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1. Introduction
Advancing the scientific understanding of organisms
through computation has an ever-increasing importance
that necessitates more research into fundamental problems
such as sequence analysis. Sequence analysis of DNA,
in particular, has become an increasingly essential issue
over the past few years, as we can see that nearly every
research project in molecular biology involves sequence
analysis and comparison (Schulze-Kremer 1995, Abbas
and Holmes 2004). Furthermore, the ultimate goal of the
Human Genome Project was to sequence accurately the
entire genome, which from the computational point of
view includes three main parts: mapping, assembling, and
sequencing (Waterman 1995, Setubal and Meidanis 1997,
Gusfield 1997, Pevzner 2000, Fogel and Corne 2003). All
parts of the approach to find the genome require better
analytical tools and more efficient algorithms because the
volume of data is massive. The impact of the successful
completion of the genome project is enormous and this
alone proves the importance and value of developing
more efficient and accurate algorithms for DNA sequenc-
ing. To this end, new technologies for DNA sequencing
are emerging with the advance of technology, and they
include sequencing by hybridization, among others (Human
Genome Program 2003).

Considering the limitations and the shortcomings of the
existing research that will be described in the next sec-
tion, our attention in this paper is focused on developing an
efficient, effective, and accurate heuristic algorithm for the
combinatorial part of the DNA sequencing by hybridization
(SBH) under the novel approach of isothermic libraries.
This new method (Blazewicz et al. 1999a, 2004c) uses
oligonucleotide libraries of equal melting temperatures
(thus, differing by their lengths) and, as explained in the
next section, could lead to overcoming one of the draw-
backs of the classical SBH approach (with equal length
oligonucleotide library), which sometimes cannot handle
excessive rate of errors being a result of the biochemical
phase of the SBH approach. It is, thus, of crucial impor-
tance to develop sequencing algorithms which will take
into account the specificity of the data and will construct
sequences as close as possible to the original ones. Based
on promising results from the literature and in view of the
success of metaheuristics in tackling difficult combinato-
rial problems, we considered developing a genetic algo-
rithm (GA) taking the combinatorial nature of the problem
into account. The obtained results, as demonstrated by
an extensive computational experiment conducted on real
DNA sequences, prove a clear superiority of the pre-
sented approach over the existing ones. Furthermore, tak-
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ing into account the specificity of the data in this case
(oligonucleotides of different length), this approach might
also be of value when designing new algorithms for the
assembling stage of genome reading. The proposed new
crossover operator that inherits some features of the struc-
tured weighted combinations might also be of value for
some other combinatorial optimization problems for which
the solution can be represented as a permutation, such as
the traveling salesman problem (TSP).
The rest of this paper is organized as follows. We

overview the DNA sequencing by hybridization method in
the next section. We then describe our proposed GA in §3.
We next analyze the performance of our GA through its
efficiency, effectiveness, and accuracy by extensive compu-
tational experiments in §4. We conclude the paper in §5.

2. DNA Sequencing by Hybridization—
Formulation and Basic Properties

One of the significant breakthroughs in molecular biology
was DNA sequencing, that is, the process of establish-
ing the precise order of the bases along one strand of a
DNA molecule. There are four different types of bases in
a DNA molecule: adenine, cytosine, guanine, and thymine,
which are abbreviated as A, C, G, and T, respectively.
SBH, which is a third-generation gel-less technology for
reading DNA, is one of the methods for DNA sequencing
and is expected to be used more and more in the future
(Human Genome Program 2001, Southern 1988, Drmanac
et al. 1989, Blazewicz et al. 1999b, Blazewicz et al. 2000,
Ben-Dor et al. 2001, Hubbell 2001, Phan and Skiena 2001,
Blazewicz et al. 2002, Halperin et al. 2002, Shamir and
Tsur 2002, Zhang et al. 2003, Blazewicz et al. 2004a).
SBH starts with a biochemical experiment (hybridization).
In the experiment, an unknown fragment of the single
stranded DNA labeled either fluorescently or radioactively
is hybridized to a DNA chip that holds the oligonucleotide
library to be used. An oligonucleotide library is a collec-
tion of all possible oligonucleotides (probes), that is, short
but known sequences of a few (2–10) nucleotides. The
result of this process is a set of labeled oligonucleotides
on a fluorescent or radioactive image of the DNA chip
(spectrum). In other words, spectrum represents all overlap-
ping oligonucleotides constituting the target DNA fragment
(complementary to the labeled ones on the DNA chip).
This spectrum, in turn, becomes the input data for the
computational phase of SBH during which the sequence
of the target DNA fragment is reconstructed. We stress
here that these algorithms, after necessary adjustments and
improvements, constitute the core of the assembling stage
(being purely a computational approach) of every genome
reconstruction (Venter et al. 2001; cf. also Blazewicz et al.
2004d, where the corresponding algorithm for the SARS
co-virus genome assembling has been described). This
motivates further their design and analysis.
One can observe that the success of SBH depends on

