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a b s t r a c t

Recently, 454 Life Sciences Corporation proposed a new biochemical approach to DNA sequencing (the
454 sequencing). It is based on the pyrosequencing protocol. The 454 sequencing aims to give reliable
output at a low cost and in a short time. The produced sequences are shorter than reads produced by
classical methods. Our paper proposes a new DNA assembly algorithm which deals well with such data
and outperforms other assembly algorithms used in practice.

The constructed SR-ASM algorithm is a heuristic method based on a graph model, the graph being a
modified DNA graph proposed for DNA sequencing by hybridization procedure. Other new features of
the assembly algorithm are, among others, temporary compression of input sequences, and a new and
fast multiple alignment heuristics taking advantage of the way the output data for the 454 sequencing

are presented and coded. The usefulness of the algorithm has been proved in tests on raw data gen-
erated during sequencing of the whole 1.84 Mbp genome of Prochlorococcus marinus bacteria and also
on a part of chromosome 15 of Homo sapiens. The source code of SR-ASM can be downloaded from
http://bio.cs.put.poznan.pl/ in the section ‘Current research’ → ‘DNA Assembly’.

Among publicly available assemblers our algorithm appeared to generate the best results, especially
in the number of produced contigs and in the lengths of the contigs with high similarity to the genome

sequence.

. Introduction

The DNA sequence assembly process is one of the most impor-
ant problems in computational biology, and is known for its high
omplexity. The huge amount of data makes the problem very diffi-
ult to solve. The fact that data are erroneous and incomplete makes
he problem even more difficult. Exact algorithms cannot be used
n practice because of unacceptable computation time. Many teams

orldwide try hard to provide heuristics producing satisfying sub-
ptimal outcomes (see for example Kececioglu and Myers, 1995;
dury and Waterman, 1995; Jiang and Li, 1996; Pevzner et al., 2001;
haisson et al., 2004; Sundquist et al., 2007).

The errors present in the input sequences to assembly prob-

em are generated during a wet experiment and their number and
haracter depend on the applied sequencing method. Several bio-
hemical approaches have been elaborated to determine nucleotide
equences of naturally occurring DNA molecules. For the long time

∗ Corresponding author.
E-mail address: aswiercz@cs.put.poznan.pl (A. Swiercz).

476-9271/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compbiolchem.2009.04.005
© 2009 Elsevier Ltd. All rights reserved.

Sanger method (Maxam and Gilbert, 1977; Sanger et al., 1977)
was commonly used. It is based on a standard primer extension
reaction involving fluorescently labeled terminators of DNA synthe-
sis. The DNA sequence is established during consecutive capillary
electrophoresis of the reaction products. An additional method
developed during the last decades was sequencing by hybridiza-
tion (SBH) (Southern, 1988; Bains and Smith, 1988; Lysov et al.,
1988; Drmanac et al., 1989; Guénoche, 1992; Blazewicz et al., 1999a,
2002; Zhang et al., 2003; Blazewicz et al., 2004, 2006). However,
SBH never reached a highly advanced level allowing its wider appli-
cation. Recently, DNA sequencing has been revolutionized by an
introduction of novel massively parallel sequencing systems: 454
(Life Sciences) (Margulies et al., 2005), Solexa (Illumina) (Bennett,
2004) and SOLID (Applied Biosystems) (Fu et al., 2008). They are
capable of generating a huge amount of sequencing data (from
100 million bases per run (454) to billion bases per run (Solexa

and SOLID)) at less than 1% of the cost of capillary-based meth-
ods. Each system employed different strategy to generate high
quality data. 454 relies on pyrosequencing of clonally amplified
DNA fragments fixed to beads placed in water-in-oil emulsion. It
produces 200–300 nucleotide sequence reads. Solexa and SOLID

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
http://bio.cs.put.poznan.pl/
mailto:aswiercz@cs.put.poznan.pl
dx.doi.org/10.1016/j.compbiolchem.2009.04.005
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equencing approaches are built around a very large number of
hort sequence reads (ca. 30–50 nt). In both systems individual
hort DNA molecules are attached to a solid surface and clonally
mplified. During the next stage Solexa uses especially designed
abeled nucleotides which can reversible terminate DNA synthesis
nd SOLID is based on sequential ligation with dye-labeled oligonu-
leotides. In all three systems the necessity for DNA cloning and
igh G-C content are not as much of a problem as in Sanger method.
ecause new sequencing approaches are massively parallel, they
llow for detecting mutations at a low sensitivity level. On the
ther hand, the length of sequence reads causes the problems when
ighly repetitive regions are analyzed. In addition, new systems are
ery sensitive to contaminations. In this paper, we focus only on the
54 sequencing approach.

