
RAIRO Operations Research
Will be set by the publisher

GENETIC AND TABU SEARCH ALGORITHMS FOR
PEPTIDE ASSEMBLY PROBLEM

Jacek B lażewicz1, Marcin Borowski2,
Piotr Formanowicz3 and Tomasz G lowacki4

Abstract. Determining amino acid sequences of protein molecules is
one of the most important issues in molecular biology. These sequences
determine protein structure and functionality. Unfortunately, direct
biochemical methods for reading amino acid sequences can be used for
reading short sequences only. This is the reason, which makes peptide
assembly algorithms an important complement of these methods. In
this paper, a genetic algorithm solving the problem of short amino
acid sequence assembly is presented. The algorithm has been tested in
computational experiment and compared with an existing tabu search
method for the same problem. The results clearly show that the genetic
algorithm outperformed the tabu search approach.

Keywords: peptide sequencing, combinatorial optimization problem,
genetic algorithm, tabu search algorithm

2009-10-28.

1 Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965

Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego
12/14, 61-704 Poznań, Poland
2 Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965

Poznań, Poland
3 Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965

Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego
12/14, 61-704 Poznań, Poland
4 Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965
Poznań, Poland

c© EDP Sciences 2001

2 TITLE WILL BE SET BY THE PUBLISHER

1 Introduction

Two of the most important groups of molecules in every living organism are
nucleic acids (i.e. DNA and RNA) and proteins. DNA is used for storing and
copying the genetic information. On the basis of this information, other types
of molecules are built. In general, genetic information determines the structure
and the functionality of any organism. Proteins compose the class of molecules
responsible for most of organism’s features. These molecules perform two main
roles, i.e. they are building blocks of tissues and also catalyze many biochemical
reactions. A protein function strongly depends on its three-dimensional structure.
The structure is determined by the amino acid sequence and it may be also de-
pendent on the environment. The problem of determining the three-dimensional
protein structure on the basis of its amino acid sequence is one of the most impor-
tant and challenging problems of computational and molecular biology. Clearly,
the preliminary stage of the process of determining protein structure must be the
reading of its amino acid sequence.

From the fact that the genetic information encoded in DNA determines the
amino acid sequences of proteins, it could be concluded that there is no need for
direct reading of the latter ones – it should suffice to read the DNA sequence
and translate it to the amino acid one. However, in practice not always it is so
easy. It happens that in the process of protein synthesis the amino acid sequence
is modified by another protein. Moreover, very often for some biological and
technological reasons it is easier to extract and analyze proteins than nucleic acids.

The existing methods for direct peptide (i.e. short amino acid sequences) read-
ing (i.e. sequencing) are based on mass spectrometry or on Edman’s degradation
(cf. [10, 12]). In each case only short peptides can be directly sequenced, i.e. 10–
20 amino acid long peptides in the case of mass spectrometry and 50 amino acid
peptides when the Edman’s approach is used. Since protein sequences are usually
longer, there is a need for a method which can be used to assemble the short frag-
ments read by the direct methods. The peptide assembly problem was formulated
as a combinatorial optimization one in [6]. Since it has been proved to be NP-
hard in the strong sense [6], thus, the need arises to construct efficient heuristics
for solving it. (Let us note here that the process of protein reading is similar to
the one of reading DNA sequences [3, 4, 11, 13]. However, due to the differences
in lengths and the nature of biochemical procedures used in both processes, the
latter is usually divided into 3 stages: sequencing, assembling and mapping. The
corresponding combinatorial problems require different procedures than the ones
for proteins.) In this paper, two of the frequently used methods for solving com-
binatorial problems, i.e. a Genetic algorithm and Tabu search method, adopted
for solving the problem of peptide assembly, are proposed. The algorithms have
been tested in an extensive computational experiment and compared. The results
clearly show that the genetic algorithm outperformed the tabu search approach.

The organization of the paper is as follows. In Section 2 the peptide assembly
problem is formulated. In Section 3 the Genetic algorithm is presented, while in

TITLE WILL BE SET BY THE PUBLISHER 3

Section 4 the results of the computational experiment are shown. The paper ends
with conclusions in Section 5.

