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Abstract

In this paper the one-machine scheduling problem with linear earliness and tardiness costs is considered. The7
cost functions are job dependent and asymmetric. The problem consists of two sub-problems. The first one is to find
a sequence of jobs and the second one is to find the job completion times that are optimal for the given sequence.9
We consider the second sub-problem and propose an algorithm solving the problem in O(n log n) time.
� 2005 Published by Elsevier Ltd.11
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1. Introduction13

In modern enterprises the control of the production process encompasses the whole supply chain.
One of the benefits of such approach is the reduction of inventory costs. The supplier is supposed to15
deliver goods as close to the required date as possible. This concept is often called Just-in-Time (JIT)
production. The JIT concept for manufacturing has induced a new type of machine scheduling problem17
in which both early and tardy completions of jobs are penalised. The earliness costs include inventory
costs emerging if a product is completed before its due date. The tardiness costs relate to penalty costs19
emerging if production is completed after the due date. Both earliness and tardiness costs are assumed
to be functions of the relevant distance of job’s completion time from its due date. Linear and non-linear21
functions are considered. The objective is to minimise the total cost. The emerging objective function is a
non-regular performance measure as defined by Conway et al. [1]. It means that the penalty function does23
not necessarily increase with the increase of job completion times. In consequence, it may be appropriate
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to insert idle time between jobs. In general, the problem is NP-hard even for one machine as shown by1
Garey et al. [2]. The problem was further considered by Yano and Kim [3], Abdul-Razaq and Potts [4],
Szwarc [5], Ow and Morton [6,7], Fry et al. [8]. A review of this and similar problems was given by3
Baker and Scudder [9].

In this paper we consider the earliness–tardiness problem with linear job dependent and asymmetric5
cost functions on a single machine.

This problem can be decomposed into two sub-problems: to find a sequence of jobs and to find optimal7
completion times of jobs in the given sequence (i.e. to find a schedule). In general, an optimal schedule
for a given sequence of jobs can be found by solving a linear programming problem. However, more9
efficient procedures can be developed. Namely, Garey et al. [2] proposed a simple procedure called GTW
for a special case of the problem with job independent and symmetric earliness and tardiness costs. The11
procedure can be implemented to run in O(n log n) time. In this paper we propose an algorithm of the
same complexity to solve the problem with asymmetric and job-dependent costs.13

In Section 2 the problem is formulated and some properties of optimal solutions are shown. A concept
of a cost-increase function �K , basic for the optimization procedure is introduced in Section 3. Section15
4 contains the description of the scheduling algorithm, the proof of the correctness of the algorithm and
its worst case complexity. Finally in Section 5 some conclusions and directions for further research are17
outlined.

2. Problem formulation19

Let us consider n non-preemptable jobs to be scheduled on a single machine, each job i having a
due date di , and processing time pi, i = 1, . . . , n. Without loss of generality we can assume that the21
processing times and the due dates are integers. The machine can handle no more than one job at a time
and it is continuously available from time zero onwards only. Assume that there is a feasible schedule23
S (i.e. such that the jobs do not overlap in their execution and no job starts its processing before time
zero) in which Ci is the completion time of job i, i = 1, . . . , n. We assume that the earliness, as well as25
tardiness, costs are linear functions of the deviation of job’s completion time Ci from its due date di . The
earliness cost is positive only if di − Ci > 0, otherwise it is zero. On the other hand, the tardiness cost27
is positive only if Ci − di > 0, otherwise it is zero. In general, the total earliness and tardiness cost of
schedule S may be calculated as follows:29

f (S) =
n∑

i=1

(�i max{0, di − Ci} + �i max{0, Ci − di}), (1)

where �i is the cost of job i being completed one time unit before its due date, and �i is the cost of job31
i being completed one time unit after its due date i = 1, . . . , n. Our goal is, obviously, to find a feasible
schedule S∗ with the minimum value of function f (S).33

As we have mentioned in the introduction this NP-hard problem can be decomposed into two sub-
problems: to build a sequence of jobs and to find completion times of jobs in the sequence. The second35
problem can be solved efficiently using linear programming or an algorithm proposed by Chrétienne and
Sourd [10]. An optimal sequence can be chosen using an exhaustive search over the set of all permutations37



UNCORRECTED P
ROOF

CAOR1522

ARTICLE IN PRESS
J. Bauman, J. Józefowska / Computers & Operations Research ( ) – 3

of jobs. Such approach is obviously computationally ineffective since the number of sequences to be1
considered equals n!.