the reliability of hybridization as well as on the efficiency

and the accuracy of the algorithms used to reconstruct the
sequence from the spectrum. In the classical SBH, an iso-
metric oligonucleotide library of size 4l is used to obtain
the spectrum where each probe has equal length of l (Bains
and Smith 1988, Fodor et al. 1991, Southern et al. 1992,
Pevzner and Lipshutz 1994). If the hybridization experi-
ment is an ideal one without any experimental errors, then
one can reconstruct an original DNA sequence in polyno-
mial time (Pevzner 1989) (see Example 1 in the online sup-
plement at http://or.pubs.informs.org/pages/collect.html). In
contrast, if the hybridization experiment results in some
errors, then the problem handled in the computational phase
becomes NP-hard (Blazewicz and Kasprzak 2003, Gallant
et al. 1980). The errors generated during the hybridization
can be of two types: positive errors occur when oligonu-
cleotides that do not constitute the original sequence are
included in the spectrum, and negative errors take place
when oligonucleotides that are part of the original sequence
are missing from the spectrum. A repetition—that is, any
oligonucleotide appearing more than once in the original
sequence—can be considered as a negative error because
it will be included in the spectrum only once (see Exam-
ple 2 in the online supplement at http://or.pubs.informs.org/
Pages/collect.html).
The computational phase of the SBH approach with some

types of errors appearing in the spectrum was addressed in
few papers (Drmanac et al. 1989, Pevzner 1989, Bains 1991,
Guénoche 1992, Lipshutz 1993, Blazewicz et al. 1999b,
Phan and Skiena 2001, Halperin et al. 2002, Zhang et al.
2003). Very few of them dealt with unconstrained sets of
errors; the most general approach is probably presented in
Blazewicz et al. (1999b). In this approach, the computa-
tional phase of SBH has been reduced to a variant of the
selective TSP with a nice mathematical programming for-
mulation. Although this method is very general, an exces-
sive number of errors in the spectrum makes this approach
rather slow. Hence, a challenging problem is to design a new
approach reducing the number of errors in the biochemi-
cal phase of SBH. Such an approach has been proposed in
Blazewicz et al. (1999a).
The key idea of this new approach is to obtain a set of

oligonucleotides that differ in base composition and length
and are characterized by a predefined relation between the
base composition and the length of oligonucleotides. In a
specific case, if in a library the increment of C or G is twice
of A or T and the sum of increments for each oligonu-
cleotide is constant, then such a library is called isothermic.
In what follows, the sum of increments of nucleotides form-
ing an oligonucleotide will be called the oligonucleotide
temperature.
The isothermic oligonucleotide library follows the exper-

imentally established relationship between the base compo-
sition and the duplex stability. Oligonucleotides contained
in such a library should form duplexes with their comple-
ments in a more narrow range of experimental conditions
(temperature, salt concentration, etc.) than that character-
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istic for an oligonucleotide library with oligonucleotides
of the same length. Therefore, the hybridization experi-
ments performed with isothermic libraries should result
in a smaller number of experimental errors. The use of
such libraries should substantially limit the number of these
errors to be considered in the computational phase of the
SBH approach. Moreover, these libraries will also avoid
some repetitions (what follows different lengths of the
oligonucleotides used in the new chip libraries). These rep-
etitions are a serious drawback of the standard approach,
thus, their elimination is a crucial step toward a practical
application of the SBH approach. We give a formal reason-
ing for isothermic libraries in the online supplement and
more details can be found in Blazewicz et al. (2004c).
Now we will formulate the isothermic sequencing prob-

