34

Minimizing Total
Weighted Error

tor Imprecise
Computation Tasks
and Related Problems

341 Introduction............ ... 34-1

342 Total Weighted Tardy Units..................... ... 34-3

345 ORI woswsnsss s 00 o e etmonesnc et 34-10
Joseph Y-T. Leung 344 Open Shops and Flow Shops 34-13
New Jersey Institate of Technology 345 Conclusionscoo 34-15

34.1 Introduction

Scheduling problems with due date related objectives are usually concerned with penalties such as the
weighted number of late jobs (i.e., 3= w;U;), or the weighted amount of time between the completion
time of the late job and its due date (i.e., 3w, T;). In some applications, however, it is more meaningful to
consider penalties involving the weighted number of tardy units (i.c., the weighted number of time units
that are late), regardless of how late these units are. This is the case, for example, in a computerized control
System, where data are collected and processed periodically. Any data that are not processed before the
artwval of the next batch will be lost, and the lost data will have a negative effect on the accuracies of the
clculations that are used to control the real-time process. Another example can be found in processing
Perishable goods, such as harvesting. In this case, jobs represent different stretches of land that need to be
arvested. Because of differences in climate and soil conditions and crop culture, the different stretches
need to be harvested during different time periods. Crops will perish after its due date, which will cause
financial loss, 1 (his application, minimizing the weighted number of tardy units is more meaningful than
the gthey objectives.
 Blazewicz [1] was the first to study this problem. He formulated the problem as follows. We are given m
pamll‘?l Processors and 1 jobs. Each job j hasa ready time r;, due date d}, processing time pj»and weight
Wi With respect to a schedule, a job is said to be late if it is completed after its due date; otherwise, it is said
:j‘;tze:;;i‘fme. The number of tardy unit_s of job k is the amount of processing of):ob k done after its due
llnit; '(,' f is denoted F)y Y‘k. ‘Th-e problem is to ﬁ.’l"ld a schedule such that t.he total weighted number of tzu:dy
€, 3 W;Y;) is minimized. As an extension of the & [8]y notation, we denote the nonpreemptive
KT

kLI
& YIS0.00481,50
2004 by Cage Press, LLC 24 1

-—

34-2 Handbook of Scheduling: Algorithms, Models, and Performance Analygijg

version of this problem as P [7j] 32 w;Y; and the preemptive version as P | pmtn, | 5 w;Y;. Fop
the unweighted case, the above two problems will be denoted by P(r;j| 3 Y;and P | pmin, ri| 3y
respectively.
The Imprecise Computation Model [2-5] was introduced in the real-time systems comm unity to allow
for the trade-off of the accuracy of computations in favor of meeting the deadline constraints of jobs.
In this model, each job is logically composed of two subjobs, mandatory and optional. The optional
subjob cannot start until the mandatory subjob has finished execution. Mandatory subjobs are required
to complete by their deadlines, while optional subjobs can be left unfinished. If a job has an unfinished
optional subjob, it incurs an error equal to the processing time of its unfinished portion. The goal is to
find a schedule that minimizes the total weighted error. The Imprecise Computation Model is particularly
| suitable to model iterative algorithms, where the mandatory subjob corresponds to the work needed 1o set
up an initial solution and the optional subjob corresponds to the iterations used to improve the quality of
the solution. In this model, it is clear that mandatory subjobs must finish by its deadline, while optional
. subjobs need not.
| Each imprecise computation job J is represented by two subjobs: mandatory (M;) and optional (0,).
| Both jobs have ready times r;, due date dj, and weight w;. M; has processing time n; while O; has
processing time 0;. Let p; = mj+oj.
| The problem of minimizing the total weighted number of tardy units is a special case of imprecise
computation in which the processing times of the mandatory subjobs are zero. For a single processor, an [
algorithm for the total weighted number of tardy units can be used to solve the imprecise computation
problem. This can be done by setting the weight of each mandatory subjob to be higher than any optional |
[subjob. Because the mandatory subjobs have higher weights than any optional subjob, the mandatory
. subjobs are guaranteed to complete (if there is a feasible schedule to complete all the mandatory subjobs),
Note that this method cannot be used in multiprocessor systems since a job's mandatory subjob and
optional subjob cannot be executed in parallel on different processors.

Blazewicz [1] developed a linear programming solution for the problem P | pmitn, ri| X w;Y;, thereby
establishing polynomial time complexity of the problem. He also extended the linear programming ap-
proach to solve Qui | puitn, rj | w;Y;. However, the algorithm for uniform processors is only polynomial
time for each fixed m. Later, Blazewicz and Finke [6] formulated a minimum-cost-maximum-flow solu-
tion to solve both P | pmtn, ril 2 w;Y;and Q| pmtn, rjl 25 w;Y;. Using Orlin’s O(]A | log |[VI(]Al+
'V] log | V|))-time algorithm for the minimum-cost-maximum-flow problem [7], where A and V de-
note the edge set and vertex set, respectively, P | pmtit,rj| 3 w;Y;and Q| pmtn,rj |37 w;Y; can be
solved in O(n'logn) and O (m2n* log mn + m?u’ log® mu) times, respectively. These algorithms will be
described in the next section.

For a single processor, Hochbaum and Shamir [8] gave an O(nlogn)-time algorithm for 1| pmin
;| 2 Y;andan O(n?)-time algorithm for 1 [pmtn,r; | 37 w;Y;. Later, Leung etal. [9] gave an even faster
algorithm for 1| pmtn, rj |22 w;Y; that runs in O(nlogn + kn) time, where k is the number of distinct
weights. We shall describe this algorithm in the next section.