Let us assume that the sequence of jobs is given. The problem is to find an optimal vector of completion3
times of jobs. Observe that unlike for regular schedule performance measures (like Cmax or Lmax) inserting
machine idle time may be desirable. In general, the vector of optimal completion times may be found by5
solving the following LP problem:

Minimize7

f =
n∑

i=1

(�iC
+
i + �iC

−
i ) (2)

Subject to:9

Ci �Ci−1 + pi, i = 2, . . . , n, (3)

C1 �p1, (4)11

C+
i �di − Ci, i = 1, . . . , n, (5)

C−
i �Ci − di, i = 1, . . . , n, (6)13

C−
i �0, i = 1, . . . , n, (7)

C+
i �0, i = 1, . . . , n. (8)15

In practice, solving problem (2)–(8) may be time consuming. Chrétienne and Sourd [10] proposed a
general procedure to find optimal schedules in case of convex cost functions and precedence constraints17
between jobs. As a special case, the above mentioned problem can be solved in O(n log n) time. Below
we will propose a more explicit algorithm for the same problem which runs also in O(n log n) time.19

3. Properties of the cost function

Let us assume that the sequence of jobs is fixed. Our goal is to find a vector of completion times of21
jobs, such that C1 �C2 � · · · �Cn and the value of the cost function (1) is minimal for this sequence (i.e.
permutation of jobs). It is natural to schedule the jobs iteratively, adding one job at a time to the schedule.23
Let us denote by Ck

i the completion time of job i in a feasible schedule of the jobs 1, 2, . . . , k, k�n. Let

�∗
k−1 be an optimal schedule, i.e. the vector of completion times [C(k−1)∗

1 , C
(k−1)∗
2 , . . . , C

(k−1)∗
k−1 ] of the25

sequence consisting of the first k − 1 jobs, 2�k < n and K(�∗
k−1) be the cost of schedule �∗

k−1. While
scheduling job k we have to consider the following two cases:

27
(i) C

(k−1)∗
k−1 + pk �dk ,

(ii) C
(k−1)∗
k−1 + pk > dk .29
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In the first case, obviously, �∗
k = [C(k−1)∗

1 , C
(k−1)∗
2 , . . . , C

(k−1)∗
k−1 , dk] is an optimal schedule for the se-1

quence of jobs 1, 2, . . . , k. Thus the cost K(�∗
k) = K(�∗

k−1) and

Ck∗
1 = C

(k−1)∗
1 , Ck∗

2 = C
(k−1)∗
2 , . . . , Ck∗

k−1 = C
(k−1)∗
k−1 , Ck∗

k = dk .3

In the second case, however, either �∗
k−1 is left unchanged and job k is scheduled late at time Ck

k =
C

(k−1)∗
k−1 + pk > dk or we have to find a schedule of jobs 1, 2, . . . , k, completed at Ck−1

k−1 < C
(k−1)∗
k−1 and to5

schedule job k so that it completes at max{Ck−1
k−1 + pk, dk}.

Below we will show the idea of finding a schedule of jobs 1, 2, . . . , k, k�n shorter than the optimal one7
(recall that an optimal schedule minimizes the earliness–tardiness cost which is not a regular measure).
Let �k = [Ck

1 , Ck
2 , . . . , Ck

k ], be a schedule of k jobs such that
∑k

i=1 pi �Ck
k < Ck∗

k , and constructed from9
the schedule �∗

k as follows. We start from the last job k. Its new completion time is Ck
k < Ck∗

k . Now, if
Ck

k −pk �Ck∗
k−1, job k −1, as well as its predecessors have the same completion times in �∗

k and in �k , i.e.11
Ck

i =Ck∗
i , i=1, 2, . . . , k−1. If, however Ck

k −pk < Ck∗
k−1, then Ck

k−1=Ck
k −pk . We continue this way as

long as Ck
i −pi < Ck∗

i−1 or i=2. We have assumed that
∑k

i=1pi �Ck
k , so Ck

1 =Ck
2 −p2 �p1 and the obtained13

schedule is feasible. More formally this algorithm is described below as the LEFT_SHIFT procedure.