The specificity of the 454 sequencing data influences the assem-
ly algorithm that is used at the computational stage of the
equencing process. In this paper, we propose a new assembly algo-
ithm which deals well with these data and outperforms other
ssembly algorithms known from the literature and used in prac-
ice. The algorithm is a heuristics based on a graph model, the graph
eing built from the set of input sequences. The algorithm success-
ully utilizes some ideas coming from the procedures developed for
he computational phase of the SBH (Blazewicz et al., 1999a). In par-
icular, we use here a modified concept of the DNA graph (Blazewicz
t al., 1999b), as well as Prize Collecting Traveling Salesman Prob-
em (PCTSP), the latter being used for finding a consensus sequence
Blazewicz et al., 1999a). Since the assembly process is more com-
licated than SBH, we also use temporary compression of the input
equences, a new heuristic procedure for selecting promising pairs,
perations repairing the lack of some arcs or excess of some ver-
ices in the graph, and finally, the system of voting of sequences
n creating the consensus sequence. The computational tests were
erformed on the data coming from real biochemical experiments
t the Joint Genome Institute (JGI), which sought to sequence the
hole genome of Prochlorococcus marinus bacteria (Chen et al.,

006)(accession number in GenBank is NC 007335) with the new
54 sequencing approach. Moreover, the performance of the algo-
ithm was checked on a mammalian data—a part of chromosome
5 of Homo sapiens (accession number in GenBank is EU606050).

The organization of the paper is as follows. Section 2 contains
he description of the new assembly algorithm proposed here—the
R-ASM algorithm. In Section 3 the computational results of the
lgorithm are compared with the outcomes of five other assembly
lgorithms used in practice and also with outcomes obtained at JGI,
y a combination of two assembly programs and experts’ finishing.
he paper ends with Section 4.

. Methods

In the classical approach to DNA assembly, algorithms merge
equences of lengths equal to a few hundreds of nucleotides in
rder to obtain an output sequence (or a series of disjoint con-
igs in case of lack of coverage in some places) up to a few million
ucleotides long (see for example Kececioglu and Myers, 1995;

dury and Waterman, 1995; Jiang and Li, 1996; Pevzner et al., 2001;
lazewicz and Kasprzak, 2008). The input sequences come from
oth strands of the DNA. They are usually found by gel electrophore-
is, sequencing by hybridization, or by capillary electrophoresis in
ne of its variations. The input sequences contain errors of sev-
ral types: insertions, deletions, and substitutions of nucleotides,
himeras and contaminations. The average depth of coverage (i.e.

he average number of reads covering a position) of the solution is
sually 6–10.

The sequencing process in the novel approach invented by 454
ife Sciences Corporation, named the 454 sequencing, is performed
utomatically by a sequencer, which gives short DNA reads (usu-
and Chemistry 33 (2009) 224–230 225

ally 100–200 nucleotides long) with high average depth of coverage
(even 30–40) (Margulies et al., 2005). The 454 sequencer protocol
is based on measuring the intensities of light generated during the
sequencing process. The sequences (reads) are presented as chains
of nucleotides and in addition, the sequencer produces rates of con-
fidence for every nucleotide. Similar to the previous sequencing
methods, the produced sequences come from both DNA strands and
include random insertions, deletions, substitutions of nucleotides,
and contaminations. This time, however, the nature of the bio-
chemical process excludes chimeras. Moreover, compared to other
methods, the sequences have fewer insertion, deletion and sub-
stitution errors. The speed of generating the data gives a great
opportunity to speed up the overall genome assembly process.
However, the short reads need to be treated by a special assembly
algorithm. In the last few years several new methods dedicated to
short reads were implemented (e.g. Chaisson et al., 2004; Sundquist
et al., 2007; Zerbino and Birney, 2008). In this paper we use two
of them, i.e. VELVET from EMBL-EBI (Zerbino and Birney, 2008)
and NEWBLER assembler (Margulies et al., 2005), for comparison
with our method. VELVET is one of the newest assembly packages,
designed for both Solexa and 454 technologies. The authors decided
not to take into account the confidence rates of nucleotides, treat-
ing this information as rather unimportant. It will be interesting to
compare this method with NEWBLER and our new algorithm, the
more so as the latter methods exploit this information.

