ExploreLP

Działania wymagane dla programu ExploreLP:

- 1. Uruchamiamy program ExploreLP.
- 2. W pierwszym oknie, w górnym polu podajemy liczbę ograniczeń (bez ograniczeń brzegowych) a w dolnym polu liczbę zmiennych decyzyjnych (bez zmiennych uzupełniających i sztucznych).

Dla przykładu działania programu użyjemy następującego problemu:

Do produkcji opakowań potrzebny jest karton i folia aluminiowa, zszywki i naklejki, przy czym dostępnych jest pięć metod produkcji (A, B, C, D i E). Zużycie zasobów w poszczególnych technologiach, dostępność zasobów w magazynie i zyskowność poszczególnych metod podano w tabeli. Maksymalna dzienna produkcja każdą metodą wynosi 200 opakowań. Jaki plan produkcji należy przyjąć, aby zysk z przedsięwzięcia był największy? przedsięwzięcia był największy?

Zmaksymalizować 11 x1 + 4x2 + 10x3 + 5x4 + 7x5 p.o.:

2x1 + x2	+ 2x3 + x4 + 2x5	<= 400
7x1 + 2x2	+ 4x3 + 4x4 + 2x5	<= 300
13x1 + 8x2	+ 15x3 + 8x4 + 10x5	<= 10
25x1 + 10x2	+ 15x3 + 5x4 + 15x5	<= 200

x1,x2,x3,x4,x5 >= 0

Zasób	Karton	Folia	Zszywki	Naklejki	Zysk [zł/szt.]
Metoda	[m2/szt.]	[m2/szt.]	[szt./szt.]	[szt./szt.]	
A	2	7	13	25	11
В	1 2		8	10	4
С	2	4	15	15	10
D	1	4	8	5	5
Е	2	2	10	15	7
ZAPAS	400	300	10	200	

Size of Problem Dialog	×
Enter	Size of Problem
Number of Constraints 0 < M < 19	4
Number of Variables (Not Including Slacks, Surplus, or Artificial Variables) 0 < N < 51	5
Cancel	ОК

3. Wprowadzamy współczynniki przy zmiennych w ograniczeniach (macierz **A**) oraz kierunki ograniczeń i ich prawe strony (wektor **b**), a w ostatnim wierszu współczynniki funkcji celu (wektor **c**) np.:

💋 Form	ulate	d LP	Prol	olem	- Za	id	- 🗆	>	¢
Insert	Insert								
Enter symbol: either < or > or = . Then tab, arrow or click to another cell.									
Names	x1	ж2	хЗ	×4	х5	Rel	RHS	_	
Row1	2	1	2	1	2	<	400		
Row2	7	2	4	4	2	<	300		
Row3	13	8	15	8	10	<	10		
Row4	25	10	15	5	15	<	200		
Obj	11	4	10	5	7	=	0		
			_						
Sign Convention Negative Values Indicate Columns To Enter Resitive Values Indicate Columns To Enter									
									-
Cance	el				S	ho w Ir	nital Ta	blea	u

 Gdy szukamy maksimum funkcji wybieramy opcję Positive Values Indicate Columns To Enter. Natomiast gdy naszą szukaną jest minimum funkcji, wybieramy Negative Values Indicate Columns To Enter.

Następnie klikamy w przycisk Show Inital Tableau.

5. W tym momencie należy zapisać plik z wprowadzonymi danymi:

INSTYTUT INFORMATYKI

💋 Save LP Problem As		×
Save in: 📙 ExploreLP 🗨	← 🗈 💣 📰 -	
Name	Date modified	Ту
🔋 🌗 Zadanie6	2011-03-05 14:10	Fi
AiZ.LPW	2011-04-14 21:26	LF
<		P.
File name: AiZ	Save	
Save as type: LPW files	▼ Cancel	

6. Szukamy najlepszego rozwiązania: z menu Compute wybieramy opcję Find Optimal Solution (program wyznaczy optymalne rozwiązanie). Istnieje również możliwość rozwiązywania zadania krok po kroku z interaktywnym wyborem elementu centralnego przekształcenia. Do wyboru z menu Compute posiadamy następujące działania:

🥖 Line	ar Program	ming Problem -	AiZ.LPW				
File V	íiew Con Pha Ba	npute Enter Artificial V Find Optimal Se	/ariables olution	HS			
	No No No	List All Basic Op List All Basic Fe Find Number o	5 2 7				
Column	Ol Find Number of Basic Ceptimal Solutions O Find Number of Basic Feasible Solutions O olumn (Entering) Variable Pivot Element's Ratio with RHS						
Sz: Sur Row (Le None: 1	eaving) V. None	ariable	Pivot Element's I	Ratio With OBJ			