2 Formulation of the peptide assembly problem

As mentioned in the previous section, direct peptide sequencing methods allow
for reading only short amino acid sequences. In order to read a sequence of a whole
protein, it should be cleaved into shorter fragments and then the fragments can be
sequenced. Such a cleavage can be done using proteases, i.e. enzymes recognizing
some specific amino acids and cutting a peptide sequence in the position directly
following the position of the recognized amino acid. However, in this process the
information about the order of the resulting shorter fragments in the whole protein
is lost. The peptide assembly problem consists in recovering this information
(cf. [1, 5]).

Amino acid sequences can be seen as strings over some particular alphabet.
Let Σ be such an alphabet corresponding to amino acids and let C ⊂ Σ (Note
that cardinality of Σ is 20 since there are 20 amino acids). The elements of set
C, called cutters, correspond to amino acids recognizable by some proteases. If
c ∈ C then there exists some protease which is used to cut the examined protein
sequence directly after c. Let us denote the protein sequence by s. A fragment
obtainable from cutter c is substring z of s satisfying two conditions, i.e. c is the
last symbol of z and if z starts in position i in sequence s (i > 1), then in position
i− 1 there is symbol c. If c occurs exactly once in z then it is said that sequence z
results from a full digest of sequence s. It means that directly after all occurrences
of symbol c the cuts have been made by the protease used in the biochemical
experiment. If more than one occurrence of c is present in z then z resulted from
a partial digest of s. A string is obtainable from C if there exists some c ∈ C from
which it is obtainable [2, 6]. Besides sequences read in the sequencing process,
the biochemical experiment can also provide numbers of occurrences of particular
amino acids in the protein. This information is then used at the assembly stage
of reading proteins.

The peptide assembly problem can be formally defined in the following way [6].

Peptide assembly problem – search version:
Instance: Multiset S of strings over alphabet Σ, set of cutters C ⊂ Σ and a
distribution (number of occurrences in S) D of letters from alphabet Σ, i.e. a set
of pairs (x, n) for all symbols x ∈ Σ, where n is a positive integer.
Answer: Superstring for S satisfying D such that all elements of S are obtainable
from C ⊂ Σ.

The problem is strongly NP-hard even in the ideal case without errors what
was shown in [6]. Note, that even without the last assumption made in the proof
about knowing the first and the last string of the resulting superstring, the proof
is still correct, what means that the variant of the problem considered here is

4 TITLE WILL BE SET BY THE PUBLISHER

c c

z z z

s

i -1 i

(a) full digestion

c c

z z

s

i -1 i

(b) partial digestion

Figure 1. Digestions of sequence s (cutter = c)

also NP-hard in the strong sense. This intractability result justifies looking for a
heuristic method solving this problem.

The above formulated problem may be also expressed in terms of graph theory.
This formulation is a basis for algorithms described in the next section. Each
element of S may be modeled as a labeled vertex in certain graph G = (V,A).
The label of a vertex is a textual representation of a short peptide which the
vertex corresponds to. There is arc j in G = (V,A) from vertex v1 to v2 if and
only if a suffix of a label of v1 is equal to a prefix of a label of v2. It is significant
to mention that there is possible more than one overlapping between suffix of the
label of v1 and prefix of the label of v2. As every potential overlapping between
the vertices results in an arc in G = (V,A), graph G = (V,A) is a multigraph.

Weight Wj of corresponding arc j (note that Wj is a letter distribution associ-
ated with arc j, not a single value) is defined as a set of pairs (x, n) for all symbols
x ∈

∑
for a given prefix. Let us define graph G′ = (V,A′) which is a modification

of G = (V,A) obtained by adding arcs of weight (x, 0) between each ordered pair
of vertices in G = (V,A), so A ⊂ A′ (these additional arcs have been introduced
to ensure that each possible solution will be a valid solution). An example graph
is shown in Fig. 2. Note that graph G′ = (V,A′) remains a multigraph.

Let us introduce E as a set of pairs (x, n) for all symbols x ∈
∑

. E is equal to
a total distribution of letters for all labels related to vertices of graph G′ = (V,A′)
(note that this distribution calculated for G = (V,A) is the same).

