
Computers & Operations Research 35 (2008) 574–599
www.elsevier.com/locate/cor

Metaheuristic approaches for the two-machine flow-shop problem
with weighted late work criterion and common due date

Jacek Blazewicza, Erwin Peschb, Malgorzata Sternaa,∗, Frank Wernerc

aInstitute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
bInstitute of Information Systems, FB 5-Faculty of Economics, University of Siegen, Hoelderlinstrasse 3, 57068 Siegen, Germany

cFaculty of Mathematics, Otto-von-Guericke-University, PSF 4120, 39016 Magdeburg, Germany

Available online 5 May 2006

Abstract

In this paper, metaheuristic approaches for the two-machine flow-shop problem with a common due date and the weighted late
work performance measure (F2|dj = d|Yw) are presented. The late work criterion estimates the quality of a solution with regard to
the duration of the late parts of jobs, not taking into account the quantity of the delay for the fully late activities. Since the problem
mentioned is known to be NP-hard, three trajectory methods, namely simulated annealing, tabu search and variable neighborhood
search are proposed based on the special features of the case under consideration. Then, the results of computational experiments are
reported, in which the metaheuristics were compared one to each other, as well to an exact approach and a list scheduling algorithm.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Flow-shop; Late work criteria; Metaheuristic; Tabu search; Simulated annealing; Variable neighborhood search

1. Introduction

The rapid development of real-time systems makes the due date involving criteria especially useful and important,
increasing the interest devoted by researchers to this branch of the scheduling theory. The quality of solutions in real
systems is usually estimated from different points of view, which can be modeled by different performance measures
(cf. e.g. [1–4]).

The late work criteria are relatively new objective functions, which have not been so intensively explored as the
maximum lateness or tardiness ones, for example. They estimate the quality of a solution with regard to the number
of tardy units of particular activities executed in a system. The late work concept was introduced in the context of a
scheduling problem on identical parallel machines [5] and, then, applied to uniform [6] and single [7–13] machine
cases. Recently, practical motivations have directed the research to the shop environment, i.e. to systems with dedicated
machines [14–21].

For example, modern control systems [5] utilize a great amount of information on the managed environment, gathered
from different sensing devices. Hard real-time restrictions cause that some pieces of information are lost, if they are

∗ Corresponding author. Tel.: +48 61 6652982; fax: +48 61 8771 525.
E-mail address: Malgorzata.Sterna@cs.put.poznan.pl (M. Sterna).

0305-0548/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2006.03.021

http://www.elsevier.com/locate/cor
mailto:Malgorzata.Sterna@cs.put.poznan.pl

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 575

exposed beyond feasible periods, due to e.g. system overloading or failures. Any control algorithm has to work out
its steering strategy based only on the information available. The information loss, modeled as late work, should be
minimized in order to increase the accuracy and quality of a control process.

The late work minimization can be also considered at different levels of managing flexible manufacturing systems
[21]. These production environments usually work in a shift manner, which complicates planning a production. The
shift length, or more generally speaking, a planning horizon, may be considered as a common due date for all tasks
realized in a system. Activities which cannot be scheduled within a certain planning horizon, modeled as late work,
have to be assigned to the following ones. Obviously, planners tend to minimize late work, i.e. the amount of work
which has to be performed in the incoming planning slot in addition to orders newly appearing in a system. The late
work parameter allows to validate a production plan also from a slightly different point of view. Interpreting customer
orders as tasks to be executed, minimizing the late work is equivalent minimizing parts of orders, which are delayed.
Obviously, every customer is interested in minimizing late parts of his/her orders. Moreover, taking into account a fine,
which has to be usually paid for delays, an owner of a system is also concerned in minimizing financial loss caused by
the work not finished on time.

Other interesting applications for the late work criteria arise in agriculture. The late work models, in a very natural
way, all issues concerning perishable goods [12]. Modeling stretches of land with tasks, one can consider the process of
collecting crops as a late work minimization problem. Particular stretches of land differ in their climate and soil condi-
tions, which influence a feasible interval for harvesting. Crops perish, if they are not collected before a given deadline,
causing a financial loss. Minimizing late work is equivalent to minimizing the amount of wasted crops, which are not
harvested on time. Moreover, the late work criteria can also support optimizing a process of land cultivation, requiring
delivering different fertilizers and plant protection substances [16,21]. Particular stretches of land correspond to jobs,
while different cultivation actions, which should be performed for these stretches, are represented by tasks constituting
jobs. Obviously, particular actions have to be done with certain specialized agriculture machines, and nature conditions
determine time intervals in which they should be completed. The actions not performed before a given deadline have
to be abandoned (e.g. spreading fertilizers at a certain vegetation stage is forbidden) influencing the quantity of crops.
Minimizing the amount of cultivation actions not executed on time is indirectly equivalent to minimizing the loss in
the income from harvesting.

Finally, it is worth to be mentioned that the late work idea is a special case of the imprecise computation model
(cf. e.g. [20]), in which tasks are divided into two parts: a mandatory and an optional one. This model has its own
extensive application field, especially in real-time systems (e.g. flight control systems).

In this paper, we continue the research [17,18] on the two-machine flow-shop problem with the weighted late
work criterion and a common due date, which is known to be NP-hard [22], presenting metaheuristics approaches
for its solution. In Section 2, the formal definition of the case under consideration is given. In Section 3, the tabu
search, simulated annealing and variable neighborhood search methods are described, while Section 4 contains
the results of computational experiments performed for these search strategies. Some conclusions are given
in Section 5.

2. Problem formulation

The two-machine flow-shop problem with the weighted late work criterion and a common due date, F2|dj = d|Yw,
concerns the scheduling of a set of jobs J = {J1, . . . , Jj , . . . , Jn} on two dedicated machines M1, M2. Each job Jj

has to be performed first on machine M1 and then on M2 for p1j and p2j time units, respectively. Each machine can
process only one job at any time and, analogously, each job can be executed by only one machine at any time. We look
for a non-preemptive schedule minimizing the late work in the system, i.e. minimizing the amount of work executed
after a given common due date d .

Denoting by Cij the completion time of job Jj on machine Mi , the late work Yj for this job is determined as
(cf. Fig. 1):

Yj =
∑

i=1,2

min{max{0, Cij − d}, pij }.

576 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

p1j

Yj

p2j

JjM1

M2 Jj

d C1j C2j

Fig. 1. The late work parameter Yj for job Jj in the two-machine flow shop environment.

The criterion value to be minimized, estimating the quality of a complete schedule for the whole set of n jobs, taking
into account their given weights wj , j = 1, . . . , n, is determined as:

Yw =
n∑

j=1

wjYj .

Problem F2|dj = d|Yw stated above is NP-hard [17], since a polynomial transformation was constructed from the
set partition problem to its decision counterpart. Moreover, it cannot be NP-hard in the strong sense, because a dynamic
programming (DP) method with pseudo-polynomial time complexity, O(n2d4), was proposed. This exact approach
is important mainly from a theoretical point of view, because it determines the complexity status of the case under
consideration, as NP-hard in the ordinary sense.

The theoretical studies on problem F2|dj = d|Yw were followed by the computational analysis of exact methods
solving it [18]. The complex DP approach was compared to an enumerative approach in order to validate its correctness
in practice, as well as to validate their efficiency. Unfortunately, DP found optimal solutions in reasonable time only
for small problem instances. Thus, to solve the problem efficiently, heuristic approaches had to be proposed. First, a
list scheduling method was implemented for the problem under consideration and compared to DP and enumerative
algorithms. The list approach is a scheduling technique commonly used, especially for practical applications, because of
its ease of implementation and the low time complexity. The computational experiments showed a very high efficiency of
the list scheduling algorithm from the run time and the solution quality points of view in comparison to exact strategies.
This heuristic constructed solutions with a criterion value of only 2.5% worse, on average, than the optimum. The
high efficiency of the list approach resulted from the particularities of the problem under consideration, whose optimal
solution has a very specific structure.

Taking into account the encouraging results of the list scheduling algorithm, it was interesting, whether a further
improvement of the solution quality could be obtained by extending this approach with an additional search engine,
i.e. by proposing metaheuristic methods.

3. Metaheuristic approaches

In this paper, we present three metaheuristics (cf. e.g. [23,24]) for problem F2|dj = d|Yw, i.e. simulated annealing
(SA), tabu search (TS) and variable neighborhood search (VNS) methods. Similarly to the DP approach [17] and the list
scheduling algorithm [18], these approaches are based on the specific structure of an optimal solution of the problem
under consideration. It was proven [17,21] that in an optimal schedule, the set of early jobs, executed before a common
due date, has to be sequenced in Johnson’s order [25], which is optimal from the schedule length point of view. Thus,
any method solving problem F2|dj = d|Yw (cf. Fig. 2) has to select the first late job (L1) in the system and to divide
the remaining activities into two sets of early (E) and late jobs (L). Early jobs are scheduled by Johnson’s algorithm,
while the late activities are executed in non-increasing order of their weights wj . In consequence, the crucial element of
any method solving the problem is taking the decision whether a particular job is processed early or late in a schedule.

The metaheuristic approaches investigated (SA, TS and VNS) are trajectory methods, which start their search from
a certain initial solution and explore the solution space by moving from a current solution to a new one, picked up from
its neighborhood, until the termination condition is met.

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 577

M1

M2

E

L1E

L

L

L1

d

the set of early jobs in
Johnson’s order

the first late job
the set of late jobs in non-increasing order
of their weights

Fig. 2. The general structure of an optimal solution for problem F2|dj = d|Yw (with the first late job partially late on machine M2).

3.1. Initial solution and termination condition

For all metaheuristic approaches proposed, the initial solution is determined either by Johnson’s algorithm or by the
list scheduling algorithm.

Johnson’s method, designed for problem F2‖Cmax [25], can be applied as a simple heuristic for the case under
consideration, F2|dj = d|Yw. It orders jobs with a task on machine M1 no longer than on M2, i.e. with p1j �p2j , in
non-decreasing order of p1j , while the remaining jobs, with p1j > p2j , are sequenced in non-increasing order of p2j .
Because of the need of sorting jobs, the complexity of Johnson’s method is bounded by O(n log n).

On the contrary, the list scheduling algorithm is a constructive method, which builds a solution by executing jobs,
selected according to a given priority dispatching rule [26], one by one on machines. Based on the results obtained
within the previous research [18], the maximum weight rule was applied, since it allowed constructing schedules of
highest quality. The framework of this procedure, which works in O(n2 log n) time, is presented below.

Step 1: set F = ∅ and A = J , where F and A denote the set of executed and available jobs, respectively; set R = ∅,
where R denotes the set of feasible schedules constructed by the algorithm;

Step 2: if A = ∅ then go to Step 5;
Step 3: take a job Ĵ1 from A with the maximum weight and set A = A\{Ĵ1}; set F = F ∪ {Ĵ1} and schedule F with

Johnson’s algorithm obtaining solution S; if the schedule length of S exceeds d, then set R = R ∪ {S} assuming that
the jobs in A are late; if S is the first feasible solution found, then go to Step 4, otherwise go to Step 2;

Step 4: for each Jx ∈ A schedule F\{Ĵ1} ∪ {Jx} by Johnson’s algorithm and execute jobs from A\{Jx} ∪ {Ĵ1} late
obtaining solution S; if the schedule length of S exceeds d, then set R = R ∪ {S}; go to Step 2;

Step 5: select the best schedule from R to be the final solution and stop.

Since two methods of determining the initial solution are available, it is possible for the metaheuristics to start the
solution space exploration from two different points, which may lead to final schedules of a different quality.

In the research reported, the search is terminated after exceeding a certain run time limit or after exceeding a given
number of iterations without an improvement in the quality of a schedule.

3.2. Neighborhood structures

As it was mentioned, a solution of problem F2|dj = d|Yw is described as a sequence (E, L1, L), where E denotes
the set of early jobs scheduled in Johnson’s order, L1 is the first late job (executed partially late either on M1 or on M2)
and L denotes the set of late jobs performed in non-increasing order of their weights. This feature of an optimal solution
is the basis for the neighborhood structures applied within all three metaheuristics considered in this paper. In order to
explore the solution space two move definitions were proposed which involve a job shift (N1) and an interchange of
jobs (N2).

According to the first move strategy, N1, a new solution is generated by selecting a late job in a current schedule
and shifting it to the set of early activities. Since all early jobs are scheduled in Johnson’s order, it might happen that
the position of the selected activity in the new Johnson’s sequence does not ensure executing it totally early. In such a
situation, it is necessary to move some early jobs preceding the chosen one in Johnson’s sequence after the common
due date d. On the other hand, after these modifications, some late jobs succeeding the selected activity in Johnson’s
order might need shifting before d to complete a schedule. The selection of particular activities may be done at random
(selection rule S1) or according to the weighted processing times of the jobs (selection rule S2). This leads to two

578 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

different neighborhood variants, which can be applied within metaheuristics. The idea of move N1 is sketched
below.

Step 1: move a job Jj selected from L ∪ {L1} to the set E and calculate Johnson’s schedule for E;
Step 2: if the job Jj is late in the new subschedule for E, then move to the set L some early jobs Ji selected in

non-decreasing order of (p1i + p2i)wi values or at random, until Jj becomes early or there are no more early jobs in
E to be moved to L;

Step 3: add to the subschedule for E some jobs Ji from the set L ∪ {L1} succeeding Jj in Johnson’s order, selected
in non-increasing order of (p1i + p2i)wi values or at random, until the last job in E exceeds the common due date d

becoming L1;
Step 4: remove the job included to E as the last one and re-include it into L, then try all jobs from L as the first late

job and select as L1 the job for which the best criterion value has been obtained;
Step 5: schedule all late jobs Ji from the set L in non-increasing order of wi values.

Based on the definition of move N2 provided below, a new schedule is obtained by choosing a pair of jobs (one
from the set of late ones and one from the set of early ones) and interchanging them between these sets. The further
modification of a solution is performed in a similar way as for move N1.

Step 1: move a job Jj selected from the set E to the set L and disable it (i.e. exclude it from the further analysis,
such that Jj cannot become early in Step 2);

Step 2: apply move N1 to a job Ji selected from the set L ∪ {L1}.
The schedule modification for moves N1 as well as N2 requires the application of Johnson’s algorithm, which takes

O(n log n) time. In consequence, both types of moves, enabling the exploration of the solution space, are performed in
O(n log n) time.

3.3. Simulated annealing method

The SA method proposed in the paper is based on the classical framework of this metaheuristic (cf. e.g. [23,24,27]),
and it can be sketched as follows.

set the iteration number i to 0;
construct an initial schedule S0;
set an initial temperature T0 based on the total processing time of the jobs;
set S0 to be the current solution S;
while termination conditions are not met do

select at random a solution Ŝ from the neighborhood Nk(S);
calculate the change in the criterion value �Yw = Yw(Ŝ) − Yw(S);
if �Yw < 0, then replace S by Ŝ else replace S by Ŝ with probability P(�Yw, Ti);
update temperature Ti according to the cooling scheme Q;
set i = i + 1.

The algorithm starts the search from an initial solution S0 with an initial temperature T0, whose value is set to
the multiplied total processing time of the jobs (where the multiplication factor is a control parameter). The initial
temperature is settled with regard to the number of jobs in order to adjust the search process to the size of a problem
instance. For larger instances, the solution process can last longer, which may increase the quality of a final solution.
At each iteration numbered with i, the method constructs a new solution Ŝ from a current one S according to the
move definition N1 or N2, by shifting or interchanging jobs, respectively. This means that SA, performing move N1
or N2, picks at random one solution Ŝ from the neighborhood of the current solution S, Nk(S), where k ∈ {1, 2}.
The move configuration, i.e. the move type and the job selection rule within the move (cf. Section 3.2), are control
parameters for the SA algorithm. If the new schedule improves the criterion value (i.e. if Yw(Ŝ) − Yw(S) < 0, where
Yw(s) denotes the criterion value for a schedule s), then it is accepted, otherwise it replaces the previous solution with
a probability depending on the criterion value deterioration �Yw and the current temperature value at the ith iteration
Ti , i.e. with P(�Yw, Ti) = exp(−�Yw/Ti). At the end of each iteration, the temperature is decreased according to a
geometric reduction scheme Q, i.e. Ti+1 =�Ti , where � ∈ (0, 1) is a control parameter. The preliminary computational

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 579

experiments showed that a arithmetic reduction scheme (Ti+1 = Ti − �) is much less efficient for the problem under
consideration, so it has been excluded from the further experimental analysis. SA finishes its search after reaching the
termination condition mentioned in Section 3.1 or after decreasing the temperature to zero (more precisely speaking,
to a value small enough).

3.4. Tabu search method

The TS method implemented for problem F2|dj = d|Yw follows the classical scheme of this approach (cf. e.g.
[23,24,28]) as it is sketched below.

construct an initial schedule S0;
set S0 to be the current solution S;
initialize tabu list T ;
while termination conditions are not met do

determine C as the neighborhood Nk(S, �) restricted to the solutions without tabu status;
replace S with the best solution Ŝ from C;
update tabu list T .

In the TS algorithm, a new solution Ŝ is selected as the best not forbidden schedule from the neighborhood Nk(S)

generated from a current schedule S by applying move N1 or N2. The complete neighborhood N1(S) contains all
schedules obtained by shifting every late job in S early, while the complete neighborhood N2(S) consists of solutions
determined by interchanging every early job with every late job in S. However, it is possible to run the TS method with
the restricted neighborhoods, Nk(S, �), in which only � percent of jobs are considered for shifting or interchanging in
particular definitions of a move. Obviously, for � = 100% the complete neighborhood is generated. In the restricted
neighborhoods with � < 100%, the jobs for shifting and interchanging are chosen at random. As we have mentioned,
the best not forbidden schedule generated from the neighborhood becomes the starting point for the next iteration. In
order to prevent the TS method from returning to the solutions already visited, the move leading to the schedule newly
accepted is stored in the tabu list T . The attempt to reverse this move will cause the tabu status for related solutions in
the neighborhoods which are considered in the following iterations. Consequently, only solutions without tabu status
(constituting a candidate set C) are taken into account in the search process. The tabu list is managed according to the
first in first out rule (FIFO) and its length is determined with regard to the number of jobs (as the multiplied cardinality
of the set of jobs). The TS method stops after reaching the termination condition mentioned in Section 3.1 or when
there is no solution in the neighborhood without the tabu status.

3.5. Variable neighborhood search method

The VNS method is a strategy using a local search algorithm and dynamically changing neighborhood structures (cf.
e.g. [23,24,29]). The general idea of this approach applied within the presented research is given below.

construct an initial schedule S0;
set S0 to be the current solution S;
while termination conditions are not met do

set k = 1;
while k�3 do begin

pick at random S′ from the neighborhood Ňk(S);
improve S′ to S′′ with the TS or SA algorithm starting from a schedule S′ as an initial solution;
if Yw(S′′) < Yw(S), then replace S with S′′ and set k = 1,
else set k = k + 1.

The VNS algorithm starts the search from an initial schedule S0 as the current schedule S and it repeatedly applies
three neighborhood definitions Ňk(S), k = 1, 2, 3. Particular neighborhoods Ň1(S), Ň2(S), Ň3(S) have an increasing
cardinality, i.e. |Ň1(S)| < |Ň2(S)| < |Ň3(S)|. Ň1(S) is determined as the complete neighborhood N1(S) obtained by
shifting all late jobs in S before the common due date (cf. Section 3.4), while Ň2(S) and Ň3(S) correspond to the

580 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

neighborhood N2(S) restricted to schedules obtained by interchanging only �2 and �3 percent of early jobs and late
jobs, where �2 < �3. The values �2 and �3 are obviously control parameters of the VNS method.

At every iteration, VNS picks at random a solution S′ from the neighborhood Ňk(S) generated from a current solution
S. This selected schedule becomes the starting point for a local search method. The role of this local search procedure
is played by the SA or the TS algorithm. That results in two versions of the variable neighborhood method: VNS–SA
and VNS–TS, respectively. If a solution generated by the local search procedure, S′′, improves the criterion value, then
it is accepted and VNS returns to the first neighborhood definition. Otherwise, the local search is restarted from another
neighbor solution generated according to the next neighborhood definition. The VNS algorithm finishes the solution
space exploration after reaching the termination conditions mentioned in Section 3.1. Obviously, because the method
calls SA or TS as a subprocedure, which performs a certain number of its own iterations, the number of VNS iterations
without an improvement, as the termination condition, has to be set to a rather small value.

4. Computational experiments

Computational experiments performed within the reported research were devoted to comparing the efficiency of
particular metaheuristic methods, as well as to evaluating the quality of their solutions with regard to optimal schedules.
Moreover, the analysis of the test results made it possible to determine some specific features of the approaches proposed.
The main computational experiments were obviously preceded by a careful tuning process (cf. e.g. [30,31]), during
which we tested the efficiency of the metaheuristics for different values of control parameters in order to determine
their best settings. The results of these preliminary experiments are summarized in Section 4.1. Then, in Section 4.2,
the tuned metaheuristics are compared one to each other for large problem instances, as well as to the exact methods
for small problem instances in Section 4.3.

4.1. Tuning of metaheuristic methods

In the process of tuning of all three metaheuristics, we used Johnson’s algorithm to obtain the initial solution.
Obviously, the list scheduling algorithm generated initial schedules of a higher quality than Johnson’s one. Hence
we used the list scheduling method in the main phase of the computational experiments, when the highest possible
efficiency of the algorithms implemented was required. But during the tuning process, we wanted to check sensitivity
of the methods to different settings of control parameters. Starting the search from a slightly worse solution (Johnson’s
one) we made some dependencies between control parameters values and the efficiency of the algorithms more visible.
(The detailed results of computational experiments performed within tuning process can be found in [19].)

4.1.1. Tuning of simulated annealing
The main objective of the tuning process for SA, as well as for the remaining metaheuristics, was to determine

the setting of the control parameters that ensures the highest method efficiency in terms of the solution quality. The
preliminary tests for SA showed that an arithmetic cooling scheme is much less efficient than a geometric one. Therefore,
the following experiments for SA were performed only for this latter (geometric) cooling rule.

At the first phase of the tuning process, we used a time limit equal to 1 or 3 s, respectively, as the termination condition
(then the number of iterations without an improvement was taken into account). For both termination values, we used
different values of the initial temperature T0 (equal to the total processing time of the jobs multiplied by factor 10, 20,
50, 100) and a cooling factor � equal to 0.9, 0.95, 0.999. For each pair of these parameters, we tested two possible
moves N1 (shifting a late job early) and N2 (interchanging an early job with a late one) with two selection rules applied
within them (the random rule S1 and the rule based on the weighted processing times of the jobs S2).

Based on the solution quality improvement with regard to an initial schedule, we observed that the selection rule S2
involving the weighted processing times of the jobs always dominated the random rule S1 ensuring a larger improvement
of the criterion value (9.72% vs. 3.33%). Moreover, the lower standard deviation value showed that the rule S2 was more
stable than S1 (0.3% vs. 2.61%). Comparing the two types of moves N1 and N2, one could conclude that the move based
on interchanging jobs (N2) was slightly less efficient than the move shifting a late job early (N1). However, the smaller
average criterion improvement obtained for N2 for all tests (6.26% vs. 6.79%) was caused by the very poor quality
of schedules generated only with the random rule S1. Taking both move components into account, we observed that
solutions constructed by interchanging two jobs selected at random, N2 + S1, were much worse in terms of a solution

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 581

improvement (2.56% vs. 4.11%) than schedules obtained by N1 + S1, shifting a single activity selected at random
early. On the contrary, for the weighted rule, N2 + S2 dominated N1 + S2, but the difference between them was very
small (9.96% vs. 9.47%). The most important observation was that a current solution modification by interchanging
jobs selected according to their weighted processing times (N2 + S2) always guaranteed the highest criterion value
improvement for all possible settings of the remaining control parameter values.

The test results for the two termination conditions used in the experiments (i.e. 1- or 3-s time limit) showed rather
weak influence of this termination value on the quality of the solutions (5.82% vs. 7.23%). For worse move + rule
configurations, the higher time limit ensured a slightly better method performance of the method than the lower time
limit. This analysis showed that the move type and especially the selection rule applied within the move influenced the
behavior of SA most.

Looking at the time moment at which SA found the best solution, we saw that using the rule S2, the method achieved
the final solution faster than using S1 (independently of the move type). As we could expect, the rule S2 based on the
instance description, i.e. on the weighted processing times of the jobs, appeared to be more efficient than the random
rule S1. It modified solutions in a systematic way leading the search to a local optimum more easily. In the experiments
for S2, the best solution was found quite early, after about 16% and 10%, respectively, of iterations, depending on the
move type. It never happened that the method constructed the best schedule just before its termination (at most after
about 67% of iterations). On the contrary, the random character of the rule S1 spread the search within the solution
space—the final schedule was generated after about 64% and 44%, respectively, of iterations, depending on the move
type. Sometimes, the best solution was determined even in the last step of SA. On average, the SA method found the
best schedule quite fast, after about 34% of iterations, because initial solutions were rather close to the optimum. For
this reason, the metaheuristic fell into a local optimum quite easily.

The temperature analysis confirmed the conclusions already formulated. In 87.5% of tests, the method using rule S2
stopped because of cooling the system down. In the remaining cases, the final temperature was nearly equal to zero. SA
with S2, independently of the move variant, constructed a good solution at early steps of the search, and it was usually
terminated by the cooling mechanism, before exceeding the time limit. On the contrary, with the random selection rule
S1, the system was cooled down in only about 4% and 16%, respectively, of tests (depending on the move type). In
the remaining tests, the method was stopped because of consuming all computation time allowed and the temperature
decreased to about 30% of the initial value. Using the random rule, SA generated solutions of various quality and
performed more time-consuming undirected search in the solution space, than applying the weighted processing time
rule S2. On average, for nearly 49% of the tests the SA finished because of cooling the system down (i.e. as we have
mentioned, mostly for the rule S2).

The earlier research on problem F2|dj = d|Yw (cf. [18]) showed that heuristic solutions, based on the special
features of an optimal solution, were very close to it in terms of the criterion value. This fact was confirmed by the
quality of the solutions generated by SA in the tuning process. Most solutions constructed by SA at particular it-
erations (about 78%) were worse than the current schedule. An initial solution quality close to the optimum really
made an improvement of the criterion value very difficult and rare. For the rule S2, the initial schedule was improved
at early iterations and a further decrease of the late work criterion was rather unlikely (about 95% of worse solu-
tions). In the case of the random rule S1, a current schedule was improved more often (in about 60% of iterations),
because the method did not converge to a local optimum as fast as for S2. It generated and accepted worse solutions
and, then, improved them again, however, the final solution was usually worse than the one obtained with the S2
rule.

The higher convergence of SA applying the rule S2 instead of S1 was additionally confirmed by the number of
worse solutions which were accepted during the search. For rule S2, this number was equal to only about 6% of worse
solutions. Because SA found the best schedule relatively early, the system cooled down fast, and the low temperature
prevented it from accepting bad schedules. In the case of the random rule S1, solutions of poor quality appeared very
often at the beginning of the search, when the temperature and the probability of their acceptance were high (about
76% and 68%, respectively, of acceptances, depending on the move type).

In consequence of the fast convergence to a local optimum observed for SA with the rule S2, its average iteration time
was much shorter than for the rule S1. SA with S2 generated a good solution at the beginning of the search. Because
schedules constructed in the later steps were usually worse than the current one and the criterion value deterioration
made their acceptance very unlikely, most of them were rejected. As we have already mentioned, for the random rule
S1, the search process was less stable and more time consuming. Hence, SA with S2 required only about 50 �s per

582 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

iteration, while SA with S1 consumed about 15 ms. The difference in the computational times between S1 and S2 results
mainly from the implementation issues. In the implementation used, accepting a new solution (more often for S1) is
much more time consuming than rejecting it (more often for S2). Moreover, selecting jobs according to the weighted
processing time rule (S2) is supported by some specialized fast data structures, which could not be applied for the
random selection rule (S1).

Taking into account the very vague differences among particular control parameter settings, we performed additional
computational experiments for the best move configuration with another termination condition—a given number of
iterations without an improvement. The average run time equal to 0.15 s showed that the 3-s time limit used in the
previous stage of the experiments was sufficiently long. Moreover, in 69.8% of tests, the system stopped with zero
temperature. This means that the new termination condition used was large enough to cool the system down. Changing
the termination condition from the time limit to the number of iterations without an improvement caused that the
number of iterations to the best solution increased from 17% to about 50% of the total number of iterations. In the case
of a time limit, the total number of iterations was larger because the method continued the search without improving
the solution, till consuming the whole computation time assigned to it.

Finally, based on a careful analysis of the results of the tuning process, we selected the following values of control
parameters for the SA method:

• the solution modification based on the move interchanging jobs selected with the weighted processing time rule:
N2 + S2;

• the termination condition set as the number of iterations without an improvement 5 times as large as the number of
jobs;

• the initial temperature 20 times as large as the total processing time of the jobs;
• the geometrical cooling scheme with a cooling factor equal to 0.933.

4.1.2. Tuning of tabu search
The TS method is a trajectory method constructing a set of neighborhood solutions at each iteration instead of

generating a single solution as the SA approach does. Similarly as for SA, we performed the tuning process using
Johnson’s solution as the initial one, with a run time limit set to 1 or 3 s and with different neighborhood definitions
based on shifting a job (N1) and an interchange of two jobs (N2) with the random selection rule (S1) or the rule
based on the weighted processing times of the jobs (S2). Moreover, during the tests either the whole neighborhood
was investigated or the number of shifted/interchanged jobs was restricted to a certain percent of a total number of
candidate jobs (�). Finally, various lengths of tabu list was investigated, determined as a percentage of the number of
jobs in the system.

In the case of the TS method the dominance of the selection rule S2 (based on the weighted processing times of
the jobs) over the random rule S1 was not so visible as for the SA algorithm. Nevertheless, the selection rule based
on the instance description S2 ensured a slightly higher solution quality than the random one (15.61% vs. 14.29%).
Moreover, S2 was much more stable than S1 in terms of the standard deviation (0.59% vs. 2.02%). These results
disclosed the differences between TS and SA. Since SA constructed a single solution at each iteration, the quality of the
current solution influenced significantly the quality of the final one. The schedule modification based on the instance
features (i.e. on the weighted processing times of the jobs) resulted in a better current solution and, consequently, in a
better schedule being the result of the whole search process. In the case of TS, a whole set of neighborhood solutions
was constructed at a single iteration, and a new current solution was selected from this set. Therefore, the procedure
according to which jobs are chosen to build new schedules did not influence the quality of a new current solution as
much as one could observe for the SA method. Taking into account the fact, that the initial solution of the problem
under consideration was not far from the optimum, different move concepts resulted in similar neighborhoods. Thus,
the efficiency of particular selection rules S1 and S2 applied within TS appeared to be nearly alike. Similar conclusions
were drawn from the comparison of the two neighborhood concepts proposed. The move N2 of interchanging jobs
resulted in only slightly better schedules than the move N1 of shifting a selected job early (15.39% vs. 14.51%).

As for the SA approach, the comparison of particular combinations of the move and the selection rule showed that
interchanging jobs selected according to their weighted processing times (N2 +S2) always ensured the highest solution
quality, independently on other control parameter settings of the algorithm, which was indicated by the zero standard
deviation.

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 583

Furthermore, similarly as for SA, the influence of the time limit on the solution quality was not significant. TS with
N2 and S2, which appeared to be the best neighborhood configuration, generated exactly the same results within the 1-
and 3-s time limits. For worse control parameter settings, the longer run time resulted in a slightly higher improvement
of the criterion value.

Comparing the percentage of the number of iterations till the moment when the best solution was determined, we
noticed that for the neighborhood N2 + S2, a final solution was found very fast, i.e. at the beginning of the search. The
move interchanging early and late jobs taking into account their weighted processing times constructed good solutions,
which could be hardly improved in the following iterations. For the remaining move + rule configurations reaching the
local optimum was more difficult and the best solutions were found in the later iterations of the search process.

The influence of the move type applied within the procedure constructing a neighborhood on the search process
was better visible, when the number of solutions analyzed per single iteration was investigated. Interchanging jobs,
independently of the rule selecting those jobs, lead to a larger number of distinct neighbor solutions than moving some
late activities early. It is obvious that there were at least as many pairs of early and late jobs to be interchanged (N2)

as late jobs to be moved early (N1).
In the additional computational experiments of the tuning process, the termination condition was determined by the

number of iterations without an improvement. Since the average run time was equal to 0.199 s, we could state that the
3-s time limit used in the previous experiments was large enough similarly as for the SA algorithm.

Taking into account all computational experiments, we selected the following control parameter values as the result
of the tuning process for the TS method:

• the neighborhood generated by interchanging jobs based on the weighted processing times of the jobs, N2 + S2;
• the neighborhood generated from 33% of candidate jobs;
• the termination condition set as the number of iterations without an improvement equal to the doubled number of

jobs;
• the tabu list length equal to 300% of the number of jobs.

It is worth to be mentioned, that the rather large tabu list length chosen resulted from the specificity of the problem
under consideration. Taking into account the fact that the initial solution was nearly optimal, we could not allow the
method to return to a solution already visited, if we wanted to force it to get closer to the optimum.

4.1.3. Tuning of variable neighborhood search
In the preliminary experiments for the variable neighborhood method, we used the SA or the TS as a local search

procedure, using the control parameter settings determined in the tuning process reported in Sections 4.1.1 and 4.1.2,
respectively. Actually, there are only two parameters controlling the behavior of the VNS method implemented: the
termination condition and the neighborhood configuration.

The termination condition decides how many times the main loop of the algorithm is performed and it does not
influence the termination condition of an embedded local search procedure. Taking into account the good quality of the
initial solution and the high efficiency of SA and TS used as a subroutine, enforcing long-lasting runs of VNS seems
to be pointless. Therefore, during the tuning process, the VNS termination condition was settled to only one, two or
three iterations without an improvement.

The VNS method is based on the same neighborhood definitions, which are applied within SA and TS. In order to
lead the search from a narrower to a wider neighborhood, VNS starts with the neighborhood shifting a job (N1) and,
then, it passes to two neighborhoods interchanging jobs (N2). The size of these neighborhoods is controlled by the size
of the set of jobs being candidates for shifting/interchanging. For example, the first neighborhood (based on the move
N1) can be generated for all candidate jobs (100%), the second neighborhood (based on the move N2) interchanges
20% of the number of candidate jobs, and the third neighborhood (based on the move N2 too) interchanges 50% of the
number of candidate jobs.

The tuning process showed that the VNS method was insensitive to the control parameter settings. VNS with SA as
well as with TS found the best solution in its first iteration, that means after the first run of the embedded local search
method. In consequence, particular sets of control parameters could not be distinguished from the efficiency point of
view. The time efficiency obviously reflected the termination condition—the larger the number of iterations without an
improvement, the longer the run time of the method. Taking into account the fact that the initial solution was close to
the optimum as well as the efficiency of the TS and SA method, a further solution improvement by the VNS algorithm

584 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

was very difficult to be obtained. It was rather unlikely to found significantly better schedules by restarting SA or TS
from different initial points in this case. Thus, in the main experiments, we decided to use the control parameter setting
ensuring the highest degree of freedom for the VNS method, i.e.:

• the termination condition set to three iterations without an improvement,
• the neighborhood configuration with the candidate sets restricted to 100%, 50%, 100% of the number of candidate

jobs.

4.2. Comparison of metaheuristic methods

In order to compare the efficiency of particular metaheuristics one to each other as well as to the list scheduling
approach (LA), we analyzed 20 instances of the problem under consideration with the number of jobs equal to 20
and 200 (two instances for each number of jobs), as well as 50, 80, 110 and 140 (four instances for each number of
jobs). For each test instance, particular metaheuristic methods were run four times: starting from Johnson’s schedule
or from the list schedule as the initial solution, and with a limited number of iterations without an improvement or with
a time limit as the termination condition. The remaining control parameter settings were determined during the tuning
process.

In general (cf. Table 1), the best average efficiency was achieved by SA and VNS–SA. TS and VNS–TS behaved
quite well when the search started from a list schedule. LA confirmed its good performance observed within the
former research on the flow-shop problem (cf. [18]). In order to compare the efficiency of the metaheuristic methods
implemented more deeply, we restricted the analysis to only those instances for which a particular method did not find
the best solution (cf. Table 2).

SA and VNS–SA were not the best metaheuristic only for one or two instances depending on the control parameter
values, for these tests TS or VNS–TS were more efficient. However, in the cases mentioned, the quality of SA and
VNS–SA solutions differed from the best result of only fractions of per mill. On the contrary, TS and VNS–TS were
less efficient than SA and VNS–SA for about 10 instances, generating solutions of about 72 and 2.52 worse starting
from Johnson’s and the list schedule, respectively.

Taking into account the best results of particular metaheuristics among the four runs mentioned above, these methods
were able to improve the list solution in 70% of the tests (14 instances among 20) with 2.822 on average. The smallest
improvement was equal to 0.22, while the maximum one equals 6.82. Taking into account the fact that the list
scheduling algorithm generated solutions of a very high quality, i.e. a nearly optimal one, the further improvement
achieved by the metaheuristic methods should be regarded as a considerable one, especially, taking into account the
rather simple structure of these methods and their short run time. The computational experiments showed that even a
very good schedule can be still improved without a huge time effort, by performing a systematic search in the solution
space.

Table 1
The distance to the best criterion value for particular instances (for 20 tests) for the list scheduling algorithm and the metaheuristics starting from
Johnson’s schedule (J) or a list schedule (L) with the number of iterations without an improvement and a 5-s time limit as the termination condition

Distance to the
best result in (2)

LA SA(J) SA(L) TS(J) TS(L) VNS–SA(J) VNS–SA(L) VNS–TS(J) VNS–TS(L)

No. of iterations Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 1.98 0.01 0.05 3.69 1.18 0.03 0.00 3.40 1.16
Maximum 6.80 0.15 0.74 31.72 6.80 0.70 0.00 31.72 6.80
Standard deviation 2.04 0.03 0.17 7.72 1.87 0.15 0.00 7.54 1.89
No. of tests among 20 6 19 18 10 10 19 20 10 11
with the best result

5-s time limit Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 1.98 0.00 0.00 3.67 1.21 0.00 0.00 3.34 1.16
Maximum 6.80 0.00 0.00 31.72 6.80 0.00 0.00 27.59 6.80
Standard deviation 2.04 0.00 0.00 7.73 1.86 0.00 0.00 6.73 1.89
No. of tests among
20 with the best
result

6 20 20 10 9 20 20 9 11

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 585

Table 2
The distance to the best criterion value for particular instances for the list scheduling algorithm and the metaheuristics starting from Johnson’s
schedule (J) or a list schedule (L) for two termination conditions restricted to those instances for which a particular method did not find the best
solution

Distance to the
best result in (2)

LA SA(J) SA(L) TS(J) TS(L) VNS–SA(J) VNS–SA(L) VNS–TS(J) VNS–TS(L)

No. of iterations Minimum 0.20 0.15 0.20 0.15 0.20 0.70 0.00 0.38 0.20
Average 2.82 0.15 0.47 7.37 2.37 0.70 0.00 6.81 2.59
Maximum 6.80 0.15 0.74 31.72 6.80 0.70 0.00 31.72 6.80
Standard deviation 1.89 0.00 0.27 9.59 2.05 0.00 0.00 0.95 0.21
No. of tests among 20 14 1 2 10 10 1 0 10 9
without the best result

5-S time limit Minimum 0.20 0.00 0.00 0.28 0.20 0.00 0.00 0.28 0.20
Average 2.82 0.00 0.00 7.34 2.21 0.00 0.00 6.06 2.59
Maximum 6.80 0.00 0.00 31.72 6.80 0.00 0.00 27.59 6.80
Standard deviation 1.89 0.00 0.00 9.61 2.03 0.00 0.00 8.11 2.05
No. of tests among
20 without the best
result

14 0 0 10 11 0 0 11 9

1.16

3.40

1.18

3.69

0.050.01

1.98

0.03 0.00

1.16

3.34

0.00

1.21

3.67

0.000.00

1.98

0.00
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

LA SA(J) SA(L) TS(J) TS(L) VNS-SA(J) VNS-SA(L) VNS-TS(J) VNS-TS(L)

iteration limit time limit

Fig. 3. The average distance to the best solution in (2) for the list scheduling algorithm and particular metaheuristics (for 20 tests) starting from
Johnson’s schedule (J) or a list schedule (L) for the number of iterations without an improvement and a 5-s time limit as the termination condition.

The following detailed analysis of the computational experiments disclosed some interesting features of the meta-
heuristics implemented within the presented research.

As we have mentioned, comparing particular methods, one could notice the superiority of the SA one (cf. Table 1
and Fig. 3, Table 2 and Fig. 5). The SA algorithm constructed the best schedule for all instances analyzed, when the
termination condition was set to a 5-s limit (cf. Table 1 and Fig. 4). In this case, restarting SA from different initial
solutions by the variable neighborhood algorithm did not result in an improvement of the solution quality, because of
the high quality of the schedule found in the first run of SA. When the number of iterations without an improvement was
applied as the termination condition, SA found the best solution for only two instances less with a list schedule as the
initial solution and for only one instance less than starting from Johnson’s schedule. (In both cases SA still significantly
dominated the TS approach in terms of the solution quality, cf. Figs. 3 and 5.) Since the SA algorithm was extremely
fast, a 5-s time limit enforced this method to explore the solution space in time 2 and even 3 factors longer than the time
resulting from the termination condition based on the number of iterations without an improvement (cf. an average
run time in Table 7 with a 5-s time limit). The long run time limit allowed SA to leave the local optimum within the

586 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

6

19
18

10 10

19
20

10
11

6

20 20

10
9

20 20

9

11

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

LA SA(J) SA(L) TS(J) TS(L) VNS-SA(J) VNS-SA(L) VNS-TS(J) VNS-TS(L)

iteration limit time limit

Fig. 4. The number of test instances in which particular methods constructed a solution with best criterion value (for 20 tests) starting from Johnson’s
schedule (J) or a list schedule (L) for the number of iterations without an improvement and a 5-s time limit as the termination condition.

0.47

7.37

2.37

0.70

0.00

6.81

2.59

0.15

2.82 2.59

6.06

0.000.00

2.21

7.34

0.000.00

2.82

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

LA SA(J) SA(L) TS(J) TS(L) VNS-SA(J) VNS-SA(L) VNS-TS(J) VNS-TS(L)

iteration limit time limit

Fig. 5. The average distance to the best solution in (2) for the list scheduling algorithm and particular metaheuristics starting from Johnson’s
schedule (J) or a list schedule (L) for two termination conditions restricted to those instances for which a particular method did not find the best
solution.

number of iterations which would be not possible for the latter termination condition. These results showed that forcing
a fast metaheuristic to a long-lasting search might cause an additional improvement of the criterion value. In general,
a similar effect could be obtained by restarting a method from different initial solutions, as it was performed within
the VNS algorithm. However, the computational experiments showed that the efficiency of the local search procedure
was crucial for the efficiency of VNS for the problem under consideration. This method rarely improved the solution
constructed by SA at the first iteration of VNS.

The TS algorithm constructed solutions worse than those found by SA (cf. Figs. 3 and 5). TS achieved the best
criterion value for only 9 and 10, respectively, instances (depending on the control parameter values) improving a

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 587

list schedule for three and four instances from the test set (cf. Fig. 4). Embedding TS within VNS sometimes made
it possible to obtain better results than in a single run of TS (for at most two instances more, when the method
started from a list schedule and worked within a 5-s time limit). It is interesting, that for one test instance VNS–TS
generated a schedule worse than TS. Within VNS, TS started its search from a solution taken at random from the
neighborhood of the initial solution, which might be worse than this initial one. For this reason, a single run of TS
starting from a good schedule, could result in a better solution than a few runs of TS within VNS initialized with a worse
schedule.

Summing up, the VNS method with SA as a local search procedure and the list schedule as the initial solution
(VNS–SA(L)) appeared to be the best choice for the problem under consideration. It constructed the best schedule for
all test instances independently of the termination condition applied. The superiority of VNS–SA resulted from the
high efficiency of the SA algorithm. It was possible to achieve the same solution quality level, by extending the run
time limit for SA to 5 s or by restarting SA from different initial solutions within VNS. The TS approach appeared
to be much less efficient, and introducing a time limit as the termination condition as well as multiple restarting TS
within VNS did not result in a significant solution quality improvement. Taking into account the fact that the initial
schedule was close to the optimum, searching the solution space by a single modification of a current schedule (as in
SA) appeared to be a better approach than generating the whole neighborhood containing schedules mostly worse than
the current one (as in TS). Moreover, the computational experiments showed that forcing a long run time limit, longer
than the time determined by the tuned number of iterations without an improvement as the termination condition, one
could additionally increase the quality of the final solution.

The test results showed that the efficiency of the method depended not only on the termination condition but also
on the quality of an initial schedule (cf. Tables 3 and 4), although this influence is rather weak. In the experiments,
two starting solutions were compared: Johnson’s and list ones. Both schedules were constructed in neglectedly short
time and allowed us to formulate some conclusions on the behavior of particular metaheurstics without using artificial
random solutions, which are rather difficult to be justified from the viewpoint of scheduling theory.

All methods under consideration achieved a larger improvement of the criterion value starting from Johnson’s
schedule than from the list scheduling one (cf. Table 3). The difference between the quality of initial and final solutions
for SA and VNS–SA was nearly 6 times, for TS and VNS–TS about 9.5 times larger, when these approaches startedfrom

Table 3
The average improvement of the criterion value from two different initial solutions Johnson’s schedule (J) and a list schedule (L) to the final solution
in (%)

Average improvement of the
solution quality in (%)

For Johnson’s
schedule J

Standard deviation
for J

For list sched-
ule L

Standard deviation
for L

Difference factor J/L

SA 1.13 1.05 0.19 0.21 5.86
TS 0.76 1.02 0.08 0.16 9.55
VNS–SA 1.14 1.05 0.19 0.20 5.82
VNS–TS 0.79 1.00 0.08 0.16 9.66

Table 4
The average difference of the criterion value of the final solution (%) between two different initial solutions Johnson’s schedule and a list schedule,
when Johnson’s schedule (J/L) and a list schedule (L/J) resulted in a better final solution

Average difference in
criterion value in (%)

Johnson’s schedule dominating
list one

List schedule dominating Johnson’s
one

No. of tests (%) J/L Standard dev. for J/L No. of tests (%) L/J Standard dev. for L/J

J vs. L 10 0.1318 0.0114 80 1.1849 1.0028
SA 10 0.0396 0.0200 0 0 0
TS 15 0.0010 0.0004 40 0.3594 0.9410
VNS–SA 5 0.0007 0 0 0 0
VNS–TS 15 0.0013 0.0001 35 0.4099 0.9958

588 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

Johnson’s instead of list schedules. But these factors reflect rather the difference in the quality of two initial schedules
than in the performance of metaheuristics. In the most cases, particular methods constructed the same final schedule
independently of an initial one (cf. Fig. 4). Since Johnson’s schedule was usually worse than a list scheduling one, the
improvement achieved for this latter one was smaller. In the case of TS and VNS–TS the influence of the quality of
a initial solution was a bit more visible than for SA and VNS–SA. TS applied as a stand alone method or embedded
within VNS, was not able to improve a good list schedule as much as SA. It achieved a considerable increase of
the solution quality starting from worse Johnson’s solution only. For this reason the difference between the average
improvements of the criterion value for various initial sequences of jobs was larger for TS and TS–VNS than for SA
and VNS–SA.

The observations provided above were confirmed by the analysis of the quality of particular schedules: initial and final
ones (Table 4). For 80% of the test instances, a list schedule dominated Johnson’s one by 1.2% on average. For only 10%
of the tests, Johnson’s solution was better than a list scheduling one by about 0.1%. In 90% of the tests, SA constructed
a final schedule of exactly the same quality independently of the quality of the initial solution, while VNS–SA in 95%
of the tests. In the remaining cases the difference in the performance measure was insignificant, equal to a few units per
a few thousands of units of late work. These results showed that SA and VNS–SA were insensitive to the quality of an
initial solution and their efficiency depended more on the search strategy, than on the starting point for a search process.
On the contrary, the TS strategy was influenced by an initial solution in a more apparent way. The performance of TS
was independent of a starting schedule in 65% of the tests, while VNS–TS in 50% of the tests. In the remaining cases,
the poorer quality of the first solution resulted in a worse final one. Because the difference between initial schedules was
bigger than between the final schedules corresponding to them (e.g. 1.2% between the list and Johnson’s ones, and about
0.4% between the corresponding final schedules), this means that TS decreased the distance between the starting and
final solutions nearly 3 times, but it was not able to achieve the same quality level for various starting points of the search
process.

Besides the initial solution, the termination condition is another important control parameter influencing the efficiency
of metaheuristics. Comparing the results obtained for different termination conditions, one could notice, that although
a 5-s time limit allowed the methods to achieve better results in most cases, this improvement was not significant (i.e.
equal to fractions of per mill). Actually, for the majority of tests, the metaheuristics generated a schedule of the same
quality independently of the termination condition applied (cf. Table 5, Figs. 6 and 7).

For SA and VNS–SA, the time limit was always slightly more profitable than the number of iterations without an
improvement limit, however such a difference between these termination conditions was detected for only one or two
instances depending on the initial solution. Since SA was a very fast algorithm, the large run time limit sometimes
allowed it to leave a local optimum and to find a better final schedule, which would not be possible within a certain
number of iterations without an improvement as the termination condition. On the contrary, the TS method and the VNS
with TS, whose iterations were much more time consuming, behaved similarly for both termination conditions—at
least no correlation could be observed.

Table 5
The difference between the solution quality (2) between experiments with a 5-s time limit and the number of iterations without an improvement as
the termination condition for particular metaheuristics starting from Johnson’s schedule (J) or a list schedule (L) and the number of the experiments
(among 20) in which the run with a particular termination condition dominated the other one

Difference in solutions
quality in (2)

SA(J) SA(L) TS(J) TS(L) VNS–SA(J) VNS–SA(L) VNS–TS(J) VNS–TS(L)

Iteration limit dominating Minimum – – 0.149 – – – 0.753 –
time limit Average – – 0.214 0.557 – – 1.467 –

Maximum – – 0.279 – – – 2.179 –
No. of tests 0 0 2 1 0 0 2 0

Time limit dominating Minimum – 0.196 – – – – 0.139 –
iteration limit Average 0.149 0.471 0.753 – – 0.697 2.206 –

Maximum – 0.745 – – – – 4.274 –
No. of tests 1 2 1 0 0 1 2 0

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 589

0

2

1

0

2

0

1

2

1

0

1

2

0
0

1

2

3

4

5

SA(J) SA(L) TS(J) TS(L) VNS-
SA(J)

VNS-
SA(L)

VNS-
TS(J)

VNS-
TS(L)

iteration number time limit

0 00

Fig. 6. The number of experiments (among 20) with a better result obtained for particular termination conditions, i.e. the number of iterations without
an improvement and a 5-s time limit, for particular metaheuristics starting from Johnson’s schedule (J) or a list schedule (L).

0.15

0.47

0.75 0.70

2.21

0.56

0.000.000.00 0.00

1.47

0.000.00
0.21

0.000.00
0

0.5

1

1.5

2

2.5

SA(J) SA(L) TS(J) TS(L) VNS-
SA(J)

VNS-
SA(L)

VNS-
TS(J)

VNS-
TS(L)

time limit over iteration limit iteration limit over time limit

Fig. 7. The average difference in (2) between the criterion values obtained for particular termination conditions, i.e. the number of iterations without
an improvement and a 5-s time limit, for particular metaheuristics starting from Johnson’s schedule (J) or a list schedule (L).

Summing up, the distance between the criterion values achieved for the two termination conditions investigated was
very small. Taking into account only these computational experiments in which the results obtained for a 5-s time
limit dominated the results achieved for the number of iterations without an improvement limit, the average difference
in the criterion value over all metaheuristics was equal to 0.992. For the experiments in which the iteration limit
was more profitable than the time limit, this average difference was a bit smaller and it equals 0.782. This fact can
be explained by the tuning process performed for all metaheuristics investigated. It made it possible to determine a
termination condition value (i.e. the number of iterations without an improvement) large enough to explore the solution
space. Enforcing a longer run time could not considerably increase the efficiency of the methods (although it sometimes
allowed the algorithms to leave a local optimum).

Obviously, the behavior of metaheuristics depends not only on the values of the control parameters but also on the
input data. For problem F2|dj = d|Yw, the due date value is especially important for the efficiency of approaches
solving it. When the due date value is small with regard to the schedule length, this means that only a few jobs can
be processed early and they have to be carefully selected. Moreover, the differences between the criterion values for
particular solutions might be quite large, because the set of early job contains only a few activities, whose processing
times influence the performance measure. On the contrary, when a due date is large with regard to the schedule length,

590 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

Table 6
The average improvement of the criterion value for the data set with different due date values equal to 10%, 25% and 50% of the half of the total
processing time of the jobs for particular metaheuristics starting from a list schedule and Johnson’s schedule

Metaheuristics method Due date List schedule Johnson’s schedule

Average improvement (%) Standard deviation (%) Average improvement (%) Standard deviation (%)

SA 10 1.71 2.12 24.73 4.68
25 0.52 1.72 21.18 3.94
50 0.19 0.20 1.13 1.05

TS 10 1.61 1.94 24.82 5.21
25 0.79 1.84 21.37 4.05
50 0.07 0.14 0.86 1.04

VNS–SA 10 1.73 2.12 24.89 4.60
25 0.68 1.81 21.25 3.85
50 0.20 0.21 1.13 1.05

VNS–TS 10 1.78 1.97 24.83 5.20
25 0.82 1.90 21.44 4.01
50 0.08 0.15 0.89 1.02

then almost all jobs are early and particular feasible schedules only slightly differ in the quality. To investigate the
impact of the due date on the particular metaheuristics, computational experiments were performed with three sets of
instances, differing in the value of the common due date. It was equal to 10%, 25% and 50% of the half of the total
processing time of the jobs (Table 6).

The main conclusion was that the average improvement of the criterion value obtained by particular metaheuristics
deteriorated with the increase of the value of the due date.When the due date was strict then an initial solution was usually
more distant from an optimum. There were only a few early jobs and they had to be selected very carefully. Johnson’s
algorithm as well as the list scheduling procedure were not able to find such a good selection, while metaheuristics,
changing the sequence of the jobs, could increase the quality of a solution considerably and quite easily. In the case
of Johnson’s algorithm the average improvement was significantly larger than for the list scheduling algorithm applied
for constructing an initial solution. However, this large improvement resulted from a much worse quality of this initial
schedule, not from a better quality of a final one, because as we observed before, all metaheuristics finished with nearly
the same final solution, independently of an initial schedule. Johnson’s procedure did not take into account weights of
the jobs, which were especially important, when only a few jobs could be processed before the due date. Hence, the
difference between the quality of initial Johnson’s and list schedules was more apparent for instances with strict due
dates.

With the increase of the due date value, instances became more difficult for metaheuristics, because there existed
many subsets of jobs, which could be executed before the common due date and which should have been investigated
in the search for an optimal solution. On the other hand, the quality of initial solutions increased, because for larger
due dates, the set of early activities contained much more jobs and the differences between particular sets were not so
large. In consequence, the average improvement decreased with the value of the due date (cf. Fig. 8 for a list schedule
as an initial one). Obviously, if the due date was large enough, then all activities would be early and an initial solution
would be optimal.

The computational experiments showed that for strict due dates the average improvement of the criterion value was
larger, but all metaheuristics behaved similarly. Because the initial solution could be improved quite easily, the search
strategy according to which a solution space was explored appeared to be not so important. The dominance of SA over
TS (as a stand alone method as well as an embedded one within VNS) became more visible with the increase of the due
date value. The set of instances with the due date equal to the half of the total processing time of the jobs, disclosed the
differences among particular metaheuristics most. For this reason, computational results for this data set were mainly
investigated in this paper.

The evaluation of the performance of any metaheuristics should be performed from two viewpoints, taking into
account the quality of solutions as well as the computational time necessary to construct them. Obviously, in this
case only to the computational experiments with the number of iterations without an improvement as the termination

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 591

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

10 25 50

SA TS VNS-SA VNS-TS

Fig. 8. The average criterion value improvement for the data set with different due dates values equal to 10%, 25% and 50% of the half of the total
processing time of the jobs for particular metaheuristics starting from a list schedule.

Table 7
The average run time in (s) for particular numbers of jobs n with the standard deviation value

n Average run time (s) Standard deviation

SA TS VNS–SA VNS–TS SA TS VNS–SA VNS–TS

20 0.003 0.003 0.006 0.011 0.001 0.002 0.002 0.002
50 0.011 0.041 0.036 0.205 0.003 0.023 0.008 0.078
80 0.019 0.089 0.062 0.572 0.002 0.007 0.008 0.103

110 0.057 0.557 0.147 3.178 0.018 0.339 0.030 2.217
140 0.034 0.222 0.110 1.176 0.003 0.005 0.014 0.152

0.001

0.010

0.100

1.000

10.000

20 50 80 110 140 200

SA TS VNS-SA VNS-TS

Fig. 9. The average run time in (s) for particular numbers of jobs with the logarithmic time axis.

condition are interesting. Moreover, the most difficult instances with a due date equal to 50% of the half of the total
processing time of the jobs were taken into account. Table 7 and Figs. 9 and 10 present the results for particular numbers
of jobs n as average values obtained for a few instances with the same value of n investigated twice with two different
initial solutions.

592 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

0.001

0.010

0.100

1.000

10.000

20 50 80 110 140 200

SA TS VNS-SA VNS-TS

Fig. 10. The standard deviation for the run time of particular numbers of jobs with logarithmic y-axis.

Analyzing the test results, one could notice that the run time of all metaheuristics increased with the number of jobs
(cf. Fig. 9), which was caused by the termination condition applied for SA and TS (also for SA and TS embedded in
VNS). Both algorithms terminated after reaching the given number of iterations without an improvement, which was
settled after the tuning process as the number of jobs multiplied by some number (cf. Sections 4.1.1 and 4.1.2).

Moreover, the computational experiments showed that the SA method was much more time efficient than the TS
algorithm. A single modification of a current solution, applied within SA, was less time consuming than generating the
whole neighborhood in TS (cf. Fig. 9). Moreover, the SA behavior appeared to be more stable and more independent
of the problem data which was reflected in smaller standard deviation values than those achieved for TS (cf. Fig. 10).

Similar observations could be formulated for the VNS method with two different local search procedures SA and
TS, i.e. for VNS–SA compared to VNS–TS. Obviously the VNS algorithm required more computational time than
SA or TS applied as stand alone methods, because it repeated SA or TS a few times in order to restart the search
from different initial solutions. According to the termination condition imposed (cf. Section 4.1.3), VNS stopped after
performing three iterations without an improvement. This means that SA or TS were applied within VNS at least 3
times. Actually, on average, VNS–SA worked 3.08 times longer than SA, while VNS–TS run 5.79 times longer than
TS. Because VNS–SA was usually not able to improve the solution found after the first SA run, it terminated after three
iterations in total. In the case of VNS–TS, the schedule improvement happened more often than for VNS–SA and the
total number of iterations was larger than the minimum possible one. Although VNS with TS performed more iterations
during its search, this additional computational effort did not result in a significant solution quality improvement (cf.
Tables 1 and 2).

Comparing the average run time for the whole test set containing 20 instances of a different size (cf. Table 8,
Figs. 11–13), the superiority of SA became even more visible. TS overtook SA for only one (cf. Fig. 12) small problem
instance (with 20 jobs), for which the computational time was almost immeasurable (cf. Fig. 11). For the remaining 19
instances, SA found better schedules requiring about 7 times shorter time than TS (cf. Fig. 13).

The repeated application of SA within VNS consumed about 3 times more run time, while VNS–TS worked 30–40
times longer than SA. As we have already mentioned, VNS–SA usually performed the minimal possible number of
iterations, i.e. three iterations if no improvement in the SA solution was achieved. This means that VNS–SA run SA as
a local search procedure 3 times on average. In the consequence, VNS–SA consumed a bit more than the tripled run
time of SA applied as a stand alone approach. On the contrary VNS–TS sometimes improved the solution generated
by TS and the total number of iterations was larger than the allowed number of iterations without an improvement
(i.e. three iterations). Moreover, the TS approach was much more time consuming, more than 7 times, and less stable
than SA (cf. Fig. 10). For this reason, the computational time for particular TS runs within VNS–TS could vary
significantly.

Finally, based on the above analysis of the time requirements for particular metaheuristics (cf. Figs. 11 and 13), it
was possible to observe a slight influence of the initial schedule on the duration of the search process. Starting the

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 593

Table 8
The average run time for the 20-instance test set in (s) and the average value of the run time divided by the shortest run time for a particular instance
starting from Johnson’s schedule (J) or a list schedule (L) and the number of iterations without an improvement as the termination condition

SA(J) SA(L) TS(J) TS(L) VNS–SA(J) VNS–SA(L) VNS–TS(J) VNS–TS(L)

Run time for 20 tests in (s) Minimum 0.004 0.001 0.001 0.001 0.004 0.008 0.012 0.008
Average 0.031 0.028 0.232 0.246 0.088 0.082 1.423 1.124
Maximum 0.074 0.086 0.934 0.984 0.172 0.199 7.180 5.566
Stand. dev. 0.020 0.021 0.270 0.310 0.050 0.051 1.786 1.326

Run time divided by the Minimum 1.11 1.15 3.38 2.88 2.16 2.48 12.00 8.00
shortest run time Average 1.85 1.88 7.21 7.18 3.65 3.66 40.04 32.40

Maximum 4.00 4.00 26.69 26.00 6.38 8.00 118.31 88.83
Stand. dev. 1.04 1.22 5.10 5.37 0.84 1.52 27.03 18.97
No. of tests among
20 with the short-
est run time

9 16 1 1 0 0 0 0

0.031

0.232
0.088

1.423

0.028

0.246

0.082

1.124

0

0.2

0.4

0.6

0.8

1

1.2

1.4

SA TS VNS-SA VNS-TS

Johnson's Schedule List Schedule

Fig. 11. The average run time for the 20-instance test set in (s) for the two different initial solutions and the number of iterations without an
improvement as the termination condition.

9

1 0

16

1 0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

SA TS VNS-SA VNS-TS

Johnson's Schedule List Schedule

0 0

Fig. 12. The number of test instances in which a particular method constructed a solution in shortest time (for 20 experiments) for two different
initial solutions and the number of iterations without an improvement as the termination condition.

594 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

1.85

7.21
3.65

40.04

1.88

7.18
3.66

32.40

0

5

10

15

20

25

30

35

40

45

SA TS VNS-SA VNS-TS

Johnson's Schedule List Schedule

Fig. 13. The average run time difference for the 20-instance test set calculated as the quotient of the run time of the method and the shortest run time
for particular instances for the two different initial solutions and the number of iterations without an improvement as the termination condition.

exploration of the solution space from the list schedule, the metaheuristics terminated faster than starting their search
from Johnson’s schedule. The initial schedule of a better quality (the list schedule) made the solution improvement
more difficult and caused that the given limit of iterations without an improvement was exceeded quite early.

4.3. Comparison of heuristic methods to an exact approach

The second stage of the computational experiments was devoted to the comparison of the heuristic approaches with
an exact enumerative method. Earlier research results obtained for problem F2|dj = d|Yw (cf. [18]) showed that the
enumerative method (EM) was more time efficient than a pseudo-polynomial time DP one. EM investigates in O(n2n)

time all possible solutions for the problem under consideration. It checks all possible subsets of early jobs (E) and
executes them in Johnson’s order. Then, EM considers each job among the remaining ones as the first late job Jx

and completes a partial schedule with the remaining jobs from J\(E ∪ {Jx}) sequenced according to non-increasing
weights. The outline of the presented enumerative method is given below.

for each set E ⊆ J such that a partial schedule obtained by sequencing jobs from E in Johnson’s order does not
exceed d and Johnson’s schedule for E ∪ {Jx} where Jx ∈ J\E exceeds d do

for each job Jx ∈ J\E do
construct a schedule by executing jobs from E in Johnson’s order, followed by Jx and jobs from
J\(E ∪ {Jx}) sequenced according to non-increasing weights;

store the best solution constructed for set E, if it is better than the best already found.

The exact approach was tested against four metaheuristics: SA, TS, VNS–SA and VNS–TS as well as two other
simple heuristics: the list scheduling algorithm with the maximum weight priority dispatching rule (LA) and Johnson’s
procedure used as an approximate method for F2|dj = d|Yw (JA). Taking into account an exponential time complexity
of the enumerative method, 16 small problem instances were used with the number of jobs equal from 5 to 20 (with a
unit increment).

The average quality of particular heuristic solutions is presented in Table 9. Johnson’s algorithm appeared to be the
weakest method generating schedules of nearly 11% worse than the optimum. On the other hand, taking into account
its neglectedly short run time, the simplicity of this procedure and the fact that it was designed for a different scheduling
problem (F2‖Cmax), the results of JA might be quite satisfying for certain applications.

The list scheduling algorithm was able to construct an optimal solution for only six instances among 16 test problems
(cf. Fig. 14). Moreover, it found an optimum mostly for small instances (with 6–9 jobs). The SA and TS methods reached
the optimal criterion value for 10 instances.Applying these procedures within theVNS framework increased the number
of optima found to be 11 and 12, respectively. In general, the best metaheuristic solution had the same criterion value
as the optimal solution constructed by the enumerative algorithm for 13 tests among 16.

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 595

Table 9
The distance to the optimal criterion value for particular methods and for the best metaheuristic in a certain test (BMH) in (%) for all tests and for
those tests for which a particular method did not find the optimum

JA LA SA TS VNS–SA VNS–TS BMH

All tests Minimum 1.26 0.00 0.00 0.00 0.00 0.00 0.00
Average 10.70 0.81 0.40 0.40 0.27 0.25 0.04
Maximum 21.15 2.46 2.26 2.46 2.25 2.46 0.20
Standard dev. 6.45 1.21 0.61 1.25 0.56 0.62 0.07
No. of optimal 0 6 10 10 11 12 13
solutions in
16 tests

Non-optimal results Minimum 1.26 0.59 0.39 0.18 0.20 0.18 0.18
Average 10.70 1.35 1.00 1.21 0.81 0.95 0.19
Maximum 21.15 2.46 2.26 2.46 2.25 2.46 0.20
Standard dev. 6.45 1.14 0.61 1.50 0.74 0.93 0.01

0

6

10 10
11

12
13

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

JA LA SA TS VNS-SA VNS-TS BMH

Fig. 14. The number of optima found in 16 tests for particular methods and the best metaheuristic result (BMH).

The specificity of the problem under consideration, F2|dj = d|Yw, made the search process difficult. Taking into
account the fact that all early jobs have to be scheduled in Johnson’s order, the crucial decision is to select activities
performed before the common due date d . At this stage of the computational experiments, the initial solution for all
metaheuristic methods was generated by the list scheduling algorithm, which selected early jobs according to their
weights. When particular jobs differ only slightly in their processing times and weights, a further improvement of the
criterion value by the metaheuristics is difficult, since an optimal solution is a specific sequence of jobs, which does
not differ to much from the initial one. From this point of view, the efficiency of the metaheuristic methods proposed
was quite satisfying.

Actually, these observations were confirmed by the analysis of the average distance to the optimal criterion value
(cf. Fig. 15) calculated for all tests and, especially, for only these instances for which particular methods did not reach
the optimum.

The best metaheuristic solution differed from the optimum by only 0.19%, while for the list scheduling one this
value was equal to 1.35%.

Among metaheuristics, the highest performance in terms of the schedule quality was observed for VNS–SA, for
which the distance to the optimum was equal to 0.81%. As we noticed in Section 4.2, the repeated use of SA within
VNS made it possible to improve slightly the quality of the schedules constructed by the SA approach applied as a
stand alone method. The distance to the optimum for SA was equal to only 1%.

Similarly as in the computational experiments with large instances reported in Section 4.2, for small problem instances
the TS algorithm appeared to be less efficient than SA. However, the difference was not so significant (about 0.21%).

596 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

0.81

0.40 0.40
0.27 0.25

0.04

1.35

1.00

1.21

0.95

0.19

0.81

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

LA SA TS VNS-SA VNS-TS BMH
all tests non-optimal results

Fig. 15. The distance to the optimal criterion value for particular methods and the best metaheuristic in a certain test (BMH) in (%) for all tests and
for those tests for which a particular method did not find the optimum.

Table 10
Run time for particular methods in (ms) (results in italic denote that the run time was immeasurably short)

Number of jobs EM SA TS VNS–SA VNS–TS

5 0.015 0.001 0.001 0.001 0.001
6 0.001 0.001 0.001 0.001 0.001
7 0.001 0.001 0.001 0.001 0.001
8 0.001 0.001 0.001 0.001 0.001
9 0.001 0.001 0.001 0.001 0.001

10 0.001 0.001 0.001 0.002 0.001
11 0.015 0.001 0.001 0.002 0.002
12 0.031 0.001 0.001 0.001 0.003
13 0.187 0.001 0.001 0.002 0.004
14 0.218 0.001 0.001 0.001 0.004
15 0.328 0.001 0.001 0.003 0.011
16 0.89 0.001 0.003 0.004 0.012
17 1.359 0.001 0.002 0.003 0.007
18 8.843 0.001 0.003 0.004 0.01
19 52.375 0.002 0.001 0.006 0.01
20 71.281 0.001 0.004 0.003 0.021

VNS–TS behaved for small numbers of jobs much better than for the job sets of larger cardinality. The quality
of VNS–TS was comparable to VNS–SA and SA (cf. Fig. 15). When the number of jobs was small, the size of the
neighborhood for a current solution was also small and TS, applied as a stand alone algorithm or as a local search
procedure within VNS, worked more efficiently. Moreover, the differences between particular heuristics became less
visible than in the experiments with instances of large size.

The run time comparison (cf. Table 10 and Fig. 16) confirmed the observations formulated above on the efficiency
of particular metaheuristics, but first of all it underlined the necessity of applying this kind of search procedures for
hard problems. The enumerative approach ensured the optimality of the solutions constructed, but it required a huge
computational effort, increasing rapidly with the problem size. On the contrary, the run time of metaheuristics was
low and it increased very slowly with the number of jobs. In the computational experiments reported, the exponential
explosion for the exact approach was observed already for 18 jobs.

The efficiency of particular solution methods analyzed within this research depends on the input data used during the
computational experiments. This influence is usually more visible in the case of metaheuristics than for the exact ap-
proaches, because the tuning process adjusts the values of their control parameters to the specificity of the test instances.
The research presented concerned a general scheduling model, which can be considered only as an approximation of
a real world environment. However, in the filed of combinatorial optimization, artificial data sets often appear to be
more difficult than the real ones. Nevertheless, every practical case has to be considered separately, taking into account
its specificity, additional constraints and parameters. Thus, the results obtained for such general theoretical models

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 597

0.001

0.01

0.1

1

10

100

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EM SA TS VNS-SA VNS-TS

Fig. 16. Run time in (ms) for particular methods.

(as for the flow shop one) cannot be directly applied to real problems, but they provide a valuable background for
solving them efficiently.

Actually, the results obtained for the problem F2|dj =d|Yw are interesting not only from the viewpoint of scheduling
theory but also of combinatorial optimization. The most important results, as far as scheduling theory is taken into
account, include an NP-hardness proof, a pseudo-polynomial time algorithm and special features of an optimal sequence
of jobs. Unfortunately, a very strict structure of an optimal schedule for F2|dj =d|Yw does not leave too much freedom
in designing solution methods. Nevertheless, the computational experiments showed that metaheuristic methods can
still improve extremely good list scheduling solutions. Besides evaluating the usefulness of particular solution methods,
the test results allowed us to draw interesting conclusions on these approaches from the viewpoint of combinatorial
optimization. In the case of the problem under consideration, for which an optimal solution has a strict structure and
suboptimal ones can be easily constructed, the random character of SA allowed this method to dominate TS, which
performs a more systematic search. Moreover, multiple restarting of a local search procedure within VNS appeared to
be less important than the efficiency of this local search procedure itself.

5. Conclusions

The research presented completes the studies on the two-machine flow-shop problem with the common due date and
the weighted late work criterion, F2|dj =d|Yw. The theoretical investigation resulted in the NP-completeness proof for
its decision counterpart and the proposal of a pseudo-polynomial time dynamic programming approach that allowed
us to classify the case as NP-hard in the ordinary sense [17]. The first stage of computational experiments made it
possible to verify the applicability of the DP procedure in practice and showed a high efficiency of the list scheduling
algorithm [18]. At the second stage of computational studies reported in this paper, more advanced solution techniques
were proposed: simulated annealing, tabu search and variable neighborhood search methods, based on the specific
structure of an optimal solution for the problem under consideration. These trajectory metaheuristics were compared in
the computational experiments one to each other as well as to the list scheduling approach, Johnson’s method applied
as a heuristic for F2|dj = d|Yw and to an exact enumerative method.

The main experiments were preceded by an extensive tuning process in order to determine the best control parameter
settings for particular metaheuristic methods. The difference in the performance for a single problem instance and
different control parameter settings reached almost 10% for the simulated annealing and 7% for the tabu search
approach which confirms the importance of the tuning process. Moreover, these preliminary experimental results made
it possible to formulate interesting observations on the SA, TS and VNS–SA as well as VNS–TS behavior.

Then, we compared the metaheuristic approaches to the list scheduling algorithm for large instances in terms of the
number of jobs. Despite the high quality of the list solution, the metaheuristic methods were still able to improve its
quality. Furthermore, the test results showed that simulated annealing significantly dominates the tabu search strategy
for the scheduling case under consideration. SA generated better schedules in shorter time than TS. The fast SA method

598 J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599

moving from one solution to another as a result of a single solution modification was more efficient than TS generating
the whole neighborhood in order to select the next schedule for the analysis. Moreover, restarting SA within the variable
neighborhood framework made an additional solution improvement possible. A similar effect was observed for TS and
VNS–TS, although it was less visible. In the computational experiments with small instances in terms of the number
of jobs, the differences among particular metaheuristics became less apparent, since all trajectory methods proposed
generated optimal solutions for most test sets. Their time requirements were incomparably small with regard to the
enumerative algorithm of exponential time complexity.

The experience gained during the research on problem F2|dj = d|Yw provided many useful hints for future work
on other scheduling problems with the late work performance measure.

Acknowledgments

We would like to thank Michal Glowinski for his effort in implementing and testing the approaches investigated
within the presented research. The fourth author has been supported by INTAS (project 03-51-5501).

References

[1] Blazewicz J, Ecker K, Pesch E, Schmidt G, Weglarz J. Scheduling computer and manufacturing processes. 2nd ed., Berlin, Heidelberg,
New York: Springer; 2001.

[2] Brucker P. Scheduling algorithms. 2nd ed., Berlin, Heidelberg, New York: Springer; 1998.
[3] Chen B, Potts CN, Woeginger GJ. A review of machine scheduling. In: Du D-Z, Pardalos PM, editors. Handbook of combinatorial optimization.

Boston: Kluwer Academic Publishers; 1998.
[4] Pinedo M, Chao X. Operation scheduling with applications in manufacturing and services. Boston: Irwin/McGraw-Hill; 1999.
[5] Blazewicz J. Scheduling preemptible tasks on parallel processors with information loss. Technique et Science Informatiques 1984;3(6):

415–20.
[6] Blazewicz J, Finke G. Minimizing mean weighted execution time loss on identical and uniform processors. Information Processing Letters

1987;24:259–63.
[7] Hariri AMA, Potts CN, Van Wassenhove LN. Single machine scheduling to minimize total late work. INFORMS Journal on Computing

1995;7:232–42.
[8] Hochbaum DS, Shamir R. Minimizing the number of tardy job unit under release time constraints. Discrete Applied Mathematics 1990;28:

45–57.
[9] Kethley RB, Alidaee B. Single machine scheduling to minimize total late work: a comparison of scheduling rules and search algorithms.

Computers and Industrial Engineering 2002;43:509–28.
[10] Kovalyov MY, Potts CN, Van Wassenhove LN. A fully polynomial approximation scheme for scheduling a single machine to minimize total

weighted late work. Mathematics of Operations Research 1994;19(1):86–93.
[11] Leung JY-T, Yu VKM, Wei W-D. Minimizing the weighted number of tardy task units. Discrete Applied Mathematics 1994;51:307–16.
[12] Potts CN, Van Wassenhove LN. Single machine scheduling to minimize total late work. Operations Research 1991;40(3):586–95.
[13] Potts CN, Van Wassenhove LN. Approximation algorithms for scheduling a single machine to minimize total late work. Operations Research

Letters 1991;11:261–6.
[14] Blazewicz J, Pesch E, Sterna M, Werner F. Total late work criteria for shop scheduling problems. In: Inderfurth K, Schwoediauer G, Domschke

W, Juhnke F, Kleinschmidt P, Waescher G, editors. Operations Research Proceedings 1999. Berlin: Springer; 2000. p. 354–9.
[15] Blazewicz J, Pesch E, Sterna M, Werner F. Revenue management in a job-shop: a dynamic programming approach. Preprint Nr. 40/03, FMA,

Otto-von-Guericke-University Magdeburg; 2003.
[16] Blazewicz J, Pesch E, Sterna M, Werner F. Open shop scheduling problems with late work criteria. Discrete Applied Mathematics 2004;134:

1–24.
[17] Blazewicz J, Pesch E, Sterna M, Werner F. The two-machine flow-shop problem with weighted late work criterion and common due date.

European Journal of Operational Research 2005;165(2):408–15.
[18] Blazewicz J, Pesch E, Sterna M, Werner F. A comparison of solution procedures for two-machine flow shop scheduling with late work criterion.

Computers and Industrial Engineering 2005;49(4):611–24.
[19] Blazewicz J, Pesch E, Sterna M, Werner F. Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion

and common due date. Preprint Nr. 32, FMA, Otto-von-Guericke-University Magdeburg; 2005.
[20] Leung JY-T. Minimizing total weighted error for imprecise computation tasks and related problems. In: Leung JY-T, editor. Handbook of

scheduling: algorithms, models, and performance analysis. Boca Raton, FL: CRC Press; 2004. p. 1–16.
[21] Sterna M. Problems and algorithms in non-classical shop scheduling. Poznan: Scientific Publishers of the Polish Academy of Sciences, Poland;

2000.
[22] Garey MR, Johnson DS. Computers and intractability. San Francisco: W.H. Freeman and Co.; 1979.
[23] Blum Ch, Roli A. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 2003;35(3):

268–308.
[24] Crama Y, Kolen A, Pesch E. Local search in combinatorial optimization. Lecture Notes in Computer Science 1995;931:157–74.

J. Blazewicz et al. / Computers & Operations Research 35 (2008) 574–599 599

[25] Johnson SM. Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1954;1:61–8.
[26] Haupt R. A survey of priority rule—based scheduling. OR Sektrum 1989;11:3–16.
[27] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220(4598):671–80.
[28] Glover F, Laguna M. Tabu search. Boston: Kluwer Academic Publishers; 1997.
[29] Hansen P, Mladenović N. An introduction to variable neighbour search. In: Voss S, Martello S, Osman I, Roucairol C, editors. Metaheuristics:

advances and trends in local search paradigms for optimization. Boston: Kluwer Academic Publishers; 1999. p. 433–58.
[30] Barr RS, Golden BL, Kelly JP, Resende MGC, Stewart Jr WR. Designing and reporting on computational experiments with heuristic methods.

Journal of Heuristics 1995;1:9–32.
[31] Hooker JN. Testing heuristics: we have it all wrong. Journal of Heuristics 1995;1:33–42.

	Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date
	Introduction
	Problem formulation
	Metaheuristic approaches
	Initial solution and termination condition
	Neighborhood structures
	Simulated annealing method
	Tabu search method
	Variable neighborhood search method

	Computational experiments
	Tuning of metaheuristic methods
	Tuning of simulated annealing
	Tuning of tabu search
	Tuning of variable neighborhood search

	Comparison of metaheuristic methods
	Comparison of heuristic methods to an exact approach

	Conclusions
	Acknowledgments
	References