7. Aby odczytać wyniki z menu View wybieramy opcję Solution. Otrzymujemy przykładowy wynik:

🥖 Line	🥵 Linear Programming Problem - Zadanie6.LPW												
File View Compute													
	Phase 2	: Ba	sic Feasib	le Solution									
	Basis	X1	X2	X3	×4	X5	S1	S2	\$3	S4	RHS		
	S1	0	-3/13	-4/13	-3/13	6/13	1	0	-2/13	0	5180/13		
	S2	0	-30/13	-53/13	-4/13	-44/13	0	1	-7/13	0	3830/13		
	X1	1	8/13	15/13	8/13 10/13 0 0 1/13 0 10/13						10/13		
	S4	0	-70/13	-180/13	-135/13	-55/13	0	0	-25/13	1	2350/13		
	OBJ	0	-36/13	-35/13	-23/13	-19/13	0	0	-11/13	0	-110/13		
											-		
Column	(Entering	g) Va	riable		Pivot Elem	ent's Rati	o wit	h BH	IS				
S3: Sla	S3: Slack Row3 10.000000 10.000000												
Row (Le	aving) ¹	Varia	ble		Pivot Elem	ent's Rati	o Wi	th Ol	BJ				
X1: x1					-11.00000	00							

8. Dla przykładu: w kolumnie Basis znajduje się tylko jedna zmienna decyzyjna (X1). Odczytujemy dla niej wynik z kolumny RHS:

```
X1 = 10/13
```

Reszta zmiennych decyzyjnych posiada wartość zero, ponieważ nie występują w kolumnie Basis.

Wartość zysku to przecięcie wiersza OBJ i kolumny RHS. Dla przykładu zysk jest równy: z= 110/13.

9. Aby wydrukować wynik, z menu File wybieramy opcję Print. Zaznaczamy wymagany rodzaj wydruku i klikamy Ok.:

10. Jest możliwość zapisania wyników do pliku. W tym celu z menu File wybieramy opcję Print, zaznaczamy wszystkie check boxy i klikamy przycisk Printer Setup:

Wybieramy opcję Bullzip PDF Printer i klikamy OK:

Print	×
Printer-	
Name: Bullzip PDF Printer	✓ Properties
Status: Ready Type: Bullzip PDF Printer	
Where: BULLZIP	
Comment: Bullzip PDF Printer 7.1.0.1218	
Print range	Copies
.œ <u>A</u> ll	Number of <u>c</u> opies: 1 +
C Pages from: to:	
C <u>S</u> election	1 2 3 I Collate
	OK Cancel

Wynik zostaje zapisany do pliku formatu PDF (są również opcje na inne formaty plików np. graficzne BMP, JPG):

INSTYTUT INFORMATYKI

POLITECHNIKA POZNAŃSKA

- pui - Auobe Reduci											
<u>P</u> lik <u>E</u> dycja <u>W</u> idok <u>D</u>	okument	<u>N</u> arzędzia	<u>O</u> kno P	omo <u>c</u>							
	Formulat Names 2 Row1 Row2 Row3 Row3 Obj	ted Problem x1 x2 x3 x4 2 1 2 1 7 2 4 4 13 8 15 8 25 10 15 5 11 4 10 5	x5 Rel R 2 < 4 2 < 3 10 < 1 15 < 2 7 =	HS 00 00 10 00 0							
	Current S Symbol X1 X2 X3 X4 X5 S1 S2 S3 S4	Solution X1 X2 X3 X4 X5 Slack R6 Slack R6 Slack R6 Slack R6	able Ba No No No Dw1 Ba Dw2 Ba Dw3 No Dw3 No	Status sic nbasic nbasic nbasic nbasic sic nbasic sic	Valu 10/1 0 0 0 5180/ 3830/ 0 2350/	e 3 13 13					
	OBJ	Obj	Ba	SIC	-110/1	13					
	Current T Basis) S1 S2 X1 S4 OBJ	Tableau X1 X2 0 -3/13 0 -30/13 1 8/13 0 -70/13 0 -36/13	X3 -4/13 -53/13 15/13 -180/13 -35/13	X4 -3/13 -4/13 8/13 -135/13 -23/13	X5 6/13 -44/13 10/13 -55/13 -19/13	S1 S2 1 0 0 1 0 0 0 0 0 0	83 -2/13 -7/13 1/13 -25/13 -11/13	S4 0 0 1 0	RHS 5180/13 3830/13 10/13 2350/13 -110/13		
	Right Ha Constrair Row1 Row2 Row3 Row4	nd Side Ran nt	ges Shadow 0 0 -11/ [,] 0	Price	Lower 20/ 70/ 250	Bound (13 (13) //13		Initia	al Value 400 300 10 200	UpperBo +Infini +Infini 104 +Infini	ty ty ty
	Objective Variable x1 x2 x3 x4 x5	e Function Ca	oefficient R ower Boun 91/10 -Infinity -Infinity -Infinity -Infinity	Ranges Id	Initial Val 11 4 10 5 7	ue	Up; +	berB Infin 88/1 165/1 88/1 110/1	ound lity 3 13 3 13		