Now, we introduce vectors associated with sets of pairs that were defined above.
We also propose the conversion between those sets of pairs and vectors. The latter
are used since for vectors there are well defined mathematical operations useful

TITLE WILL BE SET BY THE PUBLISHER 5

Sequence 1 (cutter C):

v1 ABBC
v2 BABDBBBC
v3 AB

Sequence 2 (cutter D):

v4 ABBCBABD
v5 BBBCAB

Final sequence:
ABBC
ABBCBABD
 BABDBBBC
 BBBCAB
 AB

ABBCBABDBBBCAB

v1

v4

W1 W6

v2

W15

v5

W17

v3

W14

W5

W2 W7

W23

W19

W16

W8

W3 W9

W22

W18

W24

W10

W11W4

W13

W20

W21

W12

Weights::
W1 = [1, 2, 1, 0]
W2 = [1, 2, 0, 1]
W3 = [0, 3, 1, 0]
W4 = [1, 1, 0, 0]
W5...W24 = [0, 0, 0, 0]

Figure 2. An example of graph G′ = (V,A′)

in our analysis of the problem and the algorithms. Let ~D, ~E and ~Wj be 20-
dimensional vectors that correspond to relevant set of pairs D, E and Wj . For
the conversion to vectors, we assume that all sets of pairs (x, n) have been ordered
alphabetically according to x. Each coordinate of these vectors is also labeled by
some letter x. The value in the coordinate x of the vector is set to n. Now, having
defined vectors, we can formulate a problem we resolve in graph theory. The
solution of the problem is a path in graph G′ = (V,A′) that contains all vertices
of G′ = (V,A′) and fulfills the following condition:

~D = ~E −
∑
j∈A′

1

~W j

6 TITLE WILL BE SET BY THE PUBLISHER

where A′1 ⊆ A′ is a set of arcs chosen to a solution.

3 Algorithms

3.1 Genetic algorithm

Each element of the population is defined as a path in G′ = (V,A′) which
consists of all vertices of G′ = (V,A′). The initial population is created randomly
by permuting the set of vertices and, as we deal with a multigraph, choosing
randomly an arc between each ordered pair of them. For each element of the
population the evaluation function f(l) is defined as a difference between the
expected distribution ~D and the obtained distribution ~E −

∑
j∈A′

1

~W j for a given

solution l ∈ L:
f(l) = module(~D − ~E +

∑
j∈A′

1

~W j)

where module is a length of a vector and ~D, ~E, ~Wj′ have been defined in Section
2 and L is a population. The length was calculated in Manhattan distance. The
Manhattan distance is a distance between two distributions measured along axes
(i.e. dimensions). For example, the Manhattan distance, d1 between two vectors
~p and ~q in an n-dimensional integer vector space with fixed Cartesian coordinate
system can be calculated according to formula:

d1(~p, ~q) =
n∑

i=1

|pi − gi|

where ~p = (p1, p2, p3, ..., pn) and ~q = (q1, q2, q3, ..., q4) are vectors.
Function f(l) is to be minimized. Two solutions from the population are selected

randomly for recombination. To choose the low value of f(l) the roulette method
is used in a selection phase. The probability P (l) of a selection of a certain solution
l for recombination is inversely proportional to f(l) and is equal to:

P (l) =
fmax−f(l)∑

m∈L

(fmax−f(m))

where fmax is a maximum value of f(l) for a certain population. A representation
of a solution is a sequence of vertices and arcs between them: v1, e1, ..., en−1, vn.
During the recombination phase, a list of common subsequences for two chosen
solutions is created. One random element of this list is taken as a part of a new
solution. Thereafter randomly chosen elements of the list are added to the partial
solution in the following way: insert element in a randomly selected position of
the partial solution satisfying conditions that an arc which precedes element has
a nonzero value (the module of the arc is nonzero) and an arc which connects the
considered element to the rest of the solution is nonzero too. If there is no such a

TITLE WILL BE SET BY THE PUBLISHER 7

place in the solution, choose randomly a place satisfying only one of the conditions.
Finally, if there are no places in the solution which allow to connect element by
a nonzero value arc, choose randomly any place in the solution. If a value of f
calculated for the new solution is smaller than a value of the worst solution in the
population, then the worst solution is replaced by the new one.

The probability of a mutation was experimentally set to 0.05. When the mu-
tation occurs some element of a population is chosen randomly. For the cho-
sen element the two subsequences are randomly chosen and swapped. The new
nonzero value arcs between an existing solution and these subsequences are chosen
randomly.