Procedure LEFT_SHIFT
begin for i := k − 1 step −1 to 1 do Ck

i := min{Ck∗
i , Ck

i+1 − pi+1} end.15
Observe the following property of the LEFT_SHIFT procedure.

Property 1. Let � be a schedule of jobs 1, 2, . . . , k, k�n of length C. Consider C2 < C1 < C. Let us use17
the LEFT_SHIFT procedure to obtain from schedule �, a schedule �1 of length C1. Now, let us apply
the LEFT_SHIFT procedure to �1 in order to obtain a schedule �2 of length C2. Finally, let us apply19
LEFT_SHIFT procedure to schedule � in order to obtain a schedule �3 of length C2. It is easy to see that
�2 = �3.21

Since K(�∗
k−1) is the cost of an optimal schedule of jobs 1, 2, . . . , k, k�n, we have K(�∗

k−1)�K(�k−1).

However, if C
(k−1)∗
k−1 �Ck−1

k−1 �dk − pk , then �k(C
k−1
k−1 + pk − dk)��k(C

(k−1)∗
k−1 + pk − dk). Thus it may23

be favorable to shorten the schedule �∗
k−1. Observe that in general, �k−1 = [Ck−1

1 − xk−1
1 , Ck−1

2 −
xk−1

2 , . . . , Ck−1
k−1 − xk−1

k−1 ], where 0�xk−1
i �C

(k−1)∗
i − ∑i

j=1 pj for i = 1, 2, . . . , k − 1. Concluding, if25

K(C
(k−1)∗
1 − x

(k−1)
1 , C

(k−1)∗
2 − x

(k−1)
2 , . . . , C

(k−1)∗
k−1 − xk−1

k−1) + �k(C
k−1
k−1 + pk − dk)

�K(C
(k−1)∗
1 , C

(k−1)∗
2 , . . . , C

(k−1)∗
k−1 ) + �k(C

(k−1)∗
k−1 + pk − dk),

it is favorable to shorten the schedule �∗
k−1.27

Let us now consider the function �Kk(x
k
1 , xk

2 , . . . , xk
k ), defined as the difference between the cost of

schedule �k , of length Ck
k =Ck∗

k −xk
k obtained from �∗

k using the LEFT_SHIFT procedure and an optimal29
schedule �∗

k .

�Kk(x
k
1 , xk

2 , . . . , xk
k ) = K(Ck∗

1 − xk
1 , Ck∗

2 − xk
2 , . . . , Ck∗

k − xk
k ) − K(Ck∗

1 , Ck∗
2 , . . . , Ck∗

k ).31
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Since �k is obtained according to the LEFT_SHIFT procedure, the values xk
i , i = 1, 2, . . . , k, are1

related. Namely, xk
i = max{0, xk

i+1 − (Ck∗
i+1 − Ck∗

i − pi+1)}, i = 1, 2, . . . , k − 1, and xk
k = Ck∗

k − Ck
k .

Thus, the value of function �Kk depends only on the value xk
k and we have:3

�Kk(x
k
k ) = K(Ck∗

1 − xk
1 , Ck∗

2 − xk
2 , . . . , Ck∗

k − xk
k ) − K(Ck∗

1 , Ck∗
2 , . . . , Ck∗

k ),

where xk
i = max{0, xk

i+1 − (Ck∗
i+1 − Ck∗

i − pi+1)}, i = 1, 2, . . . , k − 1, and xk
k = Ck∗

k − Ck
k . Concluding,5

it is enough to find the value xk
k minimizing:

�Kk(x
k
k ) + �k+1(C

k∗
k + pk+1 − xk

k − dk+1). (9)7

Further on we always consider the shortest schedule of all the schedules of same cost, i.e. the greatest
value of xk

