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COMMENTARY

J. Blazewicz discusses the problem of deterministic scheduling of critical date tasks on a
set of processors. We know that this kind of problem is generally NP-complete. The
form of analysis proposed considers the limiting case in which pre-emptive scheduling
is used (a task being executed on a processor may be suspended at any moment in
favour of another task), and in which the critical dates for tasks may be exceeded, with
delays beyond deadline taken into account in an objective function which it is our aim
to minimize.

In the first stage of his analysis, the author shows that the scheduling problem posed in
this way may be reformulated as a minimal flow problem. He then goes on to transform
this minimal [low problem into its equivalent linear programming problem, to show
that it can be expressed by an algorithm with polynomial complexity. Finally, using
Khachian’s recently developed method, giving a solution algorithm for a linear pro-
gramming problem which is polynomial in the number of variables and the number of
constraints, he deduces that the initial scheduling problem is of polynomial complexity.
This article is a good illustration of a general approach used in algorithm complexity
analysis : reformulate the initial problem, whose complexity is unknown, into an equi-
valent problem, whose complexity is known. In this way, work such as that published by
Khachian in 1979, which shows that a linear program may be resolved by an algorithm
with polynomial complexity, has major consequences for many problems, as long as
they can be formulated as linear programs.

Dominique Potier

PRESENTATION

J. Blasewicz aborde dans cet article le probleme de I'ordonnancement déterministe de
tdches a dates critiques sur un ensemble de processeurs. On sait que ce type de problémes
est en général NP-complet. L'analyse proposée considére le cas plus restrictif ot ['or-
donnancement est préemptif (une tdche en cours d'exécution sur un processeur peut
étre suspendue a tout instant au profit d'une autre tiche), et out les dates critiques des

T.S.I. — Technique et Science Informatiques 0752-4072/84/06 /415-6/% 2,60 @ AFCET-Bordas



SCHEDULING INFORMATION LOSS
416

taches peuvent étre dépassées, le dépassement introduisant une pénalité prise en compte
dans une fonction objectif que U'on cherche a minimiser.

Dans une premiére étape, I'auteur montre que le probléme d’ordonnancement ainsi posé
peut étre reformulé comme un probléme de flot minimal. Ensuite, afin de démontrer que ce
probiéme de flot minimal peut étre résolu par un algorithme de complexité polynomial,
il est transformé en un programme linéaire équivalent. Enfin, en faisant appel a la méthode
récente de Khachian, qui donne un algorithme polvnomial sur le nombre de variables et le
nombre de contraintes pour la résolution d'un programme linéaire, il en est déduit que le
probléme d'ordonnancement initial est de complexité polynomiale.

L'article illustre une démarche générale utilisée en analyse de complexité d'algorithmes .
reformuler le probléme initial, de complexité inconnue en un probléme équivalent, de
complexité connue. Ainsi, un résultat comme celui de Khachian, publié en 1979, qui démon-
tre qu'un programme linéaire peut étre résolu par un algorithme de complexité polvnomiale.
a-1-il des retombées beaucoup plus larges sur de nombreux problémes, chaque fois que
ces problémes peuvent étre formulés en programmes linéaires.

Dominique Potier
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1. Introduction

The problems of scheduling tasks on processors (or
machines) have been investigated for more than twenty
years. We are thinking of deterministic scheduling pro-
blems in which ready times (or release dates) and execu-
tion times of all the tasks are known a priori : probabi-
listic problems were investigated much earlier. In the past
few years, one can observe a great growth of interest in
scheduling theory (we refer the reader to [Baker 74],
[Coffman 76] and [Graham 77] for a survey of the results
obtained). This growth follows the increasing application
of computer systems and the need to work out methods
of analysis which may yield suggestions to operating sys-
tem designers. The deterministic approach is especially
justified in process control system where all task parame-
ters are usually known in advance, and if not, as for
example execution times, upper bounds may be assumed.

