35

Dual Criteria
Optimization
Problems for
Imprecise
Computation Tasks

351 Introduction ...l 35-1
352 Related WOotks c.suavammns s samsmasiase s 35-3
35.3 Minimizing Maximum Weighted Error 35-4

Algorithm for Minimizing Maximum Weighted
Error * Algorithm Analysis * Characteristics of Specific

Tasks
35.4 Constrained Total Weighted Error 35-16
35.5 Constrained Maximum Weighted Error.............. 35-18
Algorithm for Constrained Maximum Weighted Error * Proofs
Kevin]-]. Ho of Properties
Chung-Shan Medical University 35.6 ConcluSion ...ovvuieiiii e 35-24

35.1 Introduction

—_—

In real-time scheduling problems, one of the paramount criteria is meeting the deadlines of all the tasks.
l?nfortunareiy, it is impossible to satisfy this criterion all the time, especially in heavily loaded real-
time systems. To cope with this situation, one can completely discard some less critical tasks in favor
of meeting the deadlines of more important ones. Or, one can schedule tasks partially, i.e., executing
tasks not completely, so as to make more tasks receive minimum required execution time and meet their
deadlines. The latter approach is applicable to situations such as the numerical analysis and the curing
gz'jflfjroflwmposite praducts. To model this kind of task system, Lin et al, !1—3] propos‘ed the Imprecise
. dezatizlhartf A;llode!, where the accuracy of the results can be‘traded for meeting the dea.dllnes of the tasks.

B S[O- 1; e model, the rf.:aders are referred to the previous cIuaRter and (4]. In this model, each task
R isngd y decomposed into two subtasks,' mandat'ory and 0]_Jt10nal. For each task, Fhe mandr‘itory
SUbtaclc :U(Eulred to be completely executed by its deadline to obtain acceptable result, while t‘he optional
enhance the result generated by the mandatory subtask and hence can be left incomplete.

1.
SHN!E;D ?AQISQ 00+81 50
204 CPress, L i

—

35-2 Handbook of Scheduling: Algorithms, Models, and Performance Analysig

If the optional subtask of a task is left incomplete, an error is incurred, which is defined as the execution
time of the unfinished portion. Task systems in the traditional scheduling model can be treated as a special
case where the execution time of each task’s optional subtask is zero.

In the Imprecise Computation Model, each task T; in the task system TS is symbolized by the quadruple
(riydiymi, 07), where r;, d;, m;, and o; denote its release time, deadline, mandatory subtask’s execution
time and optional subtask’s execution time, respectively. Let ¢; denote the total execution time of task T,
i.¢., ; = mi+ o;. In certain circumstances, the importance, regarding the criteria, of tasks may be different,
To represent the difference among tasks, each task may be assigned one or more weights.

In this model, a legitimate schedule of a task system satisfies the following requirements: (1) no task is
assigned to more than one processor and (2) at most one task is assigned to a processor at any moment
of time. A legitimate schedule is said to be feasible if each task starts no earlier than its release time and
finishes no later than its deadline, and the mandatory subtask is completely executed. A task system is
said to be feasible if there exists at least one feasible schedule for it. The feasibility of a task system can be
determined in O(n? logzn) time for parallel and identical processors [5] and O(n log n) time for single
processor [6]. Without loss of generality, all the task systems discussed in this chapter are assumed to
be feasible, since the time complexity of all the algorithms introduced in this chapter is higher than that
of the feasibility test. Additionally, we assume that all the task parameters are rational, all the tasks are
independent, and all the processors are identical. Furthermore, in this chapter, only preemptive schedules
are considered.

Before we proceed, we define general terminology and notations to facilitate the reading, Let S be a
feasible schedule for a task system TS with # tasks in the Imprecise Computation Model. For each task T,
in TS, let @(T;, S) denote the amount of processor time assigned to T} in S. The error of T; in S, denoted
by £(T;, 5), is defined as ¢; — (T}, S). The total error of S, denoted by £(5), is defined as 3", &(1},5).
The minimum total error of TS, denoted by e(T5), is defined as min {&(S) : S is a feasible schedule for
T'S). If the importance of the tasks with respect to a given criterion are not the same, then a positive value
w; is assigned to each task T;. And the product of e(T;, S) and w; is called the w-weighted error of 7; in
5, denoted by &,,(T;, S). The total w-weighted error of S and minimum total w-weighted error of TS are !
defined analogously, and are denoted by &,,(S) and ¢,,(TS), respectively. }

In the past, several researchers have studied the total unweighted and total weighted error problems in !
the Imprecise Computation Model; see details in Section 35.2. But, most of the studies are only concerned
with the total unweighted or weighted error, without considering the distribution of errors among tasks.
Therefore, the obtained schedules might result in very uneven error distribution among the tasks. Even :
worse, some important tasks have large errors, while less important tasks have small errors. This kind of i
schedule might not be suitable for some task systems. '

