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Abstract

The paper is on the two-machine non-preemptive flow-shop scheduling problem with a total weighted late work

criterion and a common due date (F 2jdi ¼ djYw). The late work performance measure estimates the quality of the ob-

tained solution with regard to the duration of late parts of tasks not taking into account the quantity of this delay. We

prove the binary NP-hardness of the problem mentioned by showing a transformation from the partition problem to its

decision counterpart. Then, a dynamic programming approach of pseudo-polynomial time complexity is formulated.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Rapid development of complex manufacturing systems and growing demand for an efficient production

and project planning open a wide field of possible applications of the scheduling theory, cf. [3,7,13]. Trying
to cover various realistic problems, besides proposing novel approaches and models, new parameters and

criteria are also considered.

The paper describes a performance measure based on the amount of weighted late work in a system. The

late work criterion takes into account the amount of work executed after predefined due dates ignoring the

quantity of its delay. This objective function finds many practical applications e.g. in control systems during

the process of data collecting [2,4]. Moreover, late work scheduling can support agriculture technologies

[14,15,17] and the design of production or project execution plans within predefined time periods in

manufacturing systems [17].
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Fig. 1. An example of the non-preemptive late work definition for the two-machine shop case.
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The late work objective function was first proposed in the context of parallel machines [2,4] and then
applied to the one-machine scheduling problem [14,15]. Moreover, some general complexity results were

obtained [5,6,17] which allow one to consider problems with the late work criterion as more complicated

than the analogous problems with the maximum lateness objective function. The late work performance

measure has been recently applied to the shop environment, especially to open-shop systems [6,17]. The idea

of this performance measure initiated also a different research stream dedicated to an imprecise compu-

tation model, where particular tasks are divided into optional and mandatory parts, cf. [1,8,10,16]. This

approach finds many practical applications in the hard real time scheduling problems arising e.g. in the

aviation or flight control.
In this paper, we consider a non-preemptive scheduling problem with the total weighted late work

criterion and a common due date in a two-machine flow-shop environment, which yet has not been

investigated for this performance measure. A thorough analysis shows that the problem mentioned is

binary NP-hard.

Let us set up the subject more formally. The late work performance measure estimates the quality of

obtained solutions with regard to the amount of late parts of jobs not taking into account the quantity of

the delay of fully late ones [2].

In the two-machine shop environment considered, where pre-emption is not allowed, the late work Yi for
job Ji has to be calculated by summing up late parts of tasks Ti1 and Ti2, executed after the common due date

d, on machines M1 and M2, respectively. Denoting as pi1, pi2 the processing times of tasks Ti1, Ti2 and as Ci1,

Ci2 the completion times of those tasks, the late work for job Ji is given by
Yi ¼
X
Tij

j¼1;2

minfmaxf0;Cij � dg; pijg
(cf. Fig. 1). Summing up late work for all jobs Ji, i ¼ 1; . . . ; n, and taking into account their given weights

wi, we calculate the total weighted late work criterion value as Yw ¼
Pn

i¼1 wiYi.
The organisation of the work is as follows. In Section 2, we present an NP-hardness proof for problem

F 2jdi ¼ djYw. Then, in Section 3, we propose a dynamic programming approach solving it. Both results

allow us to classify the problem as NP-hard in the ordinary sense. Section 4 concludes the paper.
2. NP-hardness proof for problem F2|di = d |Yw

We prove that the weighted case of the two-machine non-preemptive flow-shop scheduling problem with

a common due date is binary NP-hard. We construct a proof for its decision counterpart by transforming

the partition problem formulated as follows [9].

Definition 1. Let a finite set A be given and a positive integer size sðaiÞ for each element ai 2 A. The decision
version of the partition problem is: Does there exist a subset A0 � A such that

P
ai2A0 sðaiÞ ¼

P
ai2AnA0 sðaiÞ?
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Fig. 2. The schedule corresponding to a solution of the partition problem.
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Theorem 1. The decision counterpart of problem F 2jdi ¼ djYw is NP-complete.

Proof. For a given instance of the partition problem, we construct an instance of problem F 2jdi ¼ djYw, as
follows:
n ¼ jAj þ 1; d ¼ 2B ¼
X
ai2A

sðaiÞ;

pi1 ¼ 0; pi2 ¼ sðaiÞ; wi ¼ 1 for Ji 2 JðAÞ;

pn1 ¼ B; pn2 ¼ B; wn ¼ B2:
Thus, we have a set of n jobs J ¼ JðAÞ [ fJng, where the set JðAÞ contains n� 1 jobs corresponding to the

elements of the set A from the partition problem and Jn is an additional job with a very big weight. We will

show that the partition problem has a solution if and only if there exists a schedule in problem F 2jdi ¼ djYw
of a criterion value not exceeding B.