The motivation of our work was to invent a new assembly algo-
rithm that performs well with data from the 454 sequencer together
with the confidence rates. To check its usefulness we had raw data
coming from real experiments using the 454 sequencer, undertaken
at Lawrence Livermore National Laboratory (LLNL) operating jointly
with the Joint Genome Institute (JGI). The data covered the whole
genome of Prochlorococcus marinus bacteria, of length 1.84 Mbp. We
also had results of the assembly process, obtained for this data by
JGI, with the use of the programs Forge and Jazz together with
experts’ finishing (see Section 3). Moreover, additional tests on a
part of chromosome 15 of Homo sapiens were done.

2.1. SR-ASM Algorithm

In the proposed SR-ASM algorithm (Short Reads ASseMbly) three
phases can be distinguished. The first phase computes feasible
overlaps for all input sequences (reads). The input parameters,
among others, are the value of the minimum overlap between two
sequences and the value of the error bound, the latter being the per-
centage of the mismatches allowed in the overlap of two sequences.
These values are set by the user of the algorithm. Feasible overlap
means here the overlap satisfying both parameters. The feasible
overlaps are computed also for the sequences being reverse com-
plementary to the input ones, due to the assumption that the reads
come from both strands of a DNA helix. In the second phase, a
graph is constructed with the reads and their reverse complemen-
tary counterparts as the vertices. Each read and its complementary
counterpart create a pair of bound vertices. Here, we use a modi-
fied concept of the DNA graph invented in the context of the SBH
(Blazewicz et al., 1999b). (The original DNA graphs (Blazewicz et
al., 1999b) were defined as induced subgraphs of de Bruijn graphs
(de Bruijn, 1946)) Two vertices being labeled by the corresponding
reads are connected by a directed arc if there is a feasible over-
lap between these reads. We look for a path which passes through
one of the vertices from every pair: either through the straight-
forward input sequence or its reverse complementary counterpart.

In this procedure we use the idea of the Prize Collecting Traveling
Salesman Problem (PCTSP), developed again in the context of the
SBH approach (Blazewicz et al., 1999a). Usually it is not possible
to find a single path in the graph and several paths are returned
as solutions. At the end, in the third phase, a consensus sequence
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sequences) is determined with a new and fast multiple alignment
euristics.

In order to find overlaps for all n sequences (the first phase
f the algorithm), we should compare all pairs of sequences. The
umber of such pairs is O(n2). The alignment of two sequences (a
alculation of a possible overlap of two sequences) is performed
ith the Smith–Waterman algorithm (Smith and Waterman, 1981;
aterman, 1995) and takes time O(k2), where k is the length of the

onger sequence. The complexity of this problem makes the exact
alculation of the complete overlap matrix impossible in practice
or big instances (big n). For example, around 3 × 1011 sequence
omparisons are necessary to reconstruct a 2 Mbp bacterial genome
ith reads of 100 bp and average depth of coverage equal to 15. The

omputation time is therefore extremely long, but can be shortened
y applying some strategies. For instance, the number of necessary
omparisons of every sequence with every other sequence can be
nitially decreased. Only the selected pairs are then compared by the
ime-consuming Smith–Waterman algorithm. On the other hand,
t is possible to speed up the alignment procedure; for example, the
rocedure can work in subquadratic time (Crochemore et al., 2003).

In our approach we applied both strategies. We introduced a
euristic method which estimates the quality of the alignment
f two sequences, and selects the so-called promising pairs of
equences. We also achieve the acceleration of the alignment algo-
ithm, by imposing thresholds of minimum overlap between two
equences and maximum error rate of the alignment as defined
bove.