The proposed Genetic algorithm can be formally described in the following way:

randomly create initial population P (1)
for i = 1 to 10000 do
begin

select two elements Xl and Xk of P (i) according to the roulette rule
S:={all common subsequences of Xl and Xk}
new solution:=randomly selected element of S for j = 2 to size(S) do
begin
x:=randomly selected element of S
insert x in randomly selected position p in new solution
– position p should satisfy the following conditions:
substring new solution(p− 1) should be overlapped with new solution(p)
and new solution(p) should be overlapped with new solution(p+ 1)
if it is impossible then
begin

insert x in randomly selected position p′ satisfying the condition that
new solution(p′) can be overlapped with new solution(p′ − 1)
or with new solution(p′ + 1)
if it is impossible then
begin

insert x in a randomly selected position of new solution
end

end
end
if f(new solution) < f(Xl) or f(new solution) < f(Xk) then
begin

replace the worst of solutions Xl and Xk with new solution
and create population P (i+ 1)

end
//MUTATION
mutate = random value∈ 〈0; 1〉
if (mutate ≤ 0.05)
begin

randomly select element Xq of P (i+ 1)
randomly select two subsequences sa and sb of Xq

move sa to the position of sb and sb to the position of sa in Xq

randomly select the overlappings of the moved subsequences with their

8 TITLE WILL BE SET BY THE PUBLISHER

neighbors in Xq (if more than one possible overlap exists)
end

end.

3.2 Tabu Search

To evaluate efficiency of the proposed Genetic algorithm, the second method solving
instances of this problem have been designed - the Tabu search heuristic, which is a
method being one of the most frequently used in combinatorial optimization.

The Tabu search method belongs to local search methods, formally described in [2],
where the general step of an iterative procedure consists in constructing next solution j
from current solution i and checking whether one should stop there or perform another
step. Next solution j is chosen from the set N(i) - a neighborhood of feasible solutions
of current solution i. To improve the efficiency of the search process, the method should
keep not only local information like current value of the objective function but also other
information related to the search process. Commonly used are the best solution visited
and the mechanisms to prevent the method being stuck in a local optimum - tabu list
- a list of moves (decisions of choice next solution j from current solution i) already
performed by the algorithm. None of the moves from tabu list can be performed unless it
leads to a solution better than the best already found. The next mechanism preventing
the method being stuck in a local optimum is a mechanism of random moves, which
results in moving the search process to another area of the search space.

The details of the Tabu search algorithm for peptide assembly problem have been de-
scribed in [2]. The main difference between the version of the algorithm described in [2]
and the one used in the current paper is the definition of the objective function. Previ-
ously it was a maximization of a sum of overlaps of peptides from multiset S (spectrum)
for particular permutation, while now objective function f was redefined to minimize the
Manhattan distance between 20-dimensional vectors of amino acid distributions of the
obtained solution and the expected one (similarly to the objective function of the pro-
posed Genetic algorithm). Note, that the latter one can be determined in a biochemical
experiment.

4 Computational experiment

The Genetic algorithm described in the previous section as well as the Tabu search
method have been implemented in Java 1.5 language and run on PC Intel 2×Xeon 3.6
GHz with 4 GB RAM.

The computational experiment has been divided into three parts. In all of them real
protein sequences (see Appendix) composed of 100, 150, 200, 250 and 300 amino acids
have been used to generate instances of the assembly problem. 10 sequences of each
length have been chosen, hence the set of initial sequences (the real protein sequences
used to generate the instances) has been composed of 50 sequences.

In Part I of the computational experiment 9 problem instances have been generated on
the basis of each initial sequence. First, in each of the sequences 10, 15 and 20 positions
have been randomly chosen, respectively, and amino acids present in these positions have
been replaced by cutters (in this stage the cutters are some artificial amino acids). This

TITLE WILL BE SET BY THE PUBLISHER 9

operation resulted in 3 new sequences for each initial sequence. Then, for each of the new
sequences containing 10 artificial cutter positions, 1, 2 and 3 of them have been randomly
selected and marked as sources of errors, i.e. it has been assumed that they will not be
recognized by a protease. In the case of sequences containing 15 cutter occurrences, 1, 3
and 4 of them have been marked and in the case of sequences with 20 cutter positions,
2, 4 and 6 of them have been marked as error sources. Finally, each sequence modified
in this way has been cut directly after every cutter occurrence (except the ones marked
as error sources). In this way, each initial sequence resulted in 9 instances, as previously
mentioned.

