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: In delermmlsilc sequencmg and schedulmg prob]ems, Johs are to bc processed on rnachlnes of_
_'_ﬁhmlted capac1ty We consrder an exiensaon of this class of problems, in which lhe]ObS requlre the |
use of addmunal scarce resources during their execulion, A classification scheme. for: resource':. :
- constrarms lS propnsed and Lhe computauona] complexity of the extended problem class 1s": :
i ;'mvestlgalcd i 1erms ofthls C[ﬂSSlflCﬂ[lon Models mvolvmg parallel machmes umt L1mc10bs and_.-' ’
"the maxlmum completmn time crraermn are studu.r.l in detm[ other mndels are brlefly dlscusscd o

.'.ii"_ll]tro'ﬂ'u-c'tfiéh_g._:__ -

e-trad _10nal ciass of dcterrrumstlc sequencing and scheduimg problems {2 7},: 3 S
I consmtmg of one or: more operar:ons are:to be processed on machines _' o :
M Each machme can hand!e at most one job at a time and each jobecanbe - R
_' ex _uted by at most one machtne at a time. . Thus, at any time, the execution of a ]Ob

is: estr:cted by the: presence of a smgle scarce resource:. We shall consider-an- .
'::extensxon of ‘this class by allowmg for: the’ presence of more than'.oné scarce." R
-:jresource Each operatlon of a _]Ob requires.the use of a given fraction of éach of the
.-jresources and the probiem is to find an Optunal schedu!e subject to these addmonal'_
resource constmmts. Such’ models occur for exarnple m the context of c0mputer '
operatmg systems and project schec!ul:ng : : i
Varlous aasumphons can be made about the number of resources, about the -
~amounts in which they are available, and about the amounts which are required by’
:':th _'operatlons Section’ 2 mtroduces & sunple classrﬁcarron scheme for resource. .

: constramts that captures many var:atlons of the model. It expands the classification SRR
schem s-for scheduhng problems gwen 1'1 [7] the relevant part of whlch 1s mcIuded RS |
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In general, the addition of resource constraints to a scheduling problem may
affect its computational complexity. In particular, certain well-solved problems, for
which polynomial-time algorithms exist, may be transformed into NP-hard ones,
for which the existence of such algorithms is very unlikely [8,5]. The obvious -

research program would be to determine the borderline between easy and hard | .

resource constrained scheduling problems, much in the same vein as has been done
for the traditional class, and possibly through the use of an extension of the
computer aided complexity classification developed for that purpose [10]. Rather .
than attempting such a complete and probably somewhat tedious analysis, we will
concentrate on single operation models with unit processing times and the maximum
completion time criterion. Section 3 presents our results for these models. Section 4
deals briefly with some other models, viz, extensions to other optimality criteria,
preemptive scheduling, and multi-operation models. Section 5 contains some
concluding remarks. -

2. Classification of resource constraints

Thee classification scheme for resource constrained scheduling problems
introduced in [7] will be used in this paper as well. Briefly, a problem type’
corresponds. to a three-field notation «| 8|y, where « specifies the machine
environment, f} indicates certain job characteristics, and y denotes the optimality
criterion, Readers not familiar with this notation are referred to the Appendlx
where all the relevant definitions can be found.

We shall expand this classification scheme by allowing the jobs to require the use
of additional scarce resources. Suppose that there are / resources Ry, ..., R,. For each
resource R, there is a positive integer size s, which is the total amount of Ry
available at any given time, In single-operation models, there is for each resource Ry,
and job J; a nonnegative integer requirement ry; which is the amount of R, required-
by J; at all times during its execution. A schedule is feasible with respect {o-the
resource constraints if at any fime ¢ the index set S; of jobs being executed at ¢
satisfies ¥, ryy=s,; (h=1,...,1). In multi-operation models, there is for cach
resource R, and operation C)U a nonnegative integer requirement r,.,,J,, w1th a snmlar' :
condition for the feasibility of a schedule. . o '

The presence of scarce resources will be indicated in the second fleld of our
classification scheme by : o

resAoo

where A, ¢ and g are characterized as fo!lows :
— If A is a positive integer, then the number of resources ! is constant and equal to
A; if A=+, then / is part of the input. :
— if ¢ is a positive integer, then all resource sizes s, are constant and equal to' @; 1f
, then all s, are part of the input. '
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~ If g is a positive integer, then all resource requirements ry; (ry;) have a constant
upper bound equal to g; if g=-, then no such bounds are specified.