k minimizing (9).9
Now, it remains to calculate xk

k . Let us start with constructing the function �Kk(x
k
k ). If the first job is

late (i.e. p1 > d1), �K1(x
1
1) grows to infinity for any x1

1 > 0. Otherwise, clearly, the function �K1(x
1
1) =11

�1x
1
1 , where 0�x1

1 �d1 − p1, and C1∗
1 = d1. Observe that function �Kk(x

k
k ) can be constructed from

�Kk−1(x
k−1
k−1) in the following way. Let yk = dk − pk − C

(k−1)∗
k−1 . If yk �0 then13

�Kk(x
k
k ) =

{
�kx

k
k if 0�xk

k �yk,

�Kk−1(x
k
k − yk) + �kx

k
k if yk �xk

k �dk − ∑k
i=1 pi,

else (if yk < 0)15

�Kk(x
k
k ) =

{
�Kk−1(x

k
k ) − �kx

k
k if 0�xk

k � − yk,

�Kk−1(x
k
k ) − �k(−yk) + �k(yk + xk

k ) if − yk �xk
k �dk − ∑k

i=1 pi.

Observe, that in the latter case, the function �Kk(x
k
k ) may attain its minimum at some point xk∗

k > 0.17
Then, of course, we do not need to consider values x < xk∗

k any further, because adding consecutive jobs
we can only be interested in decreasing the length of the current schedule. A graph of function �Kk(x

k
k )19

is presented in Fig. 1. The dotted line has to be deleted before scheduling the next job.

Lemma 1. Function �Kk(x
k
k ) is piecewise linear, convex, and increasing k = 1, . . . , n.21

The proof follows easily from the construction of function �Kk(x
k
k ).

Lemma 2 shows that given a sequence of k jobs, a schedule of length Ck
k < Ck∗

k where,
∑k

i=1 pi �Ck
k ,23

(obviously, any schedule of length Ck
k <

∑k
i=1 pi is infeasible) obtained from o∗

k according to the
LEFT_SHIFT procedure is a schedule with minimal cost of all the schedules of this length.25

Lemma 2. If o∗
k is an optimal schedule for a given sequence of k jobs and Ck∗

k is the completion time of the

last job in o∗
k then schedule �k such that the completion time of the last job in �k is Ck

k ,
∑k

i=1 pi �Ck
k < Ck∗

k ,27
obtained according to the LEFT_SHIFT procedure is a schedule with minimal cost of all the schedules
for the given sequence of jobs completed at Ck

k .29

Proof. It follows from the assumption
∑k

i=1 pi �Ck
k < Ck∗

k that a schedule of length Ck
k exists. Let us

now prove that schedule �k obtained according to the LEFT_SHIFT procedure is a schedule with minimal31
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Fig. 1. Function �K(xk
k
) (the case of dk < Ck−1

k−1 + pk and large �k).

cost of all the schedules for the given sequence of jobs of length Ck
k . The Lemma holds, obviously, for1

a single job.Let us assume that it is true for a sequence of jobs 1, 2, . . . , k, k�n. We will show by a
contradiction that it holds for a sequence of k jobs 1, 2, . . . , k, k�n. Let us assume hat there exists a3
schedule �′

k of length Ck
k , such that K(�′

k) < K(�k). Since C′k
k = Ck

k , the cost of scheduling the last job
is identical in both the schedules. Let us consider two cases:

5
(i) Ck∗

k − pk > Ck
k − pk �Ck∗

k−1,
(ii) Ck

k − pk < Ck∗
k−1.7

Observe that in the first case, according to the LEFT_SHIFT procedure, Ck
i = C

(k−1)∗
i , for 1�i�k − 1,

so the schedule of k − 1 jobs is optimal. Moreover, since there is an idle time scheduled before job jk in9
�∗

k , we know that Ck∗
k = dk and consequently job jk is early in �′

k and �k . Thus,

K(�′
k) < K(�k) = K(�∗

k−1) + �k(C
k∗
k − Ck

k ). (10)11

Since the cost of scheduling job jk is the same in �′
k and �k , it follows from (10) that there exists a schedule

of k − 1 jobs of cost less than K(�∗
k−1). This is a contradiction.13

Let us now consider the second case.
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Since the schedule �∗
k = [Ck∗

1 , Ck∗
2 , . . . , Ck∗

k ] is an optimal schedule of k jobs, then the schedule1
�k−1 = [Ck∗

1 , Ck∗
2 , . . . , Ck∗

k−1], of the first k − 1 jobs in �∗
k is a schedule with minimal cost of all the

schedules for the given sequence of jobs of length Ck∗
k −pk . Now let us apply the LEFT_SHIFT procedure3

to the schedule �k−1 to obtain a schedule of length Ck
k − pk . Due to the Property 1 and our inductive

assumption, the resulting schedule �S
k is a schedule with minimal cost of all the schedules for the given5

sequence of k − 1 jobs of length Ck
k − pk . Since the cost of scheduling job k is the same in �′

k and �k , it
follows from (10) that there exists a schedule of k − 1 jobs of length Ck

k − pk with cost less than the cost7
of the schedule �S

k , what is a contradiction. �

Further, we will call the points at which the slope of function �Kk(x
k
k ) changes—the characteristic9

points.