To evaluate schedules several criteria have been used.
These include schedule length, mean (or weighted) flow
time and some criteria involving deadlines like maximum
lateness, mean (or weighted) tardiness, or the number ol
late tasks. The first criterion is of value for computing
centers, since its minimization leads to the maximization
of processor utilization. The second criterion is impor-
tant from the user’s point of view since minimizing mean
flow time also decreases the number of unfinished tasks
in the system.

The criteria involving deadlines have been intensively
studied, see e.g [Blazewicz 76, 77], [Garey 76, 77],
[Horn 74], [Jackson 55], [Labetoulle 74], [Liu 73]. They
may be used in computer control systems, but rather only
in cases when the value ol a criterion in the optimal
schedule is not greater than 0. If this value exceeds 0, the
interpretation of the resulting schedule is economic
rather than having an application in real computer con-
trol systems. This is because in the economic case penal-
ties are introduced depending on the time at which the
tasks are finished, while exceeding a deadline in the case
of a control system, when for example collecting data
from measurement points, causes the loss of all the
uncollected data. Similarly, when taking sample measure-
ments to obtain a mean value, the exceeding of a deadline
causes the complete loss of samples not yet made, and
thus reduces the precision of the estimate. Thus, in
computer control systems in which the deterministic
approach is most strongly justified, we would rather like
to minimize the mean (or mean weighted) information
loss caused by the loss of those parts of tasks unprocessed
at their deadlines, no matler when they are completed.
This is a new criterion which we will be concerned with
in this paper.

When analyzing scheduling algorithms which are to be
applied directly in operaling systems, attention should be
paid to their computational complexity. It is rather
obvious that only algorithms whose running time is

~ bounded from above by a polynomial in the input length,

may be used. Thus, given a problem of scheduling tasks,
one first attempts to construct an optimization, polyno-
mial-in-time algorithm for solving the problem. Using,
however, the theory of NP-completeness (see e.g.
[Garey 79]), one can prove some problems to be NP-
complete, thus, unlikely to admit such algorithms. This
type of analysis is used below where we analyze the
complexity of the problem of scheduling tasks on parallel
processors to minimize mean information loss.

The model of the computing system which we are
concerned with and the basic definitions will be described
in Section 2. In Section 3 the problem of minimizing the
mean information loss for the case of nonpreemptible
tasks will be shown to be NP-complete in the strong
sense, even [or the one processor. Then we will present a
polynomial-in-time method for solving the problem of
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the preemptive scheduling of tasks on parallel identical
processors to minimize mean weighted information loss
by means of a linear programming approach. We extend
this method in Section 4 to solve the problem of schedu-
ling tasks on a fixed number of uniform processors.

2. Some definitions

We will be considering a computing system, two
components of which are : a set of m parallel processors
{ P. Py .., P, and aset of wrasks | T, T5,.... T, }.
The processors are assumed to be either identical with
equal processing speeds or to be uniform where processor
P, has its processing speed equal to s,. Each processor is
capable of processing at most one task at a time. Each
task T, is characterized by the following parameters :
processing time p; (in the case of uniform processors this
is a standard processing time and to process task T; on
processor P; taKes p/s; time units), ready time r;, deadline
d, d; > r, and weight w, Tasks are assumed to be
independent, that is no precedence constraints among
them exist.

Some other definitions will be useful. By preemprible
we mean tasks that may be preempted at any moment
and restarted later (perhaps on another processor) with
no time losses. Tasks that cannot be preempted are called
nonpreemptible. A feasible schedule is a specification of the
assignment of processors to tasks and this assignment
must satisfy the following conditions :

— all tasks are processed to completion :

— at most m tasks are processed at a time;

— cach task T; is processed in the time interval
[rj, o). For every task T, in the schedule we denote by
Y, its information loss, delined as follows :

the amount of processing of T ; exceeding d,
if T;1s not completed on time,
O, otherwise.

¥y

To evaluate schedules we will use the following perfor-

mance measures : mean information loss ¥ = Z Y /n,
Jj=1
i
and mean weighted information loss Y, = _ZI w; Yin
s
The schedule will be called optimal if the value of the
respective performance measure is minimal for it.