lem in its most general form, i.e., with positive and negative
errors. The formulation will be valid under the reason-
able assumption that most of the data coming from the
hybridization experiment are correct. Likewise in the clas-
sical SBH, as a result of the biochemical phase, one gets
a set of oligonucleotides that hybridized with the unknown
DNA sequence, i.e., spectrum (� ). Now the spectrum con-
tains the data from the hybridization experiment with two
isothermic oligonucleotide libraries differing by one incre-
ment of A(T) nucleotide. This problem in a search version
can be viewed as the one of finding, for a given spectrum
� , a sequence with the minimum number of positive and
negative errors. It is not hard to see that in case of the stan-
dard oligonucleotide library, where all oligonucleotides are
of equal length, this formulation is equivalent to the max-
imization of the number of l-mers from the spectrum used
to build a solution (a reconstructed sequence). It is assumed
here that the only information provided by the hybridiza-
tion experiment are the spectrum � and the length n of the
DNA sequence that is looked for. Now we can define our
problem as follows, where the necessary notation is given
in Table 1.

Isothermic DNA sequencing with negative and positive
errors—search version:

Instance: set � (spectrum) of oligonucleotides, each of
them of temperature t or t + 2, length n of an original
sequence.

Answer: a sequence of length n with a minimum value
of �+ �� � − 2�.
Its mathematical programming formulation is as follows

(cf. Blazewicz et al. 2004b). Obviously, the solution of this
mathematical programming formulation can be uniquely
translated into a sequence of nucleotides. All variables
appearing in the formulation are nonnegative integers.

Minimize

�+ �� � − 2� (1)

subject to
�� �∑
i=1

bik � 1	 k= 1	 
 
 
 	 �� �	 (2)

Table 1. Notation.

� number of oligonucleotides from the spectrum being
a part of the constructed sequence.

� number of oligonucleotides being members of the
two used isothermic libraries (of temperatures
equal to t and t + 2, respectively), which can
be distinguished in the sequence (each oligonu-
cleotide adds to � the number of its occurrences
in the sequence).

�−� number of negative errors.
�� � −� number of positive errors.
si element of the spectrum.
si�j� jth nucleotide of si.
li length of si.
n length of an original sequence.
bij Boolean variable; equal to 1 if element si is an

immediate predecessor of element sj in a recon-
structed sequence, otherwise equal to 0.

cij cost of joining element si (as the first one) with ele-
ment sj assuming a maximal overlap of the two
elements (in the sense of the hybridization); equal
to the difference between starting positions of the
elements in a sequence obtained in the above way;
if the difference is equal to zero and si is longer
than sj , the value of cij should be set to n.

yijk Boolean variable; equal to one if in a sequence cre-
ated from elements si (as first) and sj joined with
shift cij , it is possible to distinguish an oligonu-
cleotide of temperature t starting from position k
of the sequence; otherwise equal to zero.

y′ijk Boolean variable; equal to one if in a sequence cre-
ated from elements si (as first) and sj joined with
shift cij , it is possible to distinguish an oligonu-
cleotide of temperature t+2 starting from position
k of the sequence; otherwise equal to zero.

ylast number of oligonucleotides of temperatures t or t+2
possible to distinguish in the last element of the
current reconstructed sequence.

f �x� function returning the increment of nucleotide x, i.e.,
f �A�= f �T�= 2, f �C�= f �G�= 4.

�� �∑
k=1

bik � 1	 i= 1	 
 
 
 	 �� �	 (3)

�� �∑
k=1

(∣∣∣∣∣
�� �∑
i=1

bki −
�� �∑
j=1

bjk

∣∣∣∣∣
)
= 2	 (4)

∑
sk∈� ∗

( ∑
si∈� ∗

bik ·
∑

sj∈� ∗
bkj

)
< �� ∗� ∀� ∗ ⊂� 	� ∗ �= �	 (5)

last= 1
2

[ �� �∑
k=1

(∣∣∣∣∣
�� �∑
i=1

bik −
�� �∑
j=1

bkj

∣∣∣∣∣k
)

+
�� �∑
k=1

(( �� �∑
i=1

bik −
�� �∑
j=1

bkj

)
k

)]
	 (6)

�� �∑
i=1

�S�∑
j=1

cijbij � n− llast	 (7)