The new heuristic algorithm for selecting the promising pairs of
equences works as follows. The sequences contain relatively few
andom insertions, deletions and substitutions. The most frequent
rrors in the 454 output data are the lack or the excess of nucleotides
f one type in a subsequence of the same consecutive nucleotides.
f during the comparison of two sequences we omit the informa-
ion about the number of consecutive nucleotides of the same type
remembering only one nucleotide of each type instead of a few)
hen we can compare the sequences which contain less errors. Thus,
efore the proper alignment, the sequences are temporarily com-
ressed by deleting all but one repeated nucleotides (e.g. keeping
A” instead of “AAA”). Next, we compare all pairs of sequences by
hecking for common substrings.

Let us define a window as a fragment of a sequence of a given,
onstant length (another parameter of the algorithm, usually set to
–7 nucleotides). For every pair of compressed sequences we com-
are their respective sets of windows. The leading sequence in the
lignment (with the Smith–Waterman algorithm) is defined as the
eftmost one. From the leading sequence we determine windows in
he initial part of the sequence (the initial part is another parameter

f the algorithm, and may vary between 20 and 40 nucleotides). The
uality of a window is evaluated according to the confidence rates
f the first nucleotides in the series of consecutive nucleotides of
he same type present in a window. If any of the confidence rates of
hese nucleotides is below a given threshold, then such a window is

ig. 1. An example of reducing some unnecessary vertices. (a) Sequences s2, s3, s4, s5 a
raph which passes through vertices s1 → s2 → s3 → s4. Sequence s4 could not be conn
act s5 is a subsequence of s1). (b) All the subsequences (s2, s3, s4 and s5) are included in

oved to sequence s1 (additional connection between s1 and s6).
and Chemistry 33 (2009) 224–230

rejected. We denote the set of windows from the leading sequence
(A) as WA. Next, we look for the windows from the next sequence
(B) in the alignment, which are present in set WA. These windows
constitute set WB. At the end, we check whether or not the order of
the windows’ appearance is the same in both sequences. In order
to do this we define WAB as:

WAB = {s ∈ WB : posA(predB(s)) < posA(s)} (1)

where posA(s) is the position where window s starts in sequence A,
and predB(s) is the feasible window preceding s in sequence B. Then,
measure p, which reflects a fitness of two sequences A and B to be
considered as overlapping ones in the algorithm, can be defined by
the equation

p = |WAB| + 1
|WB| (2)

If p exceeds a certain threshold (given as a parameter for the algo-
rithm) then the pair of sequences A and B are marked as promising.
A shift of an overlap of two sequences is defined as the number of
nucleotides of the leading sequence not overlapped by the second
one. For all the promising pairs of sequences the optimal semiglobal
alignment, represented by the shift between two sequences in
the alignment and by the score (similarity), is calculated by the
Smith–Waterman algorithm (+1 for every match, −2 for every mis-
match, and −1 for every gap).

Having the alignments, we can now construct the graph which
allows to find the path (or paths) (the second phase of the algo-
rithm). The vertices of the graph correspond to the sequences and
its directed arcs connect the vertices for which the alignment has
been calculated and for which the overlap is feasible. Now, some
additional operations have to be done within the graph to help find
the longest path in the graph. The procedure of selecting promis-
ing pairs of sequences can result in omitting some important arcs.
These operations allow to restore some arcs (if the neighborhood
suggests a good connection which should be present there) or elim-
inate some vertices (if one sequence is included in the another
sequence) (see Fig. 1).

Now we search for a path in the graph. Here, the algorithm uses
some ideas derived from PCTSP, developed for the SBH approach
(Blazewicz et al., 1999a). Starting from any vertex, we construct a
path by joining the vertices with the smallest shift of the overlap of
the corresponding sequences. If there are two candidate arcs with
the same shift values then the one with the highest similarity of
a candidate sequence and the previously added one is chosen. The
path is constructed as long as any vertices can be added in both
directions: either predecessors or successors of the path. Such a
path is constructed for every vertex as the starting point. The longest

path is chosen, and all the vertices from the path (and their reverse
complementary counterparts) are deleted from the graph. If there
are still some vertices left in the graph, other paths are constructed,
as long as the length of the new path is greater than the minimum
path length (another parameter of the algorithm).

re subsequences of sequence s1. Consider a path constructed in the modified DNA
ected with s5 due to weak overlap, but s1 could be possibly connected with s5 (in
to the longer sequence (s1), and all the connections between other sequences are
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Table 1
Results of the computational experiment for smaller instances (5 × 102–105 input sequences) of the genome of Prochlorococcus marinus for the PHRAP, TIGR-AS and CAP3
assemblers.