Lemma 3. The maximum number of characteristic points (i.e. points in which the function �Kn(x
n
n)11

changes its slope) is equal to n + 1.

Proof. Observe that the change of the slope of function �Kn(x
n
n) takes place only at points at which a13

job changes its status from being late to being early. Each job can change its status only once and there
are n jobs in the final schedule. The (n + 1)st point is at xn

n = Cn∗
n − ∑n

i=1pi , where the coefficient goes15
to infinity since no job can be started before time zero. Thus there are at most n intervals with different
slope of function �Kn(x

n
n).17

Lemma 4. The slope of function �Kn(x
n
n) in an interval Ik = (Hk, Hk+1) between two consecutive

characteristic points Hk, Hk+1, k = 0, 1, . . . , p < n, can be calculated as
∑

i∈EIk
�i − ∑

i∈LIk
�i where19

EIk
is the set of jobs being early and LIk

is the set of jobs being late if x ∈ Ik .

This lemma follows directly from the construction of function �Kn(x
n
n). Observe that by the definition21

of the characteristic points in any interval each job is either early or late.

4. Algorithm23

We assume that the order of jobs is given. The algorithm adds one job to the schedule at each iteration
finding optimal completion times of jobs already scheduled. Thus an optimal solution of a subset of jobs25
is found at each iteration. Finally an optimal schedule for n jobs is obtained.

It follows from Fig. 1 that it is convenient to extend the interval of feasible values of x at the left-hand27
side. Thus we will calculate the characteristic points as negative values. At iteration k the sequence of
characteristic points Hl < Hl−1, . . . , H1 < H0 = 0, l�k is known as well as the completion time Ck−1 of29
job k−1, assuming C0=0. We create iteratively a vector of coefficients corresponding to the characteristic
points �(Hi), i = 0, 1, . . . , l with �(H0) = 0. At iteration k we calculate Hnew = Hl + (Ck−1 + pk − dk).31
Let us consider two cases:

(a) Hnew �Hl ,33
(b) Hnew > Hl .
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Table 1
Values of the variables after the first iteration, C1 = 5

i Hi �(Hi)

1 −3 2

(a) If Hnew �Hl then Ck = dk and a new characteristic point Hl+1 = Hnew, is added with �(Hl+1) = �k .1
The special case where Hnew = Hl can be easily identified and in this case no new point is added but
�′(Hl) = �(Hl) + �k . We pass to iteration k + 1.3
(b) If Hnew > Hl then the sequence of characteristic points is updated as follows. Again two cases are
distinguished:

5
(b1) Hnew < 0,
(b2) Hnew �0.7

(b1) If Hnew < 0, we insert point Hnew at the right place (preserving the order) in the sequence of char-
acteristic points. If there exists Hj such that Hnew = Hj then we do not create a new point but calculate9
�′(Hj ) := �(Hj )+ �(Hnew), otherwise a new characteristic point Hnew, with �(Hnew)=�k +�k is created
and the number of characteristic points is increased by 1.11
(b2) If Hnew �0 no new point is added.

After updating the sequence of characteristic points we calculate �′(Hl)= �(Hl)−�k . If �′(Hl)�0, we13
remove Hl from further consideration (l := l − 1) and analyze the characteristic points from Hl through
H1. At each point Hi we calculate �′(Hi) = �(Hi) + �(Hi+1). If �′(Hi)�0 then we remove this point15
from further consideration (decreasing l) and consider the next characteristic point, otherwise we stop
with l�0 being the current number of characteristic points. Finally we calculate Ck = ∑k

j=1 pj − Hl17
and we pass to iteration k + 1.