�=
�� �∑
i=1

�� �∑
j=1

bij + 1	 (8)
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�=
�� �∑
i=1

�� �∑
j=1

cij∑
k=1

bij�yijk + y′ijk�+ ylast	 (9)

yijk � 1	

i= 1	 
 
 
 	 �� �	 j = 1	 
 
 
 	 �� �	 k= 1	 
 
 
 	 cij 	 (10)

y′ijk � 1	

i= 1	 
 
 
 	 �� �	 j = 1	 
 
 
 	 �� �	 k= 1	 
 
 
 	 cij 	 (11)

ylast = ylast 1+ ylast 2+ 1	 (12)

ylast i � 1	 i= 1	2	 (13)
llast−1∑
i=1

f �slast�i��= t ⇔ ylast1 = 1	 (14)

llast−1∑
i=1

f �slast�i+ 1��= t ⇔ ylast 2 = 1	 (15)

cij+lj∨
w=k

(
w∑

z=k

f �sij �z��= t

)
⇔ yijk = 1	

i= 1	 
 
 
 	 �� �	 j = 1	 
 
 
 	 �� �	 k= 1	 
 
 
 	 cij 	 (16)

cij+lj∨
w=k

(
w∑

z=k

f �sij �z��= t+ 2
)

⇔ y′ijk = 1	

i= 1	 
 
 
 	 �� �	 j = 1	 
 
 
 	 �� �	 k= 1	 
 
 
 	 cij 	 (17)

z� li ⇒ sij �z�= si�z�	

i=1	


	�� �	 j=1	


	�� �	 z=1	


	cij+lj , (18)

z > li ⇒ sij �z�= sj �z− cij �	

i=1	


	�� �	 j=1	


	�� �	 z=1	


	cij+lj 
 (19)

The minimization of criterion function (1) corresponds
to the minimization of the number of errors connected with
a reconstructed sequence. Inequalities (2) and (3) guarantee
that each element of the spectrum has at most one imme-
diate predecessor and at most one immediate successor in
a reconstructed sequence. Equation (4) ensures that in a
reconstructed sequence there will be only two elements not
connected with other elements of the spectrum on both its
ends. Inequalities (5) guarantee that there will be no cycle
in a reconstructed sequence. Equation (6) assigns the index
of the last element in the current reconstructed sequence.
Inequality (7) ensures that a constructed sequence will not
exceed length n. Constraints (8)–(19) define the values of
parameters � and �.
The above problem is proved to be strongly NP-hard

(Blazewicz et al. 2004b), thus, unlikely to admit polyno-
mial- and pseudopolynomial-time optimization algorithms.
There is also no hope of finding a fully polynomial approx-
imation scheme. Hence, considering the success of meta-
heuristics in tackling the difficult combinatorial problems
and recent applications of the hybrid GA and the tabu
search algorithm to DNA sequencing with isometric and
isothermic libraries, respectively, we developed a GA for

DNA sequencing by using a hybridization approach with
isothermic oligonucleotide libraries. The GA was especially
suited for this purpose because it allowed us to incorpo-
rate problem-specific characteristics into its design and to
handle different types of errors and large-sized problems.

3. Genetic Algorithm for the
Isothermic SBH

In the last 15 years, there has been an increasing inter-
est in metaheuristics for optimization problems. One of the
reasons for this is that these methods provide one of the
best ways to obtain a near optimal solution with a reason-
able computational effort. Another reason is that they are
designed for complex optimization problems where classi-
cal heuristic approaches and optimization methods cannot
provide an efficient and effective solution. Metaheuristics
are shown to work exceptionally well in practice (Rayward-
Smith et al. 1996).
GA is one of the metaheuristics, and it involves more

general and abstract techniques compared to other meta-
heuristics (Fraser 1957, Holland 1975). GA is a variation of
evolutionary computation algorithms and specifically, it is
a mechanism that simulates natural evolutionary processes.
We refer the reader to Michalewicz (1996), Gen and Cheng
(1997), and Reeves (2003) for a detailed description of
the GAs.
Our proposed GA adopts the general structure of this

metaheuristic with its standard components. However, we
implemented each of these components in our GA by con-
sidering the characteristics of the DNA sequencing by using
a hybridization approach with isothermic oligonucleotide
libraries as explained in detail in the online supplement.
The input data for our GA are the spectrum � , con-

taining �� � oligonucleotides (possibly hybridizing with the
sequence we look for) and the length n of the sequence,
which are obtained from the biochemical phase of the
isothermic SBH. In the following, we define of and ol
as the first and last oligonucleotides in an individual,
respectively.