PHRAP TIGR-AS CAP3

Input seq. No. of contigs Qual [%] Cov [%] Time [s] No. of contigs Qual [%] Cov [%] Time [s] No. of contigs Qual [%] Cov [%] Time [s]

98.70 22.34 99.50 41.42
500 1 97.78 99.27 1.6 31 97.87 16.02 2.6 7 99.33 26.44 8.0

98.52 14.01 88.08 24.90
96.93 90.43 98.56 12.78 91.55 27.26

1000 4 99.32 9.66 3.5 52 99.26 11.91 6.6 11 99.93 21.97 17.3
88.85 3.95 98.74 11.05 99.50 20.48
99.52 52.40 99.06 12.95 99.91 23.86

2000 6 95.45 47.73 7.4 90 99.26 8.44 13.1 16 99.80 15.04 34.5
88.85 1.98 99.21 7.42 99.93 11.01
97.78 99.27 99.00 5.68 99.91 9.67

5000 7 88.85 0.80 19.2 198 99.06 5.25 44.4 33 99.83 8.80 88.6
98.10 0.63 99.11 4.02 99.34 8.59
99.60 47.98 99.00 2.78 99.67 6.55

10000 10 99.51 34.35 37.2 394 99.09 2.57 140.3 76 99.70 5.32 179.7
99.52 10.38 99.56 2.34 99.91 4.73
99.60 24.20 99.00 1.40 99.76 3.39

20000 22 96.48 18.63 84.5 817 99.06 1.29 604.1 184 99.65 2.96 408.7
99.48 17.33 64.11 1.23 99.68 2.86
99.59 11.62 99.73 1.21 99.68 1.36

50000 63 96.49 7.40 218.6 570 98.86 0.64 4767.2 493 99.75 1.34 1204.2
97.95 6.94 98.81 0.59 99.69 1.31
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73.17 6.74
00000 135 98.69 6.48 487.7 622

99.60 5.82

After the completion of the above stage, we have a set of paths
nd a set of single sequences. The algorithm performs now the
ollowing steps as long as any changes can be made in the set of
aths, in order to connect the disjoint parts of the current solu-
ion (both paths and single sequences). First, alignments for ends
last vertices) of the currently existing paths and single sequences
re made both for their straightforward and reverse complemen-
ary encoding. Then, the ends with the best fit are overlapped. If
ne of the joined elements appears to be a single read, its reverse
omplementary counterpart is removed from further analysis.

The last phase of the algorithm involves composing the consensus
equence (or a series of contigs) from the obtained path (or set
f paths, respectively). The multiple alignment algorithm is then
rying to align optimally overlapping sequences (in order to create
contig). A leading sequence is chosen (at the beginning it is the
rst sequence in the path) together with these sequences which
verlap it. Next, for each sequence the alignment with the leading
equence is constructed. All the alignments are put together, with
espect to the leading sequence, and if there are any differences at
position, the nucleotides at that position in the sequences vote

s follows. If a nucleotide of one type occurs at a given position in
he alignment in at least 50% of sequences, then it is accepted in
he consensus sequence, otherwise it is rejected. When the leading
equence finishes, it is replaced with the next one from the path,
nd the above procedure repeats until all the sequences (vertices)
rom the path are used. If there are more than one path the above
teps are repeated for each path.

Paths composed of a fewer number of reads than the minimum
ath length are not considered. Our tests showed that due to this
e lost only contigs of length not greater than 98 nucleotides which
o not affect the 100% coverage of the genome.

. Results and Discussion
The major part of our computational experiment consisted in
ests with the use of raw data produced at JGI in cooperation
ith LLNL. The data cover the whole genome of Prochloro-

occus marinus bacteria of length 1.84 Mbp. The output of the
equencer contains over 300,000 reads, each approximately 100
31 0.37 99.57 1.01
34 0.30 24024.5 887 99.78 0.87 2822.9
32 0.28 99.65 0.76

nucleotides long. The sequencer also provides rates of confidence of
nucleotides.