If the partition problem has a solution, then the set A can be divided into two subsets A0 and A n A0 such

that
P

ai2A0 sðaiÞ ¼
P

ai2AnA0 sðaiÞ ¼ B. Denoting with PkðJÞ an arbitrary sequence of jobs from the set J on

a machine Mk, the corresponding solution of the scheduling problem is constructed as follows:
P1ðIÞ ¼ ðJnÞ, P2ðJÞ ¼ ðP2ðJðA0ÞÞ; Jn;P2ðJðA n A0ÞÞÞ (cf. Fig. 2). On machine M1 only job Jn is executed,

while on M2 jobs corresponding to the elements of A0 precede Jn, and Jn is succeeded by jobs corresponding

to the elements of A n A0.

Due to the construction of the presented schedule, it is optimal with regard to the total weighted late

work because the only job with a big weight (Jn) is executed completely before the due date and the

remaining ones are performed on machine M2 without idle times between the tasks. The amount of late

work is equal to B and all the late jobs from JðA n A0Þ, corresponding to the elements of the subset A n A0,

have a unary weight. Hence, the criterion value equals
Pn

i¼1 wiYi ¼ B and there exists a solution of the
scheduling problem with criterion value not higher than B.

If problem F 2jdi ¼ djYw has a solution, then there exists a schedule with criterion value not higher thanPn
i¼1 wiYw ¼ B. Taking into account the fact that all problem parameters are integers, the smallest possible

portion of a task which can be late is equal to one unit. Each late unit of job Jn would increase the criterion

value of wn ¼ B2 > B. Hence, job Jn must be processed early in any optimal solution. Because Jn occupies
each machine for B time units and it is first executed on M1 and then on M2, we have a free gap in the time

period [0;B] on machineM2. This gap of length Bmust be completely filled with tasks in order not to exceed

B units of the total weighted late work. Otherwise, idle time occurs before Jn onM2 and more than B units of
work have to be executed after Jn on this machine, i.e. after the due date d, which would make the criterion

value bigger than B. The mentioned partition of jobs completed before and after Jn on M2 defines the

solution of the partition problem. h
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3. Dynamic programming approach for problem F2|di = d |Yw

We can state that the analysed problem F 2jdi ¼ djYw is NP-hard in the ordinary sense [9] because it can

be solved by a dynamic programming approach of pseudo-polynomial time complexity presented below.

The method considered follows the approach proposed by J�ozefowska et al. [12] for problem F 2jdi ¼ djUw,

where Uw denotes the weighted number of late jobs. However, the dynamic programming method presented

is extended with additional ideas necessary to cover the peculiarities of the problem analysed.

First, we observe that, for the search of an optimal solution of the problem, all early jobs can be
scheduled in Johnson’s order (cf. [5,12,17]). Johnson’s rule [11] states that all jobs Ji with pi1 6 pi2 are se-

quenced in non-decreasing order of pi1, while the rest, with pi1 > pi2, in non-increasing order of pi2. This rule
is optimal from the schedule length point of view. Thus, applying it to a selected subset of early jobs ensures

the shortest partial schedule length before a due date, the maximal machine utilisation and, consequently,

the optimal value of the total weighted late work criterion. Consequently, a proper selection of the first late

job and, then, early jobs are crucial elements in the solution process. Thus, after determining the best first

late job, to obtain an optimal solution, we select some early jobs and schedule them in Johnson’s order

before the first late one. Moreover, we use the fact that minimising the total weighted late work is
equivalent to maximising the total weighted early work.

In our approach, we consider each job as the first late job and settle remaining decisions, optimal for this

selection, by a dynamic programming method based on a recurrence function. For the sake of clarity, we

denote with bJn the job selected as the first late job and number the remaining jobs from bJ1 to bJn�1 in

Johnson’s order.

For the selected first late job bJn, we calculate initial conditions fnðA;B; t; aÞ, while for the remaining jobsbJn�1; . . . ; bJ1 a recurrence function fkðA;B; t; aÞ is determined. The function fkðA;B; t; aÞ denotes the maxi-

mum amount of early work of jobs bJk; bJkþ1; . . . ; bJn assuming that bJn is the first late job, the first job amongbJk; bJkþ1; . . . ; bJn starts on machine M1 exactly at time A and not earlier than at time B on M2. Moreover,

exactly t time units are reserved for executing jobs bJ1 to bJk�1 after bJn on M1 before the common due date d.
Finally, we assume that no job (a ¼ 0) or exactly one job (a ¼ 1) among bJ1 to bJk�1 is partially executed on

machine M1 after bJn before d. In consequence, f1ð0; 0; 0; 0Þ denotes the total weighted early work in the

system under the assumption that bJn is the first late job in the schedule.

In Section 3.1 we define the initial conditions, while in Section 3.2 the recurrence relations are presented.

Section 3.3 provides a general framework of the dynamic programming approach proposed together with

the complexity analysis.

3.1. Initial conditions

To find an optimal solution of the problem analysed, we have to consider each job as the first late job bJn.
The initial conditions fnðA;B; t; aÞ, determining the weighted early work in the system obtained by executingbJn as the first late job, can be formulated as follows:

if [(d � pn2 < B6 d and A6 d � pn1) or (d � pn1 � pn2 < A < d � pn1 and B6 d)] and 06 t6 d � pn1 � A and

a 2 f0; 1g, then

fnðA;B; t; aÞ ¼ wnpn1 þ wnðd �maxfAþ pn1;BgÞ; ð1Þ
if d � pn1 < A6 d and B6 d and t ¼ 0 and a ¼ 0, then
fnðA;B; t; aÞ ¼ wnðd � AÞ; ð2Þ

if otherwise, then
fnðA;B; t; aÞ ¼ �1: ð3Þ
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Fig. 3. The case study of the initial conditions for arbitrary parameter values.
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In Term 1, we assume that the first late job bJn is early on M1 and partially early on M2 (cf. Fig. 3(1)). In this

case, there still might be a job among bJn�1; . . . ; bJ1 which is partially early on M1 (processed after bJn but

before d), so the condition of Term 1 is valid for a 2 f0; 1g. Case 2 concerns the situation when job bJn is
only partially early on M1 and its second operation is late (cf. Fig. 3(2)). Consequently, no other job can be
partially early on M1 and the variable a has to be equal to 0 in the condition of Term 2. All other cases are

infeasible (Term 3), because job bJn would not be the first late one (e.g. Fig. 3(3)). Thus, we set the function

value representing the amount of the total weighted early work to minus infinity.

We determine the initial conditions presented above for all possible values of A, B, tð06A;B; t6 dÞ and
a 2 f0; 1g.

3.2. Recurrence relations

After determining the initial conditions values for a certain selection of the first late job bJn, we consider
all remaining jobs bJk in reverse Johnson’s order, for k ¼ n� 1; . . . ; 1 calculating the following recurrence

relations:

if Aþ pk1 6 d and maxfAþ pk1;Bg þ pk2 6 d, then
fkðA;B; t; aÞ ¼ maxffkþ1ðAþ pk1;maxfAþ pk1;Bg þ pk2; t; aÞ þ wkðpk1 þ pk2Þ; ð4Þ
fkþ1ðA;B; t; aÞ; ð5Þ
fkþ1ðA;B; t þ pk1; aÞ þ wkpk1; ð6Þ
maxffkþ1ðA;B; t þ T ; 1Þ þ wkT : 16 T < pk1and t þ T 6 dg for a ¼ 0g; ð7Þ
if Aþ pk1 > d or maxfAþ pk1;Bg þ pk2 > d, then
fkðA;B; t; aÞ ¼ maxffkþ1ðA;B; t; aÞ; ð8Þ
fkþ1ðA;B; t þ pk1; aÞ þ wkpk1; ð9Þ
maxffkþ1ðA;B; t þ T ; 1Þ þ wkT : 16 T < pk1and t þ T 6 dg for a ¼ 0g; ð10Þ
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Fig. 4. The case study of the recurrence function for arbitrary parameter values.
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if otherwise, then
fkðA;B; t; aÞ ¼ �1: ð11Þ

The first group of Terms 4–7 concerns the cases when job bJk can be executed totally early. The particular

situation, when bJk is scheduled totally early, is analysed in Term 4, depicted in Fig. 4(1). In Terms 8–10 we

consider the cases, when bJk must be late because the gap in a partial schedule where this job must be placed

according to Johnson’s order is too small. We take into account the situations when bJk is totally late (Terms

5 and 8, Fig. 4(2)), when it is early only on M1 (Terms 6 and 9, Fig. 4(3)) and, finally, when it is only

partially early on M1 (Terms 7 and 10, Fig. 4(4)).

In both cases, when bJk can and cannot be totally early, we choose the best variant of scheduling bJk
among all possible ones ensuring the optimality of the partial schedule obtained.

All other schedules (i.e. all other parameters values, e.g. such that job bJk is partially early on M2 being,

in this way, the first late job), are infeasible, which is taken into account in Term 11.

It is worth to be mentioned, that Terms 7 and 10 are calculated only if the variable a equals to 0. That

means, that because bJk is partially early on M1, no other job among the remaining ones bJk�1; . . . ; bJ1 can be

partially early on this machine. Moreover, the variable a equals 1 in the recurrence relation

fkþ1ðA;B; t þ T ; 1Þ called in those terms. That means, that from the point of view of jobs bJkþ1; . . . ; bJn
(already considered in the dynamic programming calculations), there is a job with a smaller index value
(i.e bJk), whose first operation is partially early on M1.
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Similarly as in the case of the initial conditions, we determine the recurrence relations presented above
for all jobs bJk, k ¼ n� 1; . . . ; 1, and all possible values of A, B, t (06A;B; t6 d) and a 2 f0; 1g. The
maximal value of the total weighted early work, which can be obtained in the flow-shop system assuming

that bJn is the first late job is given by f1ð0; 0; 0; 0Þ.
3.3. Dynamic programming method

To find an optimal solution of the problem analysed, we have to consider each job Ji as the first

late job bJn and determine the total weighted early work Fi ¼ f1ð0; 0; 0; 0Þ corresponding to this selection.
Job Ji for which Fi takes the maximal value is the optimal first late job J�. An optimal schedule is

constructed based on the dynamic programming calculations performed for this first late job J�. We

schedule all jobs selected as early ones before J� in Johnson’s sequence. Then, if it is the case, we place

jobs assigned to the interval between the end of J� on M1 and d, and, finally, we perform fully late jobs

in an arbitrary order after d. The general framework of the dynamic programming approach proposed

is given below.

J ¼ fJ1; . . . ; Jng;
for i ¼ 1 to n do

begin

set bJ ¼ J n fJig;
set bJn ¼ Ji as the first late job;
renumber jobs from bJ in Johnson’s order as bJ1; . . . ; bJn�1;

calculate initial conditions fnðA;B; t; aÞ for 06A;B; t6 d and a 2 f0; 1g;
for k ¼ n� 1 to 1 do

calculate recurrence relations fkðA;B; t; aÞ for 06A;B; t6 d and a 2 f0; 1g;
set Fi ¼ f1ð0; 0; 0; 0Þ as the total weighted early work subject to the first late job bJn (i.e. Ji)

end;

set F � ¼ maxi¼1;...;n fFig as the optimal total weighted early work;

set J� to be a job with Fi ¼ F �;
based on dynamic programming results for the first late job J� determine:

JE––the set of early jobs,

JP––the set of jobs performed between J� and d on M1,

JL––the set of late jobs;

construct an optimal schedule by:

executing jobs from JE in Johnson’s order followed by J�,
performing the first tasks of jobs from JP after J� before d onM1 (if JP contains a job partially early on

M1, then it is executed as the last one from set JP ; the sequence of remaining jobs from JP is arbitrary),
executing jobs from JL after d in an arbitrary order.

In the presented approach, the calculation of fkðA;B; t; aÞ for any job bJk takes time bounded by

pk1, where it is sensible to consider only jobs with pk1 ¼ OðdÞ. Because the value fkðA;B; t; aÞ is determined

for all possible values A;B; tð06A;B; t6 dÞ and a 2 f0; 1g, calculations for a particular selection of
the first late job takes Oðnd4Þ time. Thus, the analysis of all possible selections of the first late jobs re-

quires Oðn2d4Þ time. Choosing the best value among f1ð0; 0; 0; 0Þ corresponding to different first

late jobs ðOðnÞÞ and the construction of an optimal schedule ðOðn log nÞ, cf. [11]) do not change the

overall complexity of the approach. Thus, the dynamic programming method proposed has a pseudo-

polynomial time complexity and, consequently, problem F 2jdi ¼ djYw can be classified as binary NP-

hard.
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4. Conclusions

The paper presents some results of the research on the flow-shop scheduling problem with the total

weighted late work criterion, which yet has not been investigated in this machine environment. The pos-

sibility of a practical application of this performance measure in manufacturing systems modelled as the

shop ones makes this research field especially interesting (cf. [17]).

We have proved the binary NP-hardness of problem F 2jdi ¼ djYw showing the transformation from the

partition problem to this scheduling case. Moreover, we have proposed a dynamic programming approach
of pseudo-polynomial time complexity proving in this way the ordinary NP-hardness of this problem. Thus

the flow-shop case analysed has the same complexity status as the analogous scheduling problem in open-

shop environment O2jdi ¼ djYw [6]. Finally, owing to the fact that the flow-shop problem is a special case

of the job-shop one, where all jobs have exactly the same sequence of the execution on the machines, we

can state that problem J2jdi ¼ djYw is also NP-hard.
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