Step 1 (initial population). Create s individuals, where s
is half of the sequence length. Each individual is a permu-
tation of integers from 1 to �� �.

Step 2 (main loop). Repeat Steps 3–5 until there are no
improvements for iter= 50 generations.

Step 3 (parent selection). Define the fitness of an indi-
vidual as the number of oligonucleotides from the spectrum
used to form the best subsequence, which is no longer than
n. Evaluate fitness of all individuals in the population and
select c ∗ s parents according to the part-sum selection pro-
cedure, where c = 0
9. Steps 3.1 and 3.2, which describe
the crossover operator, are repeated for each pair of parents,
which are paired randomly.

Step 3.1 (beginning of crossover). Select the first oligo-
nucleotide oi randomly. Let of = ol = oi.
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Step 3.2 (crossover). Find predecessor of of and succes-
sor of ol in both parents. For all the oligonucleotides found,
exclude the oligonucleotides that are already in the solu-
tion, and choose the one that fits better. If there is a tie,
select one randomly. If there are no predecessors nor suc-
cessors that are not used in the solution, find the oligonu-
cleotide that fits the best, where ties are broken randomly.
Assign the chosen oligonucleotide to the appropriate posi-
tion in the solution. Update of and ol. Repeat this step until
all oligonucleotides are in the individual.

Step 4 (mutation). Choose an individual randomly (from
both the offspring and the parents’ populations). Find the
oligonucleotide with the smallest total overlap degree and
swap this oligonucleotide with the adjacent oligonucleotide
that has the lowest overlap degree with it. Repeat this step
with mutation frequency m ∗ s ∗ �� �, where m= 0
001.

Step 5 (creation of the next generation). Evaluate fit-
ness for each individual from the offspring and the parents’
population. Select all the individuals from the offspring
population and the best ones from the parents’ population
as the next generation.
The pattern of the crossover operator used in our ap-

proach inherits some features of structured weighted com-
binations (Glover 1994). One might find the similarities
on how the customary operations (for example, a simple
crossover) are replaced with structured transformations of
(sub)sequences that preserve specified discrete relationships
and associated feasibility conditions. Following three prop-
erties of the (sub)sequences from which the weighted com-
binations are created, we define:

Property 1. Each (sub)sequence represents a set of prece-
dence relationships between neighboring oligonucleotides
in the individual for a particular decision.

Property 2. In a solution, all oligonucleotides are in the
individual exactly once. Although the created sequence is
longer than n, the best subsequence of length not greater
than n is selected, which is what makes the solution
feasible.

Property 3. A new individual is created according to the
combination of different precedence relationships between

Table 2. Similarity of the obtained sequence to the original one and the number of optimal solutions for different
algorithms.

Zhang et al. (2003) Blazewicz et al. (2004a) Blazewicz et al. (2004c) Genetic algorithm

Similarity Optimal Similarity Optimal Similarity Optimal Similarity Optimal Deviation
n Errors [%] solutions [%] solutions [%] solutions [%] solutions � [%]

200 ±5% 100 90/90 99.9 40/40 85.2 8/40 99.9 39/40 0.36
±20% — — 97.9 36/40 78.7 3/40 99.2 37/40 3.47

400 ±5% 100 80/80 95.3 32/40 75.9 2/40 99.2 38/40 4.68
±20% — — 89.4 21/40 69.7 0/40 99.2 36/40 4.68

500 ±5% — — 95.3 32/40 75.6 3/40 99.8 39/40 1.15
±20% — — 83.9 17/40 70.2 0/40 99.6 35/40 1.85

600 ±5% — — 95.2 32/40 76.5 2/40 98.0 36/40 7.71
±20% — — 80.5 15/40 68.8 0/40 98.0 32/40 9.19

neighboring oligonucleotides from two parents. There are
defined rules to determine which precedence relationships
will be chosen so that Properties 1 and 2 continue to hold.

This approach was chosen to prevent inadvertent destruc-
tion of good traits in the parents.

