subsystem SC

Subsystem SD

Simple

Synchronous

Asynchronous

Synchronous with immediate return

State

Start

Stop

Name

State variables

Activities

Unpaid

Invoice

created

Paid

Paying

Invoice

destroyed

Time out

Punished

Invoice repeated

event

event occured

state activities done

Remote Control

Off

On

On

Off

Program

(number)

Volume

(level)

Create

fax file

SendFax ()

 Show

 message box

Program Volume

(number) (level)

On Off

TV Set

:Computer

:PrintServer

 :Printer

Print

(file)

 a

b-a<5

 b

c-b<1

 c

Print (file)

[printer free]

 Print (file)

:CommandControl

 Print (file)

:PrinterServer

1:Print (file)

:Printer

1.1 [free] : Print (file)

:PrinterFileQueue

1.2 [busy] Queue (file)

NewCustomer ()

MessageBox ”Disk full”

[disk full]

MessageBox

”Creating”

[free space]

Create Customer

Remove

MessageBox

AccountKeeper

PaymentService

Collect all payments

PayAsMuchAsPossible ()

Schedule

payments

Prepare

money orders

Payment

List

Send

(file)

Send

(file)

Sending

fax protocol

Remove

message box

diagrams

diagrams

 App.cpp

 View.cpp

 Frame.cpp

 Doc.cpp

 Picture-

 -Editor.dll

 App.exe

Usable

Pentium 300

2 GB HDD

Comp. 9724 :

Pentium 300

2 GB HDD

Postscript

Laser Printer

Level

Controller

« GUI »

MainWindow

« TCP/IP »

« RS-232C »

 Client.exe

Client Computer

Windows NT

Server

conn.to (

 1..* 1

 Admin.exe

Admin Computer

« Actor »

RemoteCustomer

 Control Entity Boundary

*

Customer

Insurance

Management

Insurance

Agent

Management

Window

SerialPort :

Communication

Supervisor

« ActiveClass »

Communication

Supervisor

1
42