In the computational experiment, apart from the complete set
of data as described above, also smaller instances were prepared in
order to do comprehensive comparison of various assemblers. For
the complete set some methods were not able to perform correctly
as either they did not finish the computations in a given time or their
results were poor. The smaller instances are subsets of the complete
set and cover continuous fragments of the genome. Thus, they the-
oretically should result in a small number of disjoint contigs. The
model sequence of Prochlorococcus marinus is known and published
(Chen et al., 2006)(accession number in GenBank is NC 007335), we
used it only to evaluate the quality of produced contigs.

The tests were carried out on SUN Fire 6800 in Poznan
Supercomputing and Networking Center. The assembly programs
which were used for the comparison are widely known and
publicly available: PHRAP (http://www.phrap.org/), CAP3 (Huang
and Madan, 1999)(http://genome.cs.mtu.edu/), TIGR assembler
(Sutton et al., 1995)(TIGR-AS, http://www.tigr.org/). From among
the assemblers dedicated to short reads, which are publicly avail-
able, we chose VELVET as one of the newest ones (Zerbino and
Birney, 2008)(http://www.ebi.ac.uk/∼zerbino/velvet). The results
obtained at JGI for the complete data set, with the use of programs
Forge (http://combiol.org/talk/ForgeG/) and Jazz (the assembler of
JGI) together with experts’ finishing, are also presented here. For the
same complete data we have had the results of NEWBLER assem-
bler, being a 454 product attached to the sequencer, using flow
signals of the sequencer instead of nucleotide sequences. To com-
plete the comparison, we added our previous assembly program
ASM (Blazewicz et al., 2004).

The criteria which have been used to compare the outcomes of
the methods are: the number of contigs produced by the methods,
the quality of the largest contigs, the coverage, N50 length, and the
time of computations. The quality, i.e. the similarity of a contig to

a fragment of the genome, was calculated by the Smith–Waterman
algorithm with the score +1 for a match, −2 for every mismatch,
and −1 for a gap. The coverage is the percentage of the total length
of the reconstructed sequence which is covered by the contig. N50
length is the greatest possible value x such that 50% of the whole

http://www.phrap.org/
http://genome.cs.mtu.edu/
http://www.tigr.org/
http://www.ebi.ac.uk/~zerbino/velvet
http://combiol.org/talk/ForgeG/
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Table 2
Results of the computational experiment for smaller instances (5 × 102–105 input sequences) of the genome of Prochlorococcus marinus for the ASM, VELVET and SR-ASM
assemblers.

ASM VELVET SR-ASM

Input seq. No. of contigs Qual [%] Cov [%] Time [s] No. of contigs Qual [%] Cov [%] Time [s] No. of contigs Qual [%] Cov [%] Time [s]

94.43 76.50 48.54 29.50
500 8 84.26 25.73 7.7 11 49.53 15.76 0.1 1 99.86 100.00 2.0

97.78 5.34 49.41 14.99
96.23 96.46 47.59 17.53

1000 6 80.38 5.05 31.8 30 47.95 15.39 2.4 1 99.78 100.00 5.0
97.92 2.11 49.42 9.87
97.20 48.86 47.76 10.70

2000 18 90.15 26.86 128.0 65 47.80 7.69 3.9 1 99.75 100.00 10.0
97.53 23.94 52.34 5.42
96.82 19.74 47.39 4.18

5000 28 97.20 19.79 794.6 179 47.59 3.64 6.8 1 99.78 100.00 31.0
97.08 17.92 48.72 3.55
96.91 17.68 47.90 2.57

10000 74 96.82 9.66 3380.9 395 47.84 2.02 11.7 1 99.78 100.00 113.0
97.20 9.68 47.39 2.01
97.42 10.72 99.79 1.71 99.69 43.65

20000 147 90.83 9.23 11783.3 752 52.39 1.12 22.5 10 99.78 20.67 746.0
97.04 8.31 47.03 1.05 99.76 14.80
97.23 4.84 99.90 0.57 99.82 10.17

50000 360 97.10 4.78 81075.2 1959 99.95 0.53 53.7 31 99.63 10.10 5926.0
97.40 3.69 47.90 0.52 99.79 9.13
97.36 4.91 99.96 0.39 99.82 10.42

100000 700 97.52 2.96 351418.7 3873 99.95 0.29 108.0 76 99.72 9.60 22987.0
97.30 2.79 99.90 0.29 99.66 6.94
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ig. 2. Comparison of the quality of three largest contigs obtained by the SR-ASM,
hole genome of Prochlorococcus marinus bacteria of length 1.86 Mbp. The input tes

econstructed sequence is covered by produced contigs of length
ot less than x.