In this chapter we will discuss, based on the research results done by Ho et at. [7,8], the problems related
to the error distribution. We will focus on three dual-criteria optimization problems of preemptively
scheduling a set of imprecise computation tasks on m > 1 identical processors. The criterion of the first
optimization problem is the maximum weighted error of a given task system. The second problem is 0
minimize the total weighted error subject to the constraint that the maximum weighted error is minimized:
The third one is to minimize the maximum weighted error subject to the constraint that the total weighted
error is minimized. In these problems, each task may have two different weights, one for computing
the total weighted error and the other for the maximum weighted error. In Section 35.2, we will briefly
review some works related to the problems of minimizing total (weighted) error and the problems of error
distribution. Then, the description of the problems on which this chapter focuses is given. In Section 35.3,
we will study the problem of minimizing the maximum weighted error. Section 35.4 will focus on the
problem of minimizing the total weighted error subject to the constraint that the maximum weighted : g
error is minimized. The problem of minimizing the maximum weighted error under the constraint that e
the total weighted error is minimized will be discussed in Section 35.5. In the last section, we will mﬁlfe
some concluding remarks for this chapter and discuss the relationship among the problems studied i
Sections 35.4 and 35.5.

?—

Dual Criteria Optimization Problems for Imprecise Computation Tasks 35-3

35.2 Related Works

In this section we will review some research results related to the topics discussed in this chapter,
Blazewicz [9] was the pioneer of studying the problem of minimizing the total weighted error for the
special case where each task has an optional subtask only, i.e., m; = 0 for each 1 < i < n. He reduced
the problems of scheduling tasks on parallel and identical processors as well as uniform processors to
minimum-cost-maximum-flow problems, which can then be transformed to linear programming ones,
Then, by using the minimum-cost-maximum-flow approach again, Blazewicz and Finke [10] gave faster
algorithms for both problems. Potts and van Wassenhove [11] proposed an O(1log n)-time algorithm
for the same problem on single processor, with the added constraint that all tasks have identical release
times and weights. Moreover, they proved that the problem becomes NP-hard for the nonpreemptive
case, and present a pseudo-polynomial time algorithm for the nonpreemptive case. In [12], Potts and van
Wassenhove gave a polynomial approximation scheme and two fully polynomial approximation schemes
based on the pseudo-polynomial time algorithm,

Now, consider the general case in which each task has mandatory, optional, or both subtasks. For
parallel and identical processors, Shih et al. [5] proposed an O (12 log?)-time algorithm to minimize the
total error. And they also showed that the weighted version problem can be transformed to a minimum-
cost-maximum-flow problem. Using Orlin’s O(Allog| V(| A]+ (V] log| V |))-time algorithm for the
minimum-cost-maximum-flow problem [13], where A and V denote the arcsetand vertex set, respectively,
the problem of minimizing the total weighted error on paralle] and identical processors can be solved in
O(n? log*n) time, since in the network shown in [5],] A | is equal to O (s log 1) and |V [is equal to O(n).
Regarding the single processor case, Shih et al [14] gave an algorithm that runs in O(nlog n) time for the
unweighted case and O(n? log 1) time for the weighted case. Later, Leung et al. [15] gave a faster algorithm
that runs in O(n log 1 + ki) time, where k denotes the number of distinct weights.

In 1991, Shih et al. [14] proposed a new constraint, the so-called 0/1-constraint, to be added on the
Imprecise Computation Model, where each optional subtask is either fully executed or completely dis-
carded. The 0/1-constraint is motivated by some real world problems. For example, an algorithm for
solving a task in the real world might have two different versions. One runs slower than the other, but
produces a result with better quality. To meet the deadline constraints of tasks, some tasks might be forced
10 execute the fast version of the algorithm. By treating the time difference between the fast and slow
versions as the execution time of the optional subtask, one can casily transform this type of problem into
the problem of scheduling with 0/1-constraint [16]. For a single processor, Shih et al. [14] showed that
the problem of minimizing the total error is NP-hard. Later, Ho et al. [17] showed that the problem can
be reduced to the problem of minimizing the weighted number of late tasks in classical scheduling theory
(denoted as the 1] pmtnri| 3 w ;U; problem in the classification scheme of [18]). Lawler [19] proposed
an O (' W2)-time algorithm for the 1| pmtn, ri| 2 w;U; problem, where W is the total weight of all
the n tasks. Therefore, the problem of minimizing the total error on a single processor with 0/1-constraint
can. be solved in pseudo-polynomial time O(n°c?), where o denotes the total execution time of all the
OPUonal subtasks, Motivated by the computational complexity of the problem, Ho et al. also developed
A O(n?)-time approximation algorithm for it, with a worst-case performance bound of 3, which is tight.