A scheduling algorithm is a step by step procedure that
produces a schedule for every given set ol tasks. By an
optimization scheduling algorithm we mean an algorithm
which always finds an optimal schedule. We assume that
the reader is familiar with the basic concepts of the compu-
tational complexity of decision problem, described for
example in [Garey 79].

3. Scheduling on Identical Machines

When considering nonpreemptive scheduling of tasks
to minimize mean information loss one may notice that
the problem (its decision version) is strongly NP-com-
plete. This may be proved by using a proof similar to the
one presented in [Garey 79], where the strong NP-
completeness of the problem of minimizing mean tar-
diness (decision version) has been proved. It follows
that no polynomial-in-time (and also pseudopolynomial-
in-time) algorithm is likely to exist for these problems.
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However, this is not the case when considering pre-
emptible tasks. We now present an algorithm which
allows us to solve in polynomial time the problem of
scheduling these tasks on identical processors in order
to minimize mean weighted information loss. We will
formulate the problem as a special network flow pro-
blem, then we will solve it by means of a linear program-
ming method.

Let G(V, E). where V' = { 5|, 55, Uy, U3, ..., U, } is @ seL
of vertices and E = { ¢}, ¢,, ..., ¢, } is a set of arcs, be a
network. With each arce, 1 = 1, 2, ..., ¢, of this network
there 1s associated an interval [/, ¢,], and a valid flow
through this arc. ¢, must satisly f; < ¢; < g,, where g,
is called the capacity of arc ¢, To reformulate our sche-
duling problem as a problem of finding a flow pattern
with certain desired features in the above network, let
us assume that there exist / < 2 n different deadlines
and ready times, which we can denote by a,, a,, ..., a,.
Let us assume moreover, that they are ordered such
that @, < a, < - < a,. Before giving the formulation
more formally we will describe briefly the idea behind it.
We may distinguish four groups of vertices in the network
{fig. 1). The first represents time intervals in the schedule.
This means that there exist vertices corresponding to
lag, a1, la,.asl, ..., [a;_ . 4], la, a,,,] where ay =0
and the last interval corresponds to the * rest ” of pro-
cessing, and ¢, , is large enough to guarantee the comple-

n

tion of all the tasks, c.g. a,,, = mJax {r;} + ) p; The
=1
capacities of arcs joining the source of a network s,
with these vertices are equal to the processing capabilities
of all the processors in the corresponding intervals, ie.
they are equal to m times the lengths of the intervals.

delayed

Ul.!’“11

Figure 1. — Four groups of vertices in the network.

The second group of vertices { T, T,, ..., T, } repre-
sents the tasks (or parts of them) processed on-time.
Thus, vertex [a;, a;. ] i =0, 1, 2, ..., k, is joined by an
arc to vertex T,/ = 1,2, ..., niland only if r; < 4; and
d; = a;.,. The capacity of such an arc is equal to the
processing capability of a single processor in this interval,
thatistoa;,, — a;

The third group of vertices { T, T, oa oo T3, )
represents tasks (or parts of them) which exceed their
deadlines. The vertex [a;, a;.,] is joined to the vertex
T, il and only if d; < a;. The capacity of such an arc
is the same as in the previous case.
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The fourth group of vertices { T5,4 1, Taugas oo T}
is designed to ensure the (_omplelion ol all the tasks.
Vertices T; and T, ;, j = 1, 2, ..., n, are joined by arcs
of capduttes equal to p;, to vertex T,,+; The flow
outgoing from the latter must be equal exactly to P

The objective is to find in such a network a [easible
flow pattern for which the weighted sum of flows outgoing
from the third group of vertices is minimum, thus, mini-
mizing mean weighted information loss.