In Part II the initial sequences have not been modified. Instead, two amino acids,
i.e. aspartic acid and proline have been chosen as cutter proteases. Then, for each of
the sequences 1, 2 and 3 cutter positions have been marked and omitted during cutting
procedure (analogously like in Part I). Finally, every sequence has been cut directly after
these cutter occurrences, except the marked ones. In this way, every initial sequence has
been used to generate 3 instances.

Part III is similar to Part II. The difference is that in this case it has been assumed
that the proteases used are endoproteinase Lys-C, recognizing amino acid lysine, and di-
lute acid recognizing amino acid asparagine. (Note that in Part II two amino acids have
been chosen as the ones recognized by some proteases and in Part III two real proteases
have been chosen first and then the recognized amino acids have been located in the
sequences. This may result in a difference in the number of peptide fragments obtained
as a result of the cutting process.) 1, 2 and 3 cutter positions corresponding to the chosen
proteases have been marked as error sources and the sequences have been cut. In this
way, every initial sequence has been used to generate 3 instances.

In Part I for each combination of a sequence length, a number of substitutions and a
number of error sources (number of marked cutter positions) and in Parts II and III for
each combination of a sequence length and a number of errors, respectively, 10 instances
have been used in the computational experiment. Each instance has been run 10 times
and mean values of computation times and of the similarity of the obtained solution to
the original sequence have been calculated.

The similarity has been calculated according to Needleman–Wunsch algorithm [2, 9].
The algorithm compares two sequences: the one generated by a tested algorithm st and
the original sequence so. The similarity of the sequences is determined according to the
following formula:

σ = 100
δ − ψ
χ− ψ

where δ is a scoring for the two sequences, being a sum of scores for all columns in an
optimal alignment (1 point for a match, -1 for a mismatch or a gap), and:

ψ =

l(so)d+ (l(st)− l(so))g if l(st) > l(so)
l(st)d+ (l(so)− l(st))g otherwise

χ =

l(st)m if l(st) > l(so)
l(so)m otherwise

10 TITLE WILL BE SET BY THE PUBLISHER

where l(st) and l(so) are lengths of sequence st and so, respectively, and m = 1, d = −1,
g = −1.

The results of Parts I, II and III of the experiment are shown in Tables 1, 2 and
3, respectively. Each entry in the tables corresponds to computations performed on 10
instances (i.e. it is a mean value of 10 means, since each instance has been run 10 times).
Similarities to original sequences in Part I are greater than in case of Part II and Part
III, because in this stage cut positions were generated artificially and the number of them
was limited. In Parts II and III, the numbers of cuts were unknown and depended on
amino acid sequences of each instance. In all cases similarity of the obtained sequences
to the original one decreases when the sequence length increases, which is not a surprise.

In order to illustrate better a comparison of the two algorithms, the results of the
experiments in Part III have been additionally depicted in a graphical form in Fig. 3.
We see that the similarities of the obtained sequences to the original sequence for the
Genetic algorithm are much higher than in the case of the Tabu search algorithm and
the value of similarity for the first algorithm was never lower than ca. 80%. In the case
of Tabu these similarities are going down with the increase of a sequence length, reaching
45%. Computational time of finding the results in the case of the Genetic algorithm
was more or less constant and equal to ca. 2 seconds, while in case of the Tabu search,
computational time grows quite fast with the increase of a sequence length.

5 Conclusions

The experiment which results have been presented in the previous section has been
performed on instances containing errors. These errors correspond to the situation where
not all amino acids which should be recognized by the used proteases have been really
recognized. This makes the assembly problem computationally intractable. The results
of the computational experiment clearly show that the Genetic algorithm outperforms
the Tabu search method in the sense of solution quality and computation time. In each
of the test parts, the Genetic algorithm gave better solution than the Tabu search - in
some cases similarity was equal to 100%. The time of finding solution in case of the Tabu
search was even over 100 times longer than in case of the Genetic algorithm - especially
it can be seen in the results of Part II and III, respectively. The computational tests
confirmed quite high efficiency of the algorithms. Especially, the Genetic algorithm could
be useful in the protein identification process.

