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Abstract. Operations Research is probably one of the most successful fields of
applied mathematics used in Economics, Physics, Chemistry, almost everywhere
one has to analyze huge amounts of data. Lately, these techniques were introduced in
biology, especially in the protein analysis area to support biologists. The fast growth
of protein data makes operations research an important issue in bioinformatics, a
science which lays on the border between computer science and biology. This
paper gives a short overview of the operations research techniques currently used
to support structural and functional analysis of proteins.

Key words: Protein structure, hidden Markov model, clustering, neural networks,
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1 Introduction

Since 1953 (discovery of the double helical structure of DNA) many important
findings were obtained in molecular biology. The unraveling of the genetic code
was only the beginning. Learning the details of genes and their discontinuous nature
in eukaryotic genomes (multicellular organisms) has led to the ability of studying
and manipulating the material of that abstract concept of Mendel’s, the gene itself.
Learning to read the genetic material more and more rapidly has enabled scientists
to attempt to decode entire genomes. The rate of innovations in molecular biology is
breathtaking. The experimental techniques that must be painstakingly used by one
generation of scientists are usually routine for the next generation. The accumulation
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of data has necessitated international databases for nucleic acids, for proteins and
for individual organisms and even chromosomes. The crudest measure of progress,
the size of nucleic databases has an exponential growth rate. Consequently, a new
subject, or if that is too grand, a new area of expertise is being created, combining
the biological and information sciences. Finding relevant facts and hypotheses in
huge databases is becoming essential to biology. Huge amounts of biological data
which are available via many databases, need to be analyzed and interpreted, but
it is almost impossible to do that by scientists without the help of appropriate
computerized techniques.

Probably one of the most important tasks is nowadays to analyze structural
and functional features of proteins. Progress in that area can generate profits in
medicine, chemistry and ecology, but this progress is impossible without support
from computer science. Marriage between biology and computer science can give
impressive results, but behind computer science crucial mechanisms are hidden.
These mechanisms are needed for data analysis, data interpretation and most of
them have roots in operations research.

The aim of this study is to show the usage of selected operations research
approaches to solve particular protein analysis problems. Our (subjective) choice
includes among others: prediction of protein secondary and tertiary structure, pre-
diction of protein domains and protein fold classification. This study complements
earlier survey papers (Btazewicz et al., 1997, 2005) which dealt mainly with DNA
sequence analysis.

The organization of the paper is as follows: Section 2 describes basic terms in
molecular biology, Section 3 presents basic examples of problems arising in the
protein prediction area. Other sections present applications of basic operations re-
search techniques in solving particular problems of protein analysis. Section 4 gives
examples of neural networks applied in that context. Section 5 presents dynamic
programming approaches to the solution of selected problems of protein analysis.
In Section 6 the hidden Markov model approach is presented, while Section 7 gives
examples of clustering techniques. Conclusions indicate possible generalizations.

2 Biological primer

DNA or otherwise called deoxyribonucleic acid contains the information living
species require to synthesize proteins and their cells to replicate themselves (Wa-
terman, 1995; Setubal and Meidanis, 1997; Pevzner, 2001). In other words, it is
the storage repository for the information that is required for any cell to function.
Watson and Crick have discovered the structure of DNA in 1953. The famous
double-helix structure of DNA has its own significance. There are basically four
nucleotide bases, which make up the DNA: Adenine (A), Guanine (G), Thymine (T)
and Cytosine (C). A DNA sequence can be presented like a chain, e.g.: “ATTGCT-
GAAGGTGCGG” where each letter corresponds to one nucleotide base, respec-
tively. DNA is measured in the number of base pairs it consists of, usually in kBp or
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Fig. 1. Central dogma of molecular biology

mBp (kilo/mega base pairs). Each base has its complementary base, which means
in the double helical structure of DNA: A will have T as its complementary and
similarly G will have C. DNA molecules used to code genetic material of eukary-
otic species are incredibly long. If all the DNA bases of the human genome were
typed as A, C, T and G, the 3 billion letters would fill 3,000 books of 500 pages
each. The DNA is broken down into bits and is tightly cut into coils, which are
called chromosomes; human beings having 23 pairs of homolog chromosomes.
These chromosomes are further broken down into smaller pieces of code called
genes. The 23 pairs of chromosomes consist of about 30,000 genes and every gene
has its own function. Finding out the arrangement of the bases in any DNA chain,
called DNA sequencing, is usually divided into stages: mapping, assembling and
sequencing (see Blazewicz et al., 1997, 2005).

The significance of a DNA is very high. The gene’s sequence is like a language
that instructs cells to manufacture a particular protein. An intermediate language,
encoded in the sequence of ribonucleic acid (RNA), translates a gene’s message
into a protein’s amino acid sequence. It is the protein that determines the trait. This
process is called the central dogma of molecular biology (Fig. 1).

RNA is somewhat similar to DNA; they both are nucleic acids containing nitric
bases joined by a sugar-phosphate backbone, however, structural and functional
differences distinguish RNA from DNA. Structurally, RNA is a single strand while
DNA is double strand; DNA has Thymine, while RNA has Uracil (U); RNA nu-
cleotides include sugar ribose, rather than the deoxyribose that is a part of DNA.
Functionally, DNA maintains the protein-encoding information, whereas RNA uses
the information to enable the cell to synthesize the particular protein. RNA takes
that information into the cytoplasm, where the cell uses it to construct specific
proteins (one may say that the corresponding gene is thus expressed).

Transcription is a process of making an RNA strand from a DNA template, and
the obtained RNA molecule is called a transcript. Three types of RNA participate
and play different roles in the synthesis of proteins (called the translation):
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Fig. 2. General structure of o-amino acid

a. Messenger RNA (mRNA), which carries the genetic information from DNA
and is used as a template for protein synthesis.

b. Ribosomal RNA (rRNA), which is a major constituent of the cellular particles
called ribosomes on which protein synthesis actually takes place.

c. A set of transfer RNA (tRNA) molecules, each of which incorporates a par-
ticular amino acid subunit into the constructed protein when it recognizes a specific
group of three adjacent bases in the mRNA.

Transcription is highly controlled and complex. In prokaryotes (simple organ-
isms like bacteria), genes are expressed as required, and in eukaryotes (multicellular
organisms), specialized cell types express subsets of genes. Transcription factors
(micro RNAs) recognize sequences near a gene and bind sequentially, creating a
binding transcription.

Each three mRNA bases in a row form a codon that specifies a particular amino
acid.

The mRNA leader sequence binds to rRNA in the small subunit of a ribo-
some, and the first codon attracts a tRNA 3 letter chain, bearing methionine. Next,
as the chain elongates, the large ribosomal subunit attaches and the appropriate
aminoacids joined to tRNA molecules (corresponding to consecutive codons), form
peptide bonds. At a stop codon, protein synthesis ceases. Protein folding begins as
translation proceeds, with enzymes and chaperone proteins assisting the amino acid
chain in assuming its final functional form. Translation is efficient and economical,
as RNA, ribosomes, enzymes, and key proteins are recycled.

Amino acids are known as o-amino acids because they are built of a primary
amino group (-NHj), a carboxylic acid group (-COOH) and a hydrogen atom (H)
joined to the a-carbon atom (Fig. 2). There are basically 20 standard amino acids
having different structures in their side chains (R groups) (see. Figs. 2 and 3).
Proline is an exception because it has a secondary amino group (-NH-), but for
uniformity it is also treated as o-amino acid.

Peptides (and proteins) are made by joining amino acids together via bonds.
Any number of amino acids can be joined together to form peptides of any length.

Small peptides (containing less than a couple of dozen amino acids) are some-
times called oligopeptides. Longer peptides are called polypeptides.

When thinking about peptide (and protein) structure, it is often useful to dis-
tinguish between the peptide “backbone” and the side chains. The backbone atoms
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Name, Abbreviation (3 letters code, one Name, Abbreviation (3 letters code, one

letter code) letter code)
Alanine, ALA, A Leucine, LEU, L
Arginine, ARG, R Lysine, LYS, K
Asparagine, ASN, N Methionine, MET, M
Aspartic acid, ASP, D Phenylalanine, PHE, F
Cysteine, CYS, C Proline, PRO, P
Glutamine, GLN, Q Serine, SER, S
Glutamic acid, GLU, E Threonine, THR, T
Glycine, GLY, G Tryptophan, TRP, W
Histidine, HIS, H Tyrosine, TYR, Y
Isoleucine, ILE, 1 Valine, VAL, V

Fig. 3. List of 20 amino acids — name, three letter code, one letter code
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Fig. 4. Backbone — sidechains view of a protein chain

consist of the peptide amino units and the «-carbons; the side chains consist of the
remaining atoms in the molecule (i.e. the “R” groups of each amino acid) (Fig.4).

Proteins are not linear molecules as suggested by amino acid sequence —Lys-
Ala-Pro-Met-Gly- etc. (or K-A-P-M-G- in one-letter notation), for example. Rather,
this “string” folds into an intricate three-dimensional structure that is unique to each
protein. It is this three-dimensional structure that allows proteins to function. Thus,
in order to understand the details of protein function, one must understand protein
structure.

Protein structure is broken down into four levels:

Primary structure refers to the “linear” sequence of amino acids.

Primary structure is sometimes called the “covalent structure” of proteins be-
cause, with the exception of disulfide bonds, all of the covalent bonding (standard
chemical bonds) within proteins define the primary structure. In contrast, higher
orders of protein structures (i.e. secondary, tertiary and quartenary) involve mainly
noncovalent interactions.

Secondary structure is “local” ordered structure brought about via hydrogen
bonding mainly within the peptide backbone.
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The most common secondary structure elements in proteins are the «-helix and
the B-strand (sometime called S-pleated strand).

Tertiary structure is the “global” folding of a single polypeptide chain.

A major driving force in determining the tertiary structure of globular proteins
is the hydrophobic effect. The polypeptide chain folds such that the side chains
of the nonpolar amino acids (i.e. those for which the hydrophobic side chains are
chemically unreactive and tend to aggregate rather than to be exposed to the aqueous
environment — usually can be found inside the protein molecule) are “hidden”
within the structure and the side chains of the polar residues are exposed on the
outer surface.

Hydrogen bonding involving groups from both the peptide backbone and the
side chains are important in stabilizing tertiary structure. The tertiary structure of
some proteins is stabilized by disulfide bonds between cysteine residues.

Quartenary structure involves the association of two or more polypeptide chains
into a multi-subunit structure.

Quartenary structure is the stable association of multiple polypeptide chains
resulting in an active unit. Not all proteins exhibit quartenary structure. Usually,
each polypeptide within a multisubunit protein folds more-or-less independently
into a stable tertiary structure and the folded subunits then associate with each other
to form the final structure.

Quartenary structures are stabilized mainly by noncovalent interactions; all
types of noncolvalent interactions: hydrogen bonding, van der Waals interactions
and ionic bonding, are involved in the interactions between subunits. In rare in-
stances, disulfide bonds between cysteine residues in different polypeptide chains
are involved in stabilizing quartenary structure.

Most proteins contain multiple structural domains. Structural domains are re-
gions that are either compact, globular modules, or are clearly distinguished from
flanking regions. Domains can be viewed as semi-independent three-dimensional
units in proteins; they may fold independently and may constitute ‘units of evolu-
tion’. Large scale sequencing efforts have confirmed that eukaryotes differ from all
other species in the significantly higher proportion of proteins extending over 1500
residues. These large proteins undoubtedly consist of many structural domains.

3 Selected problems

In the following sections one can find a description of selected bioinformatics
problems in the context of protein structure analysis. Methods for solving some of
these problems are assessed biennially, since 1994, in Community Wide experiment
for Critical Assessment of the Techniques for Protein Structure Prediciton (CASP)
(http://predictioncenter.org).
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Fig. 5. The protein tertiary structure with highlighted secondary

3.1 Secondary structure prediction

The three-dimensional, tertiary structure of the protein can be decomposed into
local structures created by different fragments of the sequence (Fig. 5). These local
fragments are so called protein secondary structures. Among them one can find
helices (e.g. @-helix, denoted by H), B-strands (denoted by E), turns (T), loops (S)
and other (X).

In the secondary structure prediction problem, one tries to map protein sequence
(primary structure) fragments into secondary structures as it is shown in Fig. 6.
Most methods applied for these problem are machine learning algorithms, thus, the
important part of the prediction scheme is a database of known structures.

3.2 Tertiary structure prediction

Tertiary structure prediction, including determination of protein folding pathways,
is one of the most complex computational problem that one can find currently in
the analysis of proteins. The protein folding is a process of a creation of a three-
dimensional structure from a linear structure of the polypeptide chain. The intel-
lectual puzzle of the structure prediction remains unsolved approximately since
the time when Anfinsen’s experiments showed reversibility of the folding process
(Anfinsen et al., 1961; Anfisen, 1973). Later Levinthal formulated the so called
“Levinthal’s paradox”, concluding that the folding process must be somehow driven
through kinetic pathways (Levinthal, 1968). High resolution X-ray structure deter-
mination of several hundreds proteins have confirmed that a specific sequence of
polypeptide chains has only a single, compact, biologically active fold in the native
state (Branden and Tooze, 1999). The native conformation appears to be the one
with significantly lower free energy than others.
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Fig. 6. Visualization of secondary structure prediction problem

3.2.1 Comparative modeling

An increase in number of known protein structures gathered in freely available
databases, such as Brookhaven Protein Data Bank (PDB) caused growing popularity
of modeling methods based on templates. The template is a protein of a known
structure with a sequence similar to the one under investigation. It is possible to
obtain a model for such a sequence by copying the backbone elements of the
template and adding loops and side chains. The comparative modeling process,
known as well as homology modeling, can be divided into four steps: template
selection (can be done by BLAST search (Pearson and Lipman 1988; Altschul et
al., 1990, 1997)), template and target alignment, backbone building, loops and side
chains construction. Protein side chain positioning methods are well described in
Chazelle et al. (2003, 2004), Eriksson et al. (2001) and Kingsford et al., (2005).

3.2.2 Fold recognition and new folds

It has to be stressed that different amino acid sequences can create similar tertiary
structures that consist of similar motifs. These similar structures are called folds.
The problem of fold recognition is to assign fragments of a primary structure (an
amino acid sequence) into the proper tertiary structures (folds) from the database
of all known structures (see Fig. 7). The assignment, for example, can be done by
sequence similarity analysis that leads to a detection of homologous structures.
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Fig. 7. Fold recognition problem: how to map a sequence into the proper fold if the corresponding
structure already exists in database?

If no homolog could be detected, such a sequence possibly creates a new fold
and one has to use computational simulation techniques to find a model of such a
protein or wait till the structure will be determined experimentally. Simulations are
usually done by Monte Carlo method and its variations or other heuristic techniques.

3.2.3 Ab-initio folding and simplified models

The native conformation of the protein is the one with significantly lower free
energy than others, thus the protein folding process can be defined as the problem
of energy function minimization. The energy function usually takes into account
such properties of amino acids like hydrophobicity, electrostatic potential, size,
weight, number of chemical bonds (e.g. hydrogen bonds) and others.

Due to the computational complexity of the problem, a protein structure is
usually presented in a simplified manner (e.g. using UNRES representation (Nanias
et al., 2005)) and placed in a simplified space, based on lattices. The minimization
process is very often modeled using Monte Carlo simulations with replica (Kolinski
et al., 2004a; Nanias et al., 2005) or other metaheuristic strategies (Btazewicz et
al., 2004b, 2005b).

If one obtains the simplified model of the protein, one can switch back to the
all atom models and make final refinements of the structure.

Ab-initio prediction methods are useful when comparative modeling approaches
fail due to the lack of detectable homologous structures in databases.

Other interested approaches for protein docking and folding energy can be
found in Althaus et al. (2002), Doye et al. (2004), Eskow et al. (2004), Koh et al.
(2004) and Wagner et al. (2004).
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Fig. 8. Domain prediction problem: a) the first version: how to map protein tertiary structure into
domains? b) the second version: how to map primary structures into domains?

3.3 Domain prediction

The tertiary structure is formed by packing structural elements (secondary struc-
tures) into one or several compact globular units called domains (Branden and
Tooze, 1999). Domain prediction can be formulated in two contexts (Fig. 8). The
first version of the problem is to find a computational method for proper splitting of
the known tertiary structures into an unknown number of domains. These domains
should possibly have independent stability and could fold independently.

The second version of the problem is harder than the first question; its aim is
to find the correct mapping of the primary structure (amino acid sequence) into in-
dependent (possibly discontinued) fragments that probably can fold independently
and create stable, functional units.

3.4 Function prediction

A protein in its native state is biologically active and often works as a regulator of
metabolic reactions. The regulation is possible because some spots in the surface
of protein can react with chemical compounds, so called ligands, and other proteins
in the cells of living species. These spots are so called binding sites. Two differ-
ent proteins with similar binding sites can play a similar role in cell metabolism.
Thus, the main aim of computational methods of function prediction is automated
detection of binding sites and chemical compounds corresponding to them, based
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on geometrical properties and knowledge gathered in databases and gene ontology
dictionaries.

3.5 Contact maps

In folded (native) state the protein structure is stabilized by internal contacts (e.g.
hydrogen bonds, disulfide bridges) between its building blocks —amino acids. These
contacts are important for understanding the protein nature and can be represented
as maps or graphs of contacts that indicate strength of interactions. There is a wide
range of methods that try to generate such maps from the sequence only. Protein
structure comparison methods via contact maps can be found in Barnes et al. (2005),
Caprara et al. (2004), Caprara and Lancia (2004), Carr and Lancia (2004); Lancia
et al. (2001).

4 Neural networks

Neural networks have been applied to many aspects of predicting protein structure
from protein sequence. Initially, methods were designed as a ‘quick and dirty’
demonstration that artificial intelligence-based approaches could solve real-life
problems. At that stage, biologists typically reached higher levels of accuracy (when
using their expertise) than computer scientists when using their approaches. How-
ever, more thorough investigations enabled the latter researchers to include infor-
mation used by experts into neural network-based tools. Now, some tools are — on
average — as accurate as the best experts; and experts using such tools often arrive
at even more accurate predictions. Thus, several neural network-based methods
have eventually contributed significantly to advancing the field of bioinformatics,
and some are clearly influencing molecular biology. Here, we will not, of course,
describe the basics in neural networks design and analysis. The interested reader is
referred to (Fiesler and Beale, 1996; Haykin, 1999) for a thorough introduction to
the subject.

4.1 Secondary structure prediction

The prediction of a protein’s secondary structure — i.e. the formation of regular
local structures such as «-helices and B-strands within a single protein sequence —
is an essential intermediate step on the way to predicting the full three-dimensional
structure of a protein. If the secondary structure of a protein is known, it is possible
to derive a comparatively small number of possible tertiary (three-dimensional)
structures using knowledge about the ways that secondary structural elements can
appear.

Secondary structure prediction methods mainly distinguish between helix (H),
strand (E), and non-regular structure (X) (classes T,S usually are also included in



102 J. Blazewicz et al.

X), as explained in Section 3.1 (see Fig. 5). Some stretches of sequence show a
particular preference to be in one of these three states. The task here is to classify
a pattern of w adjacent residues as either H, E, or X.

Itis known that the effect of long-range interactions among amino acid residues
in a protein is very important in the formation of protein secondary structure. Al-
though many machine learning methods could ‘learn’ to take into account some of
the effects of long-range interactions, principles underlying these interactions and
their roles in influencing the formation of secondary structures are still difficult to
understand. In contrast, if the formation of secondary structures of a protein were
dominated by short-range interactions, then all the information for predicting the
secondary structure of a residue would be contained in its flanking sequences. In
other words, the tertiary structure would have little influence on the formation of sec-
ondary structures. If this were true for some residues of a protein, then one should
be able to predict their secondary structures at a relatively higher accuracy than
others. In recent years, most developments in the secondary structure prediction
has been obtained in the area of machine learning techniques applications.Neural
networks were first applied to the prediction of secondarystructures (Bohr et al.,
1988; Qian and Sejnowski, 1988). Thisstimulated many subsequent studies of neu-
ral networks (Holley and Karplus, 1989; Kneller et al., 1990) in the secondary
structureprediction. However, a real breakthrough did not come until the work of
Rost and Sander (Rost and