We are now prepared to give a more formal description
of the network formulation of the scheduling problem.
Given the latter as described at the beginning of this
Section, the corresponding network G(V, E) may be
defined as follows. Let V = {s,, s, v {la, a,ﬂ]:
=l 1y oy TPl Twi=1 2 n}u T+
j=1,2 . n}U{Te,, :j=12 .,n} Then s
E=1{(, la, a;e (), i=0, 1, ..., /; with a capauly of
the arc equdl to mla; ., — a;) | U J([a,, aieq], T, for
each i and j for which r; < a; and d; = a;,,: with a
capacity equal to a;., — a; } v { [a,, apq], T, j), for
each i and j for which d; < «;: with a capacity equal to
app g — a; ;| (T Tq,,ﬂ) j= 12 .. n:witha capa-
city equal to pJ, '(T,,U Ts,4 ), ,'— 1, 2, .., n:
with a capacityequaltop; } U {(Ty,+5 8. j=1,2,...,n
with a capacity equal to p; and a lower bound equal also
to p; }. The lower bounds of all but the last group of arcs
are equal to 0. The objective is to find a feasible flow

H
pattern for which ‘ZI Wi r,, 1., 15 minimal.
=
It is quite clear that by solving the above network flow
problem we find also an optimal schedule since

"
_Z] Wi O,y 1o, 18 €qual to the weighted sum of the
=
processing times of those parts of tasks which are unpro-
cessed al their deadlines. Thus, the assignment ofl tasks
to processors in a optimal schedule is given by the
obtained values of ¢, .. oy (=0, L Lk=1,2,... 2 n.

To show that the above network flow problem may
be solved in polynomial time we reformulate it as a
linear programming problem. The latter can be stated
as follows.

Minimize

n

Z w; Z (b(iru.u.m},?'..u) (1)

=1 e W,

[IJ' — deleay

j — On _;“ e . )
where W, is the set of all i for which d; < a; Subject to

Z ¢[[zt w4 11.T5) + Z d)([u. it 1]y I..+J]

{jiie Z;) {jrie Wy

<mla;,, —a) i=01..,7/. (2)

where Z; is the set of all i for which r; < ¢;and d; = a; 4,

I
¢’(;u,-,a.*,],1'j] S Ujy — Uy, J =12 ..,n, 3)
ieZ;

d)[[u.'.u,-*-;I.]",HJ;) < Qiyy — 4;, J = lw 21 a1, (4)
ie W,

E d)l[n.uullTJ)'—i_ Z (‘bl[u.unxlln 3 Pj’

ieZ;

=12 .,n. (5

The number of variables in the above linear programming
problem is 0(n%) and the number of constraints is also
0(n*). To solve the above problem one can use the
recently developed method of [Khachian 79] (for detailed
description of Khachian’s algorithm see for example
[Gaes 79]. [Korte 81]). This method is polynomial in
the number of variables and constraints. Thus, it enables
us to solve our problem of scheduling preemptible tasks
in order to minimize mean weighted information loss
in time bounded from above by a polynomial in the
number of tasks and processors.

4. Extension to the Uniform Processor Case

In this section we extend the model of section 3 to
cover the case of uniform processors. Let us recall that
in this case task processing requirements arc rcprescnled
by their standard processing times p, j=1, 2, ..., n
Moreover, processors differ from cach other by their
processing speeds s, i = 1, 2, ..., m. Thus, the time needed
to proaesa task T, j =1, 2. ..., I, on processor P,
i=1,2 ..., mis cqucll to p;/s;. Let us assume that 1he
processors are ordered in such a way thats, =2 s,=2 =35,
Itisobvious that ineach timeinterval [a, a; ], /=0, 1,..., /,
the amount of processing done by the processors cannot

m

exceed Z sl —
k=1

have the form :

b) e i 3,

(e ;) {jiie Wy

;). Thus, the inequalities (2) now

Wlanaeeiiieii =

m

—(1)25,41—01 1 (2)

k=1

< (a4

On the other hand, a task processed in the time interval
[a;, a;, ] cannot obtain more processing than s, («;, | —a;),
two tasks more than (s, + s,)(¢;4, — a;) and so on,

n

and m or more tasks, more than ) s(a;,, — a;). Thus,

k=1
we have to change the constraints (3) and (4), Lo ensure
the fulfilment of the above conditions for every possible
combination of tasks processed in parallel.

Pucaiory S Sl —a), k=12..,2#n,

ilk < nthenieZ, otherwise k =n 4+ jand ie W, .