Notice that completion times of jobs are not updated, even if we remove characteristic points (which19
means shifting the schedule left). Thus, after adding the last job it is necessary to calculate the optimal
completion times C∗

n, k = 1, 2, . . . , n. Obviously, Cn is the optimal completion time of job n, i.e. C∗
n =21

Cn. We calculate the remaining optimal completion times according to the following formula: C∗
k =

min(C∗
k+1 − pk+1, Ck), k = 1, 2, . . . , n − 1.23

More formally the algorithm is presented in the Appendix.
Scheduling a single job requires at most O(log n) steps. This is the case when a job is late and a new25

characteristic point has to be inserted at the right order in the list of characteristic points. This can be
obviously executed in (log n) time. Thus, the computational complexity of the algorithm is O(n log n).27

Let us consider the following example.

Example 1. p = [2, 5, 4, 3], d = [5, 13, 15, 17], � = [2, 1, 3, 2], � = [1, 1, 2, 1].29

In the first iteration the first job is scheduled. C0 +p1 − d1 < 0, so we take H1 = 0 + (0 + 2 − 5)=−3.
Remaining parameters are given in Tables 1–4.31

For the second job C1 + p2 − d2 < 0 and H2 = −3 + (5 + 5 − 13) = −6.
Let us now consider the third job. C2+p3−d3 �0, so H3=−6+(13+4−15)=−4. This characteristic33

point has to be inserted between H1 and H2. First �(−6) = −2 + 1 = −1 and �(−4) = 3 + 2 = 5. Since
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Table 2
Values of the variables after the second iteration, C2 = 13

i Hi �(Hi)

1 −3 2
2 −6 1

Table 3
Values of the variables after the third iteration, C3 = 15

i Hi �(Hi)

1 −3 2
2 −4 5 − 1 = 4

Table 4
Values of the variables after the fourth iteration, C4 = 18

i Hi �(Hi)

1 −3 2 + 1 + 2 = 5
2 −4 4 − 1 = 3

�(−6) < 0, we remove H2 and update �(−4) = 5 − 1 = 4. Finally, we set H2 = −4 and the points are1
ordered appropriately.

Finally, for the fourth job we have C3 +p4 −d4 =15+3−17=1 > 0, so H4 =−4+15+3−17=−3.3
The characteristic point H4 coincides with the point H2, so only the coefficients of the cost function have
to be updated.5

Now we have to calculate the completion times of jobs. Job 4 completes at C4 =18, thus C3=min{C4 −
p4, C

∗
3 }=min{15, 15}=15; C2 =min{C3 −p3, C

∗
2 }=min{11, 13}=11 and C1 =min{C2 −p2, C∗

1 }=7
min{6, 5} = 5.

We will show now that the algorithm finds an optimal schedule for a given sequence of n jobs. Let us9
consider a schedule of a given sequence of jobs and let Ci , be the completion time of job i, i=1, 2, . . . , n.

Theorem 1. The algorithm finds an optimal schedule for a given sequence of jobs.11

Proof. By induction on k. The schedule is certainly optimal for k = 1. Namely, if Hnew < 0 we find
H1 = Hnew and Ck = dk , so the cost of scheduling job 1 is zero. The schedule is optimal. If Hnew �0, we13
do not create any new characteristic point and C1=p1. Although the job is late, no feasible schedule exists
where job 1 completes before C1. Also in this case the schedule obtained by the algorithm is optimal.15

Assuming that the theorem is true for any sequence of k − 1 jobs we will prove that it holds for any
sequence of k jobs.17

Let �k−1 = �Ck−1
1 , Ck−1

2 , . . . , Ck−1
k � be a schedule obtained applying the algorithm for a sequence

of jobs 1, 2, . . . , k − 1, while �k = �Ck
1 , Ck

2 , . . . , Ck
k � a schedule obtained applying the algorithm for19
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the sequence 1, 2, . . . , k − 1, k. From our inductive assumption �k−1 is optimal for the sequence of jobs1
1, 2, . . . , k − 1. If we apply the algorithm to the sequence 1, 2, . . . , k − 1, k, then iterations 1 through
k − 1 are identical as for the sequence 1, 2, . . . , k − 1. After iteration k − 1, we have l characteristic3
points with corresponding coefficients �(Hi), i = 1, . . . , l, and a vector [C1, C2, . . . , Ck−1] from which
we obtain the optimal completion times for the sequence 1, 2, . . . , k − 1, where Ck−1 = Ck−1

k−1 . We will5
consider two cases:

(a) Ck−1
k−1 + pk �dk ,7

(b) Ck−1
k−1 + pk > dk .