_All the research results stated above were only concerned with minimizing the total (weighted) error,
“tlthout any regard to the distribution of errors among tasks. Thus, the error distribution of tasks might be

185ed in the schedyes generated by all the algorithms mentioned above. In other words, some tasks have
Yery large (weighted) errors while others have very small (weighted) errors, which might not be acceptable
:?szezrfﬂ.in Circumsta.nce.c,_ Motivated by this xfonsideration, Shih zmd Ijiu 120] stuf:lied the pmbl‘em
o deé’“\:]y scheduling a task system TS on single processor to minimize the maximum rlwr.'nahzed
O(rr;Io ne . as max{.f;(i}, S)o; T € TS}, unfier the constraint that the total error is minimum. An

T g’T)-lfme algorithm was given to solve this problem,

e Osyiisera!lze th_c problem proposed by Shih.and Liu [20], Ho et al. [7] defined a doubly weighted
™M, In which each tagk T; is weighted with two weights, wT and wM, for two different criteria,

—

35-4 Handbook of Scheduling: Algorithms, Models, and Performance Analysis

total w T -weighted error and maximum w*-weighted error, respectively. (Note that the normalized error
defined in [20] can be interpreted as each task T; having two weights, w] = 1and wM = 1/;. And then, the
problem studied in [20] is to minimize the maximum w™ -weighted error subject to the constraint that the
total w T -weighted error is minimized.) In [7], they considered the problems of preemptively scheduling a
doubly weighted task system with two objectives: (1) minimizing the maximum w™-weighted error and
(2) minimizing the total w""-weighted error under the constraint that the maximum w“-weighted error
is minimized. They also presented two algorithms for both objectives that run in O(i® log*n) for parallel
and identical processors and O(n?) for single processor.

To continue the study of preemptively scheduling a doubly weighted task system, Ho et al. [8] considered
the problem of minimizing the maximum w™-weighted error under the constraint that the total w?-
weighted error is minimized. An algorithm was presented to solve this problem, with time complexity
O(kn*log*n) for the parallel and identical processors case and O(kn?) for the single processor case, where
k is the number of distinct w T -weights. It is easy to verify that the problem studied by Shih and Liu |20]
is a special case of the problem by letting w] = 1 and wM = 1/0; for each task T;.

35.3 Minimizing Maximum Weighted Error : 1l

In this section we will focus on the problem of minimizing the maximum w™-weighted error of a given

doubly weighted task system. At the beginning we will formally define the Doubly Weighted Task Systems,
and then the related terminology and notations used throughout this section. Let TS = ({T;}, {r.},
{di}, {mi}, {o:}, {w]}, {wM}), 1 < i < n, be a doubly weighted task system consisting of 1 tasks,
where w and wM denote the two positive weights for computing the total weighted error and the
maximum weighted error, respectively. Let § be an arbitrary feasible schedule for TSon m > 1 parallel and
identical processors. The symbol E . (S) denotes the maximum w™-weighted error of § (i.e., E,n(S) =
max;<i<y {ewn(T;, S)}) and the symbol E .« (TS) denotes the minimum maximum w™-weighted error
of TS (i.e., E,u(TS) = min {E,n(S) : S is a feasible schedule for T5}). The symbol £¥7 (TS) denotes
the minimum total w " -weighted error under the constraint that the maximum w* -weighted error is
minimized, i.e., 8,':.';'(7'3) = min {&,,7(8): § is a feasible schedule for TS and E,.w(S) = E,.x(TS)}.

Let minjgiculri) =t <) < +++ < t; = max, i<, (d;) be all the distinct release times and deadlines
of all tasks in TS. These p + 1 distinct values divide the time frame into p intervals: [fo, 1], [0 t2]v0
[tp-1, £, denoted by Iy, I, ..., I,.. The length of the interval I}, denoted by L, is equal to ; — fj=I: =
By using McNaughton’s rule [21], a schedule S for TS can be described by a # x p matrix SMs such
that SMs(i, j) represents the amount of processor time assigned to T; in I, If Sisa feasible sched:
ule, SMs must satisfy the following inequalities: (1) SMs(i,j) < L;for1 <i <nand1 £j =1
(2) iy SMs(i, j) <m x Ljfor 1 < j < p.In the remainder of this chapter, we will represent schedules
using the matrix forms to facilitate the reading, if necessary.

An interval I; is said to be unsaturated if 3_"_ SMs(i, j) < m x L ;; otherwise, it is saturated. Ata_sgf
T is said to be available in time interval I; = [t;_y,t;] if r; < ti-1 < t; < di. Atask T; is said to bﬂﬁ‘”{_&
scheduled in I; if SMg(i, j) = L j; otherwise, it is said to be partially scheduled. A task is said to be precisely
scheduled in S if £(T;, §) = 0; otherwise, it is said to be imprecisely scheduled. g

The remainder of this section is organized as follows. A polynomial-time preemptive scheduling
gorithm, called Algorithm MME, for the problem will be given in Section 35.3.1. The algorithm runs
O(n* log*n) time for multiprocessor environment and in O(n?) time for a single processor enviroment
Then, we will analyze Algorithm MME, including the time complexity and the correctness, bast‘f] Oﬂfhr;:
properties of a specific type of tasks shown in Section 35.3.2. The correctness of these properties j
proved in the last subsection. :

35.3.1 Algorithm for Minimizing Maximum Weighted Error
k system T3 at

Before we show Algorithm MME, we need to define some terminology. For a given tas perﬁ
0

T, is said to be removable if £(TS) = £(TS — {T,)); otherwise, irrenovable. We will state two Pf