Potts and van Wassenhove [10] gave an O(nlogn)-time algorithm for 1 | pmtn| 3" Y; and showed
[that 1{| 3" Y; is NP-hard in the ordinary sense. They also gave a pseudo-polynomial time u]gorithlm
f for 1]| 37 Y;. Based on the pseudo-polynomial time algorithm, they later gave two fully polynomil
' approximation schemes for this problem [11].

! In the real-time community, Chung et al. [12] gave a network flow approach to solve the total err(_)l’
problem for imprecise computation; their algorithm runs in O(n? log®) time. Fora single processor, Shih
et al. [13] gave an O(n? log n)-time algorithm for the weighted case, and an O(n log n)-time algorithm
J for the unweighted case. :

i In [13], Shih et al. proposed an added constraint (called the 0/1-constraint) to be put on the Imprecisé
|

\

Computation Model, where each optional subjob is either fully executed or entirely discarded. This added
constraint is motivated by some applications. For example, many jobs can be solved by either a fast s ¢!
slow algorithm, with the slow algorithm producing better quality results than the fast one. Due to deﬂdllmc
constraints, it might not be possible to execute the slow algorithm for every job. The problem of scheduling

—

Minimizing Total Weighted Error for Imprecise Computation Tasks 34-3

jobs with primary (slow algorithm) and alternate (fast algorithm) versions can be transformed into one
of scheduling with 0/1-constraint [14]. The processing time of the mandatory subjob is the processing
time of the fast algorithm, while the processing time of the optional subjob is the difference between the
processing times of the slow algorithm and the fast one.

With the 0/1-constraint, two problems were proposed in [13]: (1) minimize the total error and (2) mini-
mize the number of iniprecisely scheduled jobs (i.e., jobs whose optional subjobs are discarded). For a single
processor, Shih et al. [13] showed that minimizing the total error is NP-hard and minimizing the number
of imprecisely scheduled jobs is polynomial-time solvable if the optional subjobs have identical processing
times. Ho et al. [15] later showed that minimizing the total error is solvable in pseudo-polynomial time,
while minimizing the number of imprecisely scheduled jobs can be solved in O(n®) time.

Motivated by the computational complexity of the problems, Ho etal. [15] proposed two approximation
algorithms, one for minimizing the total error and the other for minimizing the number of imprecisely
scheduled jobs. Both algorithms have time complexity O(n?). The one for minimizing the total error has
5 aworst-case bound of 3, which is tight. The one for minimizing the number of imprecisely scheduled jobs
! has a worst-case bound of 2, which is also tight. Interestingly, the number of precisely scheduled jobs in
‘ an optimal schedule is also at most twice the number produced by the algorithm. Both algorithms will be
described in Section 34.3.
| The problem of minimizing the total weighted number of tardy units has been extended to flow shops and
! open shops [16-18]. Blazewiczetal. [17] considered the problem F2|d; = d | 3 w;Y;;seealso [18]. They
{ showed that the problem is NP-hard in the ordinary sense and gave a pseudo-polynomial time algorithm
i forit. Blazewicz etal. [16] also considered the open shop problem. They showed that O | pmtn, rj | 3" w; Y,
and O2|d; = d |3 Y; are both polynomial-time solvable, while 02 |d; = d | 3 w;Y; is NP-hard in the
ordinary sense. We shall describe these results in Section 34.4.

Minimizing the maximum weighted number of tardy units has also been studied. Ho et al. [19] gave
an O(n?*)-time algorithm for a single processor and an O(n? log® n)-time algorithm for multiprocessors.
They also considered other dual eriteria optimization problems [19]. These results are described in the
next chapter.

34.2 Total Weighted Tardy Units

In this section we shall concentrate on identical and uniform processors. We first show that 1|3 Y;
18 NP-hard in the ordinary sense; see also [10]. We then give an O(ilogn + kn)-time algorithm for

Lipmen |5 w; Y;, where k is the number of distinct weights; see also [9]. Finally, we describe a network
l.%w approach to solve P |pmtn |3 w;Y; and Q|pmtn| 3 w;Y; as well as for imprecise computation
Jobs; see also [6,12].
; Theorem 34.1
1 VIS Y, is NP-hard in the ordinary sense.
1 Proof
‘g, We shall reduce the Partition problem (see Chapter 2 for a definition) to 1| 3" Y;. Given an instance
7 A= (?i»flzs -+ +»ay) of the Partition problem, we construct an instance of 1| 3~ Y; as follows. There are
i Lol Jf’bs- Job j, 1 < j < n, has processing time a; and due date B = % > aj, while job 1 + 1 has
i Processing time B and due date 2 8. The threshold for Y Yjis B.

] argsti;cs the first 11 jobs have (common) due d‘ate B and job i+ 1 hasdue date 2B, bya simpl'e interchange
e T nt, we may assume that the completion time of job 1 + 1 in an optimal schedule is 2B or later.
Proec:::“ai tﬂid)’ Llltlits from the first 1 jobs is at least B, since their common due date is B and their total

*10g times is 2B. Thus, if we have a schedule with 3° Y; < B, then there must be no tardy units

fr

om j e ; : : ;
M job n + | which implies that it completes at time 2 B. This means that the total tardy units from the