(a) In the first case Ck = dk . Thus the cost of scheduling job k is zero, and K(�k) = K(�k−1). Since the9
schedule �k−1 is optimal, also �k is optimal.

(b) In the second case the minimum of the cost function is found as follows. Observe that at each11
characteristic point Hj considered for removal we calculate exactly �(Hj ) = ∑

i∈EIj
�i − ∑

i∈LIj
�i ,

where EIj
is the set of jobs being early and LIj

is the set of jobs being late if we shift the job k by x ∈ Ij ,13
where Ij =[Hj, Hj+1). Thus according to Lemma 4 it is the slope of the function �Kk(x

k
k ) in the interval

Ij .15
Again two cases have to be considered:

(b1) �(Hl)��k ,17
(b2) �(Hl) < �k .

(b1) In this case any shift increases the value of �Kk(x
k
k ), so the optimal schedule is obtained for x = 0.19

According to the algorithm the last characteristic point remains unchanged, so Ck = ∑k
j=1 pj − Hs =

Ck−1
k−1 + pk which in fact corresponds to x = 0. Thus the schedule �k is optimal for the sequence of jobs21

1, 2, . . . , k.
(b2) If �(Hl) < �k , the function �K decreases in interval [Hl, Hl−1), so it does not attain its minimum23

at Hl which can be removed from further consideration. However the coefficient �(Hl−1) at the next
characteristic point is updated. In the next steps we consider the consecutive characteristic points, each25
time calculating �(Hj ) + �(Hj−1). If �(Hj ) + �(Hj−1)�0, the coefficient �(Hj−2) is updated and the
characteristic point Hj−1 is removed from further consideration. Finally, at Hl+1 at the latest, we reach27
the first characteristic point at which j − �(Hs) > 0. From this point on function �K increases, so at Hs

function �K attains its minimum. We find Ck
k = Ck = ∑k

i=1 pi − Hs , where Hs = min{Hl}. Since it is29
the minimum of �K , the schedule �k is optimal for the sequence of jobs 1, 2, . . . , k. This completes the
proof. �31

5. Conclusions

In this paper we have proposed an O(n log n) algorithm to solve the problem of scheduling a given33
sequence of nonpreemptive jobs with individual due dates to minimize the total earliness–tardiness cost.
The cost functions considered are linear job dependent and asymmetric. The developed algorithm will35
be used in branch and bound as well as tabu search procedures for finding an optimal sequence of jobs.
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Appendix

The following additional notation is assumed in the description of the algorithm:5
l—current number of characteristic points;
Hk, k = 1, . . . , l—the value of the kth characteristic point, H1 < H2 < · · · < Hl ;7
�k, k = 1, . . . , l—the coefficient assigned to the kth characteristic point;
Ck—completion time of the last job at the kth iteration9
P —the sum of completion times at the current iteration.

ALGORITHM
begin {initialize:} C0 := 0; l := 0; H0 := 0; �0 := 0; P := 0;

for k := 1 to n do
begin x := Ck−1 + pk − dk; P := P + pk;

if x�0 then {add a new characteristic point Hl+1 < Hl}
begin

if x < 0 then
begin l := l + 1;

Hl := Hl−1 + x;
�l := 0;

end;
�l := �l + �k;
Ck := dk;

end;
else {job is late}
begin Hnew := Hl+x ;

if Hnew < 0 then
begin Insert Hnew in the appropriate position in the
sequence of characteristic points.

if (there is Hj such that Hnew = Hj ) then
do not create a new point but �j := �j + �new;

else �new := �k + �k; l := l + 1;
end;
�l := �l − �k;
i := l;
while (�i �0 and i > 0) do
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begin �i−1 := �i−1 + �i ;
Ck := P − Hi−1;
i := i − 1;
l := l − 1;

end;
end;

end;
avail := Cn;
for k := n to 1 step −1 do
begin if Ck �avail then Ck := avail else avail := Ck;

avail := avail − pk;
end;

end;1
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