In Tables 1 and 2 results for the smaller instances of Prochloro-
occus marinus are presented. Table 1 contains the results of PHRAP,
IGR-AS, and CAP3, Table 2 of ASM, VELVET, and SR-ASM. For the
ases where the algorithms resulted in more than one contig, the
uality and coverage values are given for three longest contigs. In
he tables, “input seq.” means the number of reads in instances,
qual” stands for the quality, “cov” for the coverage, and “no. of
ontigs” for the number of contigs produced by the assemblers.

Results of the tests performed for the whole bacteria’s genome
re shown in Table 3. Not all compared algorithms are presented
here—ASM and TIGR-AS had unacceptable computation time. On
he other hand, results from both sources from JGI (JGI after experts’
nishing and NEWBLER) are added. The results from Table 3 are

etter visualized in Figs. 2–5 .

As we can see from the tables, the computation time of ASM
rows rapidly with the instance size. The algorithm could generate
solution for 100,000 reads at most. However, it surpasses CAP3

nd TIGR-AS in the length of produced contigs, with slightly worse
BLER, PHRAP and VELVET assemblers, and obtained at JGI. The results concern the
ontains over 3 × 105 DNA reads.

similarity to the model sequence. ASM, similarly as CAP3, TIGR-AS,
and PHRAP, does not use the information about confidence rates
provided by the 454 sequencer. Taking into account all the “older”
algorithms not dedicated to the 454 data, PHRAP seems to be the
best one. PHRAP beats them in all the measures except the quality.

The small number of contigs obtained at JGI by the use of Jazz
and Forge is due mainly to the finishing phase, where inappropri-
ate contigs were rejected by experts. On the other hand, NEWBLER
was not supported by the experts and generated very good solu-
tions concerning all the criteria. However, SR-ASM reached almost
so good results in the number of contigs, surpassing NEWBLER in
both the quality and the coverage of the contigs. Solutions of PHRAP
are quite acceptable except the number of contigs, but the behav-
ior of VELVET was surprising. VELVET from EMBL-EBI is designed
for both Solexa and 454 technologies, executing the program we

set its parameters appropriately for the kind of input data we had
(according to the personal communication with an author).

The second part of the computational experiment was done with
the use of “mammalian” data, being of different characteristic than
the bacteria ones. The data are stored in NCBI Short Reads Archive
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Fig. 3. Comparison of the coverage of three largest contigs obtained by the SR-ASM, NEWBLER, PHRAP and VELVET assemblers, and obtained at JGI. The results concern the
whole genome of Prochlorococcus marinus bacteria of length 1.86 Mbp. The input test set contains over 3 × 105 DNA reads.

Table 3
Results of the computational experiment for the whole genome of Prochloroccocus
marinus bacteria (over 3 × 105 input sequences) for the PHRAP, NEWBLER, CAP3,
VELVET and SR-ASM assemblers, and the results obtained at JGI.

No. of
contigs

Quality
[%]

Coverage
[%]

N50 [bp] Time [s]

94.56 4.74
PHRAP 5460 81.66 1.89 5241 2067

98.56 1.88
JGI after experts’ finishing 96.85 4.60

150 96.94 3.97 15148 –
97.00 3.95
99.29 4.53

NEWBLER 149 99.38 3.91 22745 –
99.45 3.89
99.85 0.42

CAP3 7937 99.69 0.38 1517 12376
99.91 0.32
99.90 0.17

VELVET 13769 99.96 0.15 518 328
99.90 0.14

S
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3

Fig. 5. Comparison of the number of contigs obtained by the SR-ASM, NEWBLER,
99.71 5.66
R-ASM 171 99.76 4.38 10157 289513