Z Do im0 G 5@y —a) =011,
kekK>

2t A Ky =2 0thk<n

then ieZ,, otherwise (3

K,c{12..

k=n+, and ieW,

3.4, .., (m—1) tasks

m

Z Qaais 110 < @ — a;) Z s, i=0,1,..,1,

ke Km r=1

K,={l, 2 .,2n}alK,l=m:if k<
ieZ, otherwise k = n + jand ie W,

n then
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The equations (5) as well as the criterion (1) remain
the same. Thus, to find an optimal schedule (i.e. one
minimizing the mean weighted information loss) one
should solve the linear programming problem (1), (2'),
(3) and (5). Agdin the optimal parts of tasks which are
to be processed in each time interval, are given by the
values &, o) and Ogn gy S = L 20 o
i =0, 1, ... [ But'now, to obtain a schedule, one should
(in each time interval) apply an algorithm for scheduling
preemptible tasks on uniform processors in order to
minimize schedule length [Horvath 77).

Let us now check the computational complexity of
the above approach. The number of variables remains
unchanged as compared with the formulation in section 3.
However, the number of constraints is greater. Namely,
it may be computed that it is 0(n™), thus for fixed m
it is bounded from above by a polynomial in the number
of tasks. It [ollows that using Khachian's method we
can solve the problem of scheduling preemptibie tasks
on a fixed number of uniform processors to minimize
mean weighted information loss in time bounded from
above by a polynomial in the number of tasks.

Toevaluate the above approach, numerical experiments
were also conducted. Since the mean behavior of the
simplex algorithm is better than that of the Khachian’s
one (') (see for example [Papadimitriou 82]) the first
algorithm was chosen for this experiment. The specific
version used was based upon the product form of the
inverse. The experiment was carried on an Odra-1305
computer (compatible with ICL 1900). Task parameters
were drawn from a uniform distribution. Computation
times for networks, representing scheduling problem
for uniform processors and consisting of about 20 nodes
varied from about | minute to 4 minutes : for networks
of about 50 nodes, from 8 minutes to 30 minutes and
for networks ol about 100 nodes, from 20 minutes to
90 minutes. Variance in computation times for a given
size of the network appeared to be primarily a function
of the number of processors (i.e. the number of arcs
in the network) and the values of processing times.

5. Conclusions

We have considered the problem of scheduling tasks
in order to minimize mean weighted information loss.
As was mentioned this criterion may be of value in
process control systems. The problem is NP-complete
for the nonpreemptive case, even for one processor and
equal weights. However, it is solvable in polynomial
time when preemptions are allowed in the cdse of arbi-
trary number of identical processors and also when
fixed number of uniform processors is considered.

It would be worthwile to extend this result to the case
of unrelated processors, however, no simple extension
seems to be possible. It might also be of value to consider
an extended model of a computing system by introducing
additional resources, other than processors, as for example
in [Blazewicz 79], [Garey 75], [Stowinski 81], [de Werra
82].

(') Despite the fact that the worst case behavior of the simplex
algorithm is worse than that of the Khachian's procedure and moreover,
it cannol be bounded from above by a polynomial in the input length.
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To this end let us also comment briefly on the relations
of the mean weighted information loss with other cri-
teria when preemptible tasks are considered. A network
flow approach is used in [Horn 74] to test whether or
not there exists a schedule with no task late. Applying
then binary search procedure, one may also find a sche-
dule that minimizes maximum lateness for a set of
identical processors. Moreover, another linear programm-
ing approach may be used to find such a schedule even
for an unrelated processor case [Lawler 78] and [Slo-
wiriski 81]. On the other hand, when scheduling to mini-
mize mean tardiness is considered, the complexity of the
problem remains an open question for all the processor
types. The approach presented in this paper cannot be
used in this case. Minimizing mean weighted tardiness
is a much harder problem. It is NP-complete in the
strong sense even for the one processor case. Following
these remarks one may say that from the view-point of
the complexity of scheduling problems (their hardness)
mean weighted information loss lies in between maximum
lateness and mean tardiness.
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