4. Computational Results
In this section, we present the evaluation of the perfor-
mance of the GA; we describe the data and the tuning
of the parameters in the online supplement. The solution
obtained from the GA can be evaluated in two ways.
First, during computations, while no information about
the order of oligonucleotides is provided, the number of
oligonucleotides composing the solution determines the
quality of the solution. This statement originates from the
fact that most of the oligonucleotides in the spectrum are
correct. Otherwise, it would be impossible to find the
original sequence. Second, once computations are over,
the sequence generated by the algorithm is compared to
the original one, which results in the similarity value.
The similarity is quantified according to the Needelman-
Wunsch algorithm (Needelman and Wunsch 1970; cf. also
Waterman 1995 and Setubal and Meidanis 1997).
Based on the above criteria, we evaluated the perfor-

mance of the proposed GA compared to those of the ear-
lier algorithms used for DNA SBH problem. For this pur-
pose, we considered the best algorithms proposed for the
DNA SBH problem with both positive and negative errors
where an isometric oligonucleotide library is used, namely,
the tabu search (TS) algorithm by Blazewicz et al. 2004a,
which uses a scatter search for diversification, and the algo-
rithm by Zhang et al. (2003). We have also considered
the TS algorithm proposed by Blazewicz et al. (2004c)
for the same problem with an isothermic oligonucleotide
library. In the following, each entry of Tables 2–4 sum-
marizes the results of the tests for 40 different sequences
obtained from the GenBank in the way described in the
online supplement.
In Table 2, the results of four algorithms are compared.

There are two measures for the evaluation of the obtained
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sequence: the similarity of the obtained sequence to the
original one and the number of optimal solutions found by
the algorithm. (Note that in our tests we knew the original
sequences because they were DNA sequences taken from
GenBank.) Each entry of the columns under the “optimal
solutions” heading is composed of two numbers, a and b,
and it means that among b instances, the algorithm found
a original sequences, with 100% similarity. The cases for
which the results were not given by Zhang et al. (2003) are
denoted by a dash.
The first algorithm, described in Zhang et al. (2003), is

mostly designed for positive errors in addition to some rep-
etitions that can occur in the sequence. However, it works
well with a small rate of negative errors—up to 5%. This
algorithm was not tested for instances with a higher rate of
negative errors nor for longer sequences.
The method described in Blazewicz et al. (2004a) seems

to work well for hard instances with a high rate of both
types of errors. However, even though the similarity is
quite high (for sequences of 200-nucleotide length, similar-
ity is above 99%), the number of optimal solutions found
decreases sharply with an increase in the length of the
sequence; for sequences with 600 nucleotides, only 15 out
of 40 optimal solutions were found. One should note that
tested instances contain longer sequences and with ±20%
error rate compared to the algorithm by Zhang et al. (2003)
and because more oligonucleotides are missing in the spec-
trum, the sequencing problem is more difficult.
The TS algorithm of Blazewicz et al. (2004c) for isother-

mic sequencing is presented in columns 7 and 8 of Table 2.
The original algorithm assumed knowledge of the first
oligonucleotide. To keep the same conditions for a fair
testing of different algorithms, we changed the algorithm
accordingly so that we do not use this additional informa-
tion, which is the case for our GA. The TS algorithm solved
the instances with the similarity in range [68.8%–85.2%],
and it rarely found the original sequence.
The results of our GA are presented in the last three

columns of Table 2. The algorithm works very well for all
the instances, giving a high similarity rate ranging from
98% in the worst case to almost 100% for sequences with
not more than 500 nucleotides. Among the instances with
400-nucleotide sequences and ±20% of positive and neg-
ative errors, the algorithm found the solution for four of
the instances with low similarity to the original sequence,
and hence the similarity appears to be equal to 99.2%. As
can be seen from the optimal solution value, the algorithm
finds the optimal solutions for the remaining instances. For
sequences of length 600, 98% similarity and 36 (for ±5%
error rate) and 32 (for ±20% error rate) out of 40 optimal
solutions are very good results.
In the last column of Table 2, we present an additional

measure for the performance of the GA: the deviation of
the similarity values from the average similarity value. It is

defined as the square root of the variation according to the
function

� =
√∑b

i=1�xi − x�2

b− 1 	

where xi are the consecutive values of the similarity, x is
the mean value, and b is the number of tested instances
(b= 40). One might notice that the deviation is very small.
Only for the case where the length of the sequence is equal
to 600 nucleotides does it rise up to 9.2%. This rather high
value follows the reason that there are more than 30 opti-
mal solutions out of 40 and the average similarity is only
98%, which makes 2% of difference for each of the optimal
solutions. Moreover, there were also few sequences with a
rather small similarity value, which was around 60%.
Tables 3 and 4 show a comparison of the usage of