Many types of resource constraints are not represented by this classification, but
in a sense more than enough detail is included already. In fact, we shall assume that
A, o and g are either egual to 1 or to -; this restriction still generates most of the
relevant and previously studied problem types.

Remembering that g=1 excludes g=-, we obtain six types of resource
constraints, some of which are obvious generalizations of others. Fig. 1 illustrates
these six types and the simple transformations between them; an arc from type (a) to
type (b) indicates that (a) is a special case of (b).

Fig. 1. Reductions between six types of resource constraints,

We can draw an additional arc from res --- to resl-- under the restriction that the
machines and resources are all saturated in each feasible schedule, i.e., |S,|=m and
Ties =5, (h=1,...,0) at any time ¢ until a given deadline. In this case the /
requiremeitts ry;, ..., ry can be encoded into a single mixed radix number r.'J,- {4].

3. Single-operation models with unit processing times and the C,,, criterion

We will now investigate the computational complexity of models involving
parallel identical or uniforn machines, unit-time jobs, (possibly emptiy) precedence
constraints and the maximum completion time criterion. Theorems | to 7 determine
the complexity of all such problems; the complete picture is given in Fig. 2.

Our starting point is the observation that a polynomial algorithm exists for the
case of two identical machines, even under the most general type of resource
constraints.

Theorem 1 (Garey & Johnson {4]). P2|res---, p;=1| Cpyy is solvable in O(In*+ n*'?)
time,

Proof. Given any instance of P2|res--, p;=1|Cpa.y, construct a graph G with
vertices 1,...,n and edges {j,k} whenever ryj+ryss; (h=1,...,1). Thus, the
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P2 |chaiin

maximally solvable in polynomial time

minimally NP-hard
{see Theorems 2, 3, 4, 7)
(see Theorems 1, 5, 8)

[
O

Fig. 2. Complexity of a|resdao, fy, p, = 1| Cpyy problems.

(::) splvable in polynomial time
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vertices correspond to the jobs and the edges to pairs of jobs that can be executed
simultaneousty. Next, obtain a matching S (i.e., a set of vertex-disjoint edges) in G
of maximum cardinality. Obviously, the minimum value of C,,, is equal to n— |S|.
Construction of G requires O(/n?) time, and the algorithm from [3] fmds S in
O(n*/?) time. This proves the polynomial time bound. [ :

The correspondence between resource feasible sets of jobs and certain subsets of
vertices in a graph can be turned around to obtain NP-hardness results for problems
with three identical or two uniform machines. Given any graph G with vertex set V'
and edge set F, jobs and resource constraints of type res- 1} can be defined in the
following way:

— for each vertex je ¥, introduce a job J;;

— for each vertex pair {, k} ¢ E, introduce a resource Ry, ;; of size s(; =1 with
requirements ry; ¢y, =ik 6= L, Ija.=0 otherwise.

Thus, two jobs can be executed simultaneously if and only if the corresponding
vertices are adjacent.

Theorem 2. P3|res- 11, p;j=1|Cpyy is NP-hard in the strong sense.

Proof. We present a straightforward transformation from the following NP-
complete problem [5]:

PARTITION INTO TRIANGLES: Given a graph G=(¥, E) with |V|=31, can
V' be partitioned into ¢ disjoint subsets, each containing three pairwise adjacent
vertices? :
Given any instance of this problem, we construct an instance of P3|res- 11,
p;j=11Chx in the way indicated above. Clearly, PARTITION INTO TRIANGLES
has a solution if and only if there exists a feasible schedule with value Cp,,<t. [

Theorem 3. Q2|res- 11, p;=1]Cy is NP-hard in the strong sense.

Proof. In this case, we start from the following NP-complete problem [5]:

PARTITION INTO PATHS OF LENGTH 2: Given a graph G=(V,E) with
|V| =3¢, can V be partitioned into 7 disjoint subsets, each containing three vertices,
at most two of which are nonadjacent?

Given any instance of this problem, we construct an instance of Q2|res- 11,
pj=1|Cppay in the way indicated above, with machine speeds ¢, =2, g,=1. It is
easily seen that PARTITION INTO PATHS OF LENGTH 2 has a solution if and
only if there exists a feasible schedule with value C ., <¢. O

Theorems 1, 2 and 3 indicate that, when there are no precedence constraints, we
can restrict our attention to the case of a single resource. First, we recall a classical
NP-hardness result,
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Theorem 4 (Garey & Johnson [4]). P3/resl .., P;j=1|Cuax is NP-hard in the strong
sense.

Proof. When the machines and resources are all saturated, P3| rest -, Pi=1|Cpax
is equivalent to the following problem:

3-PARTITION: Given a set §={1,...,3¢} and positive integers a,, ..., a3, b with
Lies@j=1b, can § be partitioned into ¢ disjoint 3-element subsets S; such that
Yiesai=b(i=1,...,0)7 _
This celebrated problem was the first number problem proved to be NP-complete in
the strong sense. [

It turns out that polynomial algorithms exist for all special cases of Q| res-,
p;j=1|Cphyy whose complexity status has not been settled so far. The solution
methods are presented in Theorems 5 and 6,

Theorem 5. Q2| resl--, p;=1|Cp,, is solvable in O(n log n) time.

Proof. Given any instance of Q2|resl -, Pi=1| Ciay, an optimal schedule can be
obtained in the following way. Suppose that q,= ¢,. First, schedule all jobson M, in
order of nonincreasing resource requirement. Next, successi. ¢ly remove the last job
from M, and schedule it as early as possible on M,, as long as this reduces the value
of Cmax-

This O(nlog#) algorithm clearly generates the best schedule among those
satisfying the following properties: _

(a) the jobs J; on M, are executed in order of nonincreasing ri; without machine.
idle time;

(b) the jobs J; on M, are executed in order of nondecreasing ry,;

(c} rij=r for all Jy on M, and all J; on M.

The correctness of the algorithm will now be proved by showing that any feasible
schedule can be transformed into a schedule that is at least as good and satisfies
properties (a), (b) and (c). L

To avoid the introduction of some cumbersome notation, the transformation is
presented in an informal way. Starting from a feasible initial schedule, one proceeds
as follows (cf. Fig. 3). .

Step 1. Move the jobs that are executed on M, while M, is idle to M 1- Interchange
parts of the schedule simultaneously on both machines such that the jobs or frac-
tions of jobs that are executed on M, while M, is idle are in the Ffirst positions on M.

Step 2. Interchange parts of the schedule simultaneously on both machines such
that all jobs Ji. on M, are in order of nondecreasing r.

Step 3. Rearrange the (fractional) jobs J; that are executed on M| while M, is
busy in such a way that they are in order of nonincreasing ry; and the preemptions
created by Step 2 are eliminated. (This does not lead to resource infeasibility.)

Step 4. Insert the (fractional) jobs that are executed on M, while M, is idle in
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Instance of Q2|nesl-«,p.=1]C _ :
ki max o
o= 63 0y = 1/2, Gp = 1/3; 51 h, ,'LU =7 ()= 13'.t,l_5)l
MHotation: Initial scheduie
111-
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Fig. 3. Illustzation of transformation of a Q2] resl -+, p, = 1| Cy,, schedule,

positions on M, chosen in such a way that all jobs J; on M| are in order of non-
increasing r|; and the preemptions created by Step 1 are eliminated; it may be
necessary to introduce periods of idle time on A,. Left-justify the resulting
schedule,

Step 5. Let J; be the last job on M, and J; the last job on M,. If r']jahk, the
transformation terminates. Otherwise, schedule J; in the position of J; on M,,
schedule J, as early as possible on M, left-justify the schedule, and return to Step 1.

None of these steps increases the value of Cp... After each application of Steps 1
to 4, properties (a) and (b) are satisfied, and after a finite number of applications of
Step 5, property (c) holds as well. This validates the algorithm given above.

Theorem 6. Q|rest-1, p;=1|C,.x is solvable in Q(n*) time.

Proof. Given any instance of Q|resl-1, p;=1]|Cpu construct a transportation
network with # sources j (j=1,...,n) and mn sinks (i, k) (i=1,....,m; k=1, ..., n).
Each arc (J, (i, £}) has a cost ¢, to be defined below. The arc flow X is to have the
following interpretation:
1 if J;is executed on M in the kth pOSItIOEl
ik =
0 otherwise.
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The number of resource requiring jobs executed simultaneously must never be
allowed to exceed the resouce size. This can be effectuated by requiring that these
jobs are assigned only to the fastest s; machines. Thus, assume that g,=¢,; for all
h=1,...,58 and all f=s5,+1,...,m, and define
oo ifizs;+1and r;=1,
€= {k/q; otherwise

Then the problem is to minimize
max {C,;,-kx,-jk}
Lpk

subject to

m n

; k};l Xp=1 (j=1,....n},

"

Y oxp=t (i=1...,m k=1.n),

i=1

X =0 (i=1,....,m; j=1,...,m k=1,...,n).

This bottleneck transportation problem can be formulated and solved in O(n%)
time, [

Naote. Similar transportation network models provide efficient solution methods
for Q|resl-1, p;=1|y, where ye{max;{f(C), L, /;,(C)} for arbitrary non-
decreasing cost functions f; (/=1,...,n).

When the presence of precedence constraints between the jobs is allowed, NP-
hardness in the strong sense has been established for P2|resl ., tree, pj=1|C.x
[41 and P2|resill, prec, p;=1|Cqy [12]. These results are both dominated by
Theorem 7. '

Theorem 7. P2|reslll, chain, Pj=1|Cuyy is NP-hard in the stro'ng sense,

Proof. We prove this result by means of a transformation from 3-PARTITION (see
Theorem 4), where we assume without loss of generality that +b<a;< b for all
J€S. Given any instance of this problem, we construct an instance of P2 resl11,
chain, p;=1|Cyyy in the following way:

— There is a single chain L of 2¢b jobs:

L=_]l' —>J£ —p—;J’; —>]_1 . —>_]2 —y—)Jb—»

r [ I
2Jber Iz eI pe Dy ey

I /(IR P S R e b A ANt [T L SRR %
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— For each je §, there are two chains X; and Kj, each of a; jobs: -
]{}:J}-]ﬁ 12*-)"'_’"_7,"0_,':
Kr:‘[}"lh; _’Jjajm

moreover, it is required that K; precedes KJ, ie., .gaj—r AL

— The primed jobs do require the resource, the unprimed jobs do not.

We claim that 3-PARTITION has a solution if and only if there exists a feasible
schedule with value C,,<2¢b.

Suppose that 3-PARTITION has a solution {S,,...,§,;}. A feasible schedule with
value Cp=2tb is then obtained as follows (cf. Fig. 4). First, the chain L is
scheduled on machine M, in the interval {0, 2¢5]; note that this leaves the resource
available only in the intervals {(2/— 1)b,2ib] (i=1,...,t). Foreach ie {l,...,¢}, it s
now possible to schedule the three chains K; (J € §;) on machine M; in the interval
[2¢/— Db, (2i — 1)b] and the chains Kj (jeS;) on M, in [(2i— 1}5, 2ib]. The resulting
schedule is feasible with respect to resource and precedence constraints and has total
length 2¢b.

Part of feasible instance for 3-PARTITIDN:
b = 15, a; = 4, ay = 5, ag = 63 S'é = [1,2,3).

Part of feasible schedule for PZ|&eAlll.chaLu,pj=1§Cmag:

O 8 0 o o ook 5 5 A A 1

2 _[osiotofoialofioioiHn imfeteta Lete{atota [eraeiein
it R

2(i-1)b (2i-1)8 2.b

e: J!

0: T ((L-1)b+]l < b = 4b); D2 ] w: J_;'fz {f e S;s Lshksa;.

ke R’ |

Fig. 4. Hlustration of transformation from 3-PARTITION to P2|rest1], chain, pi=1 | Conaxe

Conversely, suppose that there exists a feasible schedule with value Cy,,,<2tb. It
is clear that in this schedule both machines and the resource are saturated until time
2th. Moreover, the chains K; (/€ .S) are executed in the intervals [2(i — 1), (2 — 1)b]
(i=1,...,t) and the chains K (je S) in the remaining intervals. Let S; be the index
set of chains K; completed in the interval [2(/—1)b,(2i—1)b], for i=1,...,¢
Consider the set S,. It is impossible that ;. a;> b, due to the definition of §|; the
case ¥,.5,4;<b cannot occur either, since this would lead to machine idle time in
[b,28]. It follows that T, ¢ @;=b, and our assumption about the size of a; (/€ S)
implies that |§,|=3. This argument is easily extended to an inductive proof that
{Si, ..., 8,} constitutes a solution to 3-PARTITION. O
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4, Other models

We will next comment on the computational complexity of three variations of the
models considered in the previous section, viz.

(1) extensions to other optimality criteria,

(2) preemptive scheduling, and

(3) multi-operation models.

4.1. Orher optimality criteria

If the Cpay criterion is replaced by other optimality criteria such as the roral
completion fime 3, C; or the maximum lateness Ly,,, most results can be extended in
a straightforward way.

In fact, all the NP-hardness results of Theorems 2, 3, 4 and 7 carry over
immediately to both ¥ C; and L. For . C;, we use the fact that the machines are
saturated in each of the transformations; e.g., in Theorems 2 and 4 we have C <t
if and only if § st%r(i+ 1). For Ly, we define due dates 4;=0 for all jobs, 50
that Ly = Chuay.

It has been noted already that the transportation network model of Theorem 6
provides polynomial algorithms for Q|res1-1, p;=1]y, where y=F C,0or y=L .
The matching approach of Theorem | is easily adapted to solve P2|res---,
pj=1}L C; as well: simply schedule the paired jobs before the remaining ones. It
seems a safe conjecture that the algorithm of Theorem 5 can be maodified to solve
Q2|resl--, p;j=1|L C;; we leave this as a challenge to the reader. However,
P2|res--, pj=1|Ly, and Q2}resl--, p;=1]| Ly, remain open problems. We
mention that Presl- 1, r;, p;j=1|Ly,,, where the r; denote integer refease dates at
which the jobs become available, is solvable in polynomial time {1].

4.2. Preemptive scheduling

If the processing times are arbitrary and preemption is allowed, the nature of the
models changes considerably, It now becomes of interest to consider the general
case of parallel unrefated machines. :

The problem R | pmin, res---| Cp.« can be formulated as a linear pmgram in the
following way (cf. {13,11]). First, introduce a dummy job J, with rpy=0 for
h=1,...,/ representing machine idle time. Define S as the set of all resource feasible
mi-tuples k=(k,, ..., k) of job indices; each & is characterized by:

~ k{01, ... n} fori=1,...,m

— each je {1,...,n} occurs at most once;

— il orhe =5, for h=1,...,1..

To each ke §, associate a varlable X, representmg ihe time during Wthh JM’ .
are simultaneously executed on M, ..., M,, respectively, Then the problem is to
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minimize

subject to

Y ( xk)/p,-j:l (=1,...,m,
keSki=s

i=1
X, z0 (keS).

This linear programming problem has O(n™) variables. For a fixed number of
machines, its size is bounded by a polynomial in the size of the scheduling problem.
The existence of a polynomial algorithm for linear programming (9] therefore
implies that Rm | pmntn, re.é-_é;- | Cruay is solvable in polynomial time.

For a variable number of machines, Q| pmin, resl11|C,,, can be solved as
follows. Replace the resource requiring jobs by a single job with execution
requirement ¥, _, p;; this eliminates the resource constraints. Next, apply the
O(m log m + ny algorithm for Q| pmin | Cpy, from [6] to solve the resulting problem.

4.3. Multi-operation models

Multi-operation models, in which each operation has its own specific resource
requirements, give rise to various interesting results and to many open problems. By
way of example, we consider open shops, flow shops and job shops with two
machines, nonpreemptable operations and the C_,,, criterion. _

In the case of an open shop, O2|res---, p;=1|Cyay is solvable by a matching
approach similar to the one used in Theorem 1. If the processing times are arbitrary,
even O2 | resiil | C,,, remains unresolved.

Flow shop problems seem to be more difficult. F2 |resiil, py=1|Chpux s
solvable in linear time by appropriately grouping jobs together according to their
overall resource requirements. Little can be said about the immediate extensions of
this model with unit processing times, but F2 | resl11|C,,,, is NP-hard in the strong
sense by virtue of a simple transformation from 3-PARTITION.

The simplest job shop model in this context, J2 | rest11, p;=1!Cp,,, is already
NP-hard in the strong sense; the transformation from 3-PARTITION is nontrivial,

5. Concluding remarks

We have 'propose'd a classification scheme for resource constrained scheduling
problems and outlined a range of initial results on their computational complexity.
Presumably, many of the remaining open problems can be resolved along similar
lines. We hope to have stimulated others to continue the investigation of this
interesting research area.
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Appendix; Classification of scheduling problems

Suppose that n jobs Jy,..., J, have to be processed on m machines My, ...,M,,.
Each machine can handle at most one job at a time and each job can be executed by
at most one machine at a time. Various job, machine and scheduling characteristics
are reflected by a three-field problem classification | #|y [7]. Let © denote the
empty symbol.

Machine environment

The first field o=, specifies the machine environment. _

If e, e {P,Q, R}, each J; consists of a single operation that can be procesed on any
M;; the processing time of Jf; on M; is py (i=1,...,m; j=1,...,n). The three values
are characterized as follows.

— ay=P (parallel identical machines): py=p; for a given execution requirement
p;of Ji.

-~ o= Q (paraliel uniform machinesy: p;=p;/q; for a given execution require-
ment p; of J; and a given speed g; of M.

— o= R (parallel unrelated machines). p; is arbitrary.

If oy € {O, F, J}, each J; consists of a set of m; operations Oy;; Oy; has to be proceésed
on a given machine u; during py; time units (i=1,...,m;; j=1,...,n). The three
values are characterized as follows.

— =0 (open shop): m;=m, p;=M,.

— a)=F (flow shop): mj=m, p;=M;; O, ; has to be completed before O can
start (i=2,...,m).

- a;=J (job shop): m; and uj are arbitrary; ;. ;# t; and O;_ ; has to be
completed before O can start (/=2,...,m;}.

If o, is a positive integer, then m is constant and equal to @,; if @, is ©, then m is part
of the input.

Job characteristics

The second field AC{f, B, 53,,64} indicates a number of job c:haractéristics,
which are defined as follows.

(1) fiel{pmin, o},

— B, =pmin: Preemption (job splitting) is allowed; the processing of any JOb may
arbitrarily often be interrupted and resumed at the same time on a different machine
or at a later time on any machine.

— fBy=72: No preemption is allowed.

(2) B, specifies the resouce constraints; see Section 2.

(3) Bye{ prec tree chain, ). '

— f13=prec (arbitrary precedence consiraints): A directed acyclic graph H with
vertices 1,...,# is given; if H contains a directed path from / to &, we write /= J;,
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and require that J; is completed before J; can start.

— fi=tree (tree like precedence constraints); A has outdegree at most one for
each vetex or indegree at most one for each vertex.,

— fy=chain (chain-like precedence constraints): A has both outdegree and
indegree at most one for each veriex.

— fiy= o (no precedence constraints): A has no arcs.

4) Bse{py=1L°}

— f4=p;=1: Each operation has unit processing time.

— B4=o: The processing times are arbitrary nonnegative integers.
(If aye {P, Q}, then pjy is replaced by p;; if @;=R, then §,=0.)

Optimality criteria

The third field y denotes the optimality criterion chosen. Any feasible schedule
defines for each J; a completion time C; and, given an integer due date d;, a lateness
L;=C;~d;(j=1,...,n). Some common optimality criteria involve the minimization
of

= Crax=max{C),...,C,} (maximum completion time),

= ¥ C;=C+ -+ Cy, (fotal completion time),

— Lyax=max{L,,...,L,} (maximum lateness).
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