6 Acknowledgements

This research has been partially supported by grant NN519314635 from the Ministry
of Science and Higher Education, Poland. The first author acknowledges the support of
INRIA Rhone-Alpes grant.

TITLE WILL BE SET BY THE PUBLISHER 11

Table 1. Results for Part I.
Sequence Number Number Tabu Search Genetic Algorithm
length of substitutions of errors Similarity [%] Time [s] Similarity [%] Time [s]

100 10 10% 77.20 2.39 98.15 0.98
100 10 20% 80.80 1.05 97.39 0.94
100 10 30% 78.70 1.29 96.86 1.08
100 15 10% 55.83 8.82 90.00 1.08
100 15 20% 56.41 5.93 90.46 1.10
100 15 30% 60.42 5.39 86.75 0.98
100 20 10% 40.41 38.01 78.33 0.94
100 20 20% 41.77 25.41 74.60 1.08
100 20 30% 49.78 14.91 78.26 1.09

150 10 10% 65.39 6.85 93.45 0.96
150 10 20% 73.85 4.30 88.83 1.08
150 10 30% 85.90 1.85 98.86 1.10
150 15 10% 48.11 19.11 90.45 1.20
150 15 20% 55.64 14.47 92.79 1.02
150 15 30% 53.80 10.79 90.76 1.06
150 20 10% 46.33 41.71 89.05 1.14
150 20 20% 55.00 23.99 91.33 1.06
150 20 30% 50.08 22.41 91.67 1.05

200 10 10% 66.62 4.73 98.10 1.12
200 10 20% 84.89 4.44 98.47 1.09
200 10 30% 95.44 1.40 100.00 1.09
200 15 10% 50.76 22.16 88.52 1.05
200 15 20% 57.38 10.26 91.68 1.09
200 15 30% 60.81 12.78 92.66 1.06
200 20 10% 42.90 68.99 91.01 1.27
200 20 20% 49.50 40.03 91.38 1.15
200 20 30% 52.79 22.31 93.96 1.00

250 10 10% 85.52 3.37 100.00 1.33
250 10 20% 74.30 5.62 93.40 1.05
250 10 30% 83.53 3.28 97.50 1.01
250 15 10% 59.89 14.50 92.09 1.18
250 15 20% 55.97 15.61 89.58 1.11
250 15 30% 72.20 8.63 99.47 1.03
250 20 10% 45.25 66.94 82.35 1.09
250 20 20% 43.51 62.48 90.73 1.16
250 20 30% 60.14 17.48 98.00 1.16

300 10 10% 76.67 11.69 92.77 1.24
300 10 20% 76.23 4.36 100.00 1.08
300 10 30% 84.23 3.44 98.98 1.25
300 15 10% 59.16 15.29 96.59 1.19
300 15 20% 63.19 12.88 95.30 1.01
300 15 30% 69.71 10.13 96.37 1.10
300 20 10% 48.12 56.94 90.52 1.28
300 20 20% 59.25 23.33 95.32 1.06
300 20 30% 50.93 28.62 95.26 1.09

References

[1] J. B lażewicz, M. Borowski, P. Formanowicz, T. G lowacki, On graph theoretical models for

peptide sequence assembly, Foundations of Computing and Decision Sciences 30 (2005)
183–191.

[2] J. B lażewicz, M. Borowski, P. Formanowicz, M. Stobiecki. Tabu Search Method for Deter-

mining Sequences of Amino Acids in Long Polypeptides, Lecture Notes in Computer Science
3449 (2005) 22–32.

[3] J. B lażewicz, M. Kasprzak, Combinatorial optimization in DNA mapping - a computational

thread of the Simplified Partial Digest Problem, RAIRO - Operations Research 39 (2005)
227-241.

12 TITLE WILL BE SET BY THE PUBLISHER

Table 2. Results for Part II.
Sequence Number Tabu Search Genetic Algorithm
length of errors Similarity [%] Time [s] Similarity [%] Time [s]

100 1 62,55 6.35 86.46 1.92
100 2 70.86 5.76 88.18 2.29
100 3 73.13 3.80 92.36 2.68
150 1 46.72 21.44 80.58 2.58
150 2 53.52 16.23 84.70 2.44
150 3 56.77 9.05 87.62 2.12
200 1 46.36 84.31 80.16 2.93
200 2 43.22 77.04 79.78 1.76
200 3 48.22 64.15 81.53 2.97
250 1 41.36 200.60 79.13 2.07
250 2 43.42 167.90 80.24 1.76
250 3 44.10 147.35 81.60 2.18
300 1 40.53 384.89 81.05 3.00
300 2 40.64 366.26 78.86 2.93
300 3 41.12 197.10 80.46 2.69

Table 3. Results for Part III.
Sequence Number Tabu Search Genetic Algorithm
length of errors Similarity [%] Time [s] Similarity [%] Time [s]

100 1 81.33 6.07 82.58 1.87
100 2 85.73 1.76 87.19 1.93
100 3 65.66 2.11 88.92 1.89
150 1 70.22 15.39 83.54 1.73
150 2 73.89 14.73 81.17 2.02
150 3 74.19 12.62 85.67 1.98
200 1 56.67 86.49 80.19 1.86
200 2 58.91 58.58 81.12 1.92
200 3 62.41 51.43 84.56 2.01
250 1 49.22 150.46 81.86 1.89
250 2 49.54 154.40 79.34 1.99
250 3 54.23 93.04 83.27 1.94
300 1 45.88 289.12 83.40 1.96
300 2 47.98 289.48 80.96 2.02
300 3 44.58 250.75 81.02 2.11

[4] J. B lażewicz, P. Formanowicz, M. Kasprzak, Selected combinatorial problems of computa-

tional biology, European Journal of Operational Research 161 (2005) 585-597.
[5] P. Formanowicz. Selected Combinatorial Aspects of Biological Sequence Analysis, Poznań,

Publishing House of Poznań University of Technology 2005.

[6] J. K. Gallant, The complexity of the overlap method for sequencing biopolymers, Journal
of Theoretical Biology 101 (1983) 1–17.

[7] F. Glover, Tabu Search, Part I, ORSA Journal on Computing 1 (1989) 190–206.

[8] F. Glover, Tabu Search, Part II, ORSA Journal on Computing 1 (1990) 4–32.
[9] S.B Needleman, C.D. Wunsch, A general method applicable to the search for similarities in

the amino acid sequence of two proteins, Journal of Molecular Biology 48 (1970) 443–453.
[10] P. A. Pevzner, Computational molecular biology. An algorithmic approach, Cambridge, Mas-

sachusetts, The MIT Press, 2000.

[11] J. C. Setubal, J. Meidanis, Introduction to computational molecular biology, Boston, PWS
Publishing Co., 1996.

[12] L. Stryer, Biochemistry, 4th edition, New York, W.H. Freeman and Company, 1995.
[13] M. S. Waterman, Introduction to computational biology, London, Chapman & Hall, 1995.

TITLE WILL BE SET BY THE PUBLISHER 13

100 150 200 250 300

50

60

70

80

90

TS (1 error)
TS (2 errors)
TS (3 errors)
GA (1 error)
GA (2 errors)
GA (3 errors)

sequence length

si
m

ila
rit

y
[%

]

(a) similarity

100 150 200 250 300
1

10

100

TS (1 error)
TS (2 errors)
TS (3 errors)
GA (1 error)
GA (2 errors)
GA (3 errors)

sequence length

co
m

pu
ta

tio
na

l t
im

e
[s

]

(b) computational time

Figure 3. Results for Part III (TS stands for Tabu search and
GA for Genetic algorithm, respectively).

A List of test sequences
(with GenBank accession numbers)

AAI22861: SARM1 protein [Homo sapiens]

14 TITLE WILL BE SET BY THE PUBLISHER

AAI22867: PTPRR protein [Homo sapiens]
AAI25270: Chromosome 16 open reading frame 84 [Homo sapiens]
AAI25271: FSHR protein [Homo sapiens]
AAI25273: gi|115940697|gb|AAI25273.1|
AAI25274: ZNF497 protein [Homo sapiens]
ABI97387: ADAM metallopeptidase domain 33 [Homo sapiens]
ABI97388: ATP-binding cassette, sub-family G (WHITE), member 2 [Homo sapi-

ens]
ABI98401: lung specific F-box and DH domain containing protein [Homo sapiens]
ABJ09587: sodium-driven chloride bicarbonate exchanger [Homo sapiens]