99.68 3.19

at http://www.ncbi.nlm.nih.gov/Traces/home/) and come from a
iochemical experiment which was to cover a gap closure in chro-
osome 15 of Homo sapiens. The final sequence of length 11717
ucleotides has accession number EU606050 in GenBank. There
as around 14,000 input reads, each one of length between 58

nd 669 nucleotides. Because of significantly contaminated 3′ ends
f the reads, we had to cut them from this side. Finally, we took

ig. 4. Comparison of the N50 value obtained for SR-ASM, NEWBLER, PHRAP and
ELVET assemblers, and obtained at JGI. The results concern the whole genome of
rochlorococcus marinus bacteria of length 1.86 Mbp. The input test set contains over
× 105 DNA reads.
PHRAP and VELVET assemblers, and obtained at JGI. The results concern the whole
genome of Prochlorococcus marinus bacteria of length 1.86 Mbp. The input test set
contains over 3 × 105 DNA reads.

200 leftmost nucleotides from the reads; reads shorter than 100
nucleotides were rejected.

The results of the second series of tests are presented in Table 4.
This time we do not have NEWBLER’s results since the data are
stored in the form of nucleotide sequences (NEWBLER works only
on flow signals from 454 sequencer, we had no access to such exper-

iments). Also PHRAP is not taken into account, execution of it ended
with an error (‘fatal error: requested memory unavailable’; in fact,
not more than 4 GB of memory can be allocated to the computa-
tional process on the 32 bit processor). From among the remaining

Table 4
Results of the computational experiment for the gap closure in chromosome 15
of Homo sapiens for the CAP3, TIGR-AS, VELVET and SR-ASM assemblers. Data
are obtained from NCBI Short Reads Archive (at http://www.ncbi.nlm.nih.gov/
Traces/home/). There are around 14,000 input reads.

No. of contigs Quality [%] Coverage [%] N50 [bp] Time [s]

98.72 89.04
CAP3 330 95.52 13.89 10515 9582

46.70 4.40
97.98 15.21

TIGR-AS 3086 98.59 9.99 910 97202
97.54 9.71
48.10 2.69

VELVET 554 50.28 1.54 132 28
50.75 1.71
98.56 100.00

SR-ASM 48 79.09 5.27 11863 2814
89.53 3.99

http://www.ncbi.nlm.nih.gov/Traces/home/
http://www.ncbi.nlm.nih.gov/Traces/home/
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our approaches, SR-ASM appeared to outperform the others. Our
lgorithm generated the whole resulting sequence of 100% of cov-
rage and 98.56% of similarity to the model sequence. Concerning
wo other criteria, the number of produced contigs and N50, the
esults of SR-ASM are also the best.

. Conclusions

In this paper, a new SR-ASM algorithm, dedicated to DNA assem-
ly based on short reads, has been proposed. Computational tests
ith the use of raw data generated by 454 sequencer at JGI, cov-

ring the whole 1.84 Mbp genome of Prochlorococcus marinus, have
hown its performance to be very good. Our algorithm produced
etter results, with respect to the coverage and to the similarity
o the model sequence, than the NEWBLER’s results or the results
btained at JGI with the support of experts’ finishing. The perfor-
ance has been further confirmed by additional tests on a fragment

f chromosome 15 of human genome.
Summing up the results presented in Tables 1–4 and in Fig. 2–5,

ur algorithm outperformed all other approaches used in the tests.
he strength of SR-ASM comes from the combination of the ideas
oming from our SBH procedures and new propositions: temporary
ompression of input sequences, a new method of selecting promis-
ng pairs, operations adding some arcs or deleting some vertices in
he graph, and finally, the system of voting of sequences in creating
he consensus sequence.

The computation time of SR-ASM is rather long, but time is not
rucial for assembly algorithms. SR-ASM solved the whole bacteria
enome in 80 h, which is quite acceptable with respect to the time
f obtaining these data in biochemical experiments. Currently we
re working on a parallel implementation of this algorithm, which
ill significantly reduce the computational time.

SR-ASM is a new proposition, which can be used in practice in the
hole genome assembly based on the 454 sequencing. It outper-

orms other assembly algorithms both dedicated and not dedicated
o short reads. Moreover, combined with experts’ finishing stage
t has a chance to produce better results than the approaches for
hort-reads assembly currently used in laboratories.
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