oligonucleotides and CPU time for the algorithms work-
ing with isothermic sequencing. For these two methods, the
criterion function was the number of oligonucleotides used
for composing the solution. Thus, it is very important to
obtain high value of the usage. In Table 3, each entry is the
mean value for all the results. The value 100% means that
the number of oligonucleotides is the same as the number
of proper oligonucleotides in the spectrum. In Table 4, the
CPU time of computations of both methods is compared
under the same conditions.
It is very significant that the GA works for a similar

period of time for the same length of the sequence but
different error rate. Although it works longer than the TS
algorithm for the case with ±5%, it is much faster while
the error rate increases, and the results are better in both
cases (cf. Table 2). It might be due to the different func-
tions used to compare the intermediate solutions in the
algorithms. In the TS algorithm, the function for evaluating
intermediate solutions was a condensation, i.e., the number
of oligonucleotides divided by the length of the sequence.
In the GA, we tested different functions (as explained in the
online supplement), including the condensation, to be used
within the crossover operator. Among the functions that
were tested, the best one appeared to be the combination
of overlaps between neighboring oligonucleotides and the
temperature of the sequence. We see that it indirectly takes
the length of oligonucleotides into consideration. This func-
tion provides very good results—almost all the obtained
sequences are optimal from the criterion function point of

Table 3. Usage of oligonucleotides for isothermic
sequencing.

Blazewicz et al. (2004c) Genetic algorithm

n ±5% ±20% ±5% ±20%
200 96.8 96.1 100 100
400 96.6 95.3 100 99
9
500 96.0 95.6 100 99
9
600 96.2 95.1 100 99
9
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Table 4. CPU time of computations [s].

Blazewicz et al. (2004c) Genetic algorithm

n ±5% ±20% ±5% ±20%
200 3
5 9
7 6
5 8
5
400 18
0 74
7 23
9 30
8
500 30
0 125
5 46
5 53
6
600 45
9 199
9 80
9 91
6

view because the number of oligonucleotides is almost the
same as the number of proper oligonucleotides in the spec-
trum. Moreover, they are also optimal from the biochemical
point of view because similarity to original sequences is
almost 100% (cf. Table 2). For the TS algorithm, the qual-
ity of the solution, although very high (95%–97%), does
not lead to high similarity of the obtained sequence when
compared to the original one.
Finally, we observe from the results that in the cases

of 500-nucleotide and 600-nucleotide sequences with error
rate ±20%, the GA sometimes could not find the orig-
inal sequence. Even though usage of oligonucleotides is
100%, similarity is lower. The reason for this could be
the existence of more than one solution derived from the
same number of oligonucleotides. Without any additional
(biochemical) information about the original sequence, it
cannot be indicated which one is better because they are
equivalent with respect to the function evaluated by the GA.

5. Conclusions
In this paper, the problem of DNA sequencing by hy-
bridization with isothermic libraries is solved by the GA.
This combination proved to be very efficient, outperforming
other approaches in the field. Extensive tests made on real
DNA sequences, which were taken from GenBank, have
demonstrated the high quality of the solutions generated,
measured by the similarity to the original sequences and
the number of the optimal sequences found. As demon-
strated by examples, this new approach can also cope with
some repetitions, whereas the classical isometric approach
cannot. However, there is still room for improvement,
especially in cases of a high repetition rate in original
sequences. Here, it seems to be promising to use the infor-
mation from the problem structure in an intelligent way and
to reduce the randomness in the GA.
One strength of GAs can be attributed to the crossover

operator used that recombines good traits of two parents
from a population of solutions. But an accompanying weak-
ness of GAs is the inadvertent destruction of these good
traits during the crossover. To alleviate this weakness, one
can consider incorporating the strengths of scatter search
and path relinking (Glover and Laguna 1997, Glover et al.
2000), which are also population-based metaheuristics, into
the GA. In this study, we particularly considered a struc-
tured recombination of good traits of the individuals, such
as weighted structured combinations used in scatter search

and path relinking (Glover 1994). Such an approach has
brought additional power to our GA by combining solutions
more intelligently than the classical crossover operators
(Glover 2004). This approach can also be of value for some
other combinatorial problems for which the solution can be
represented as a permutation, including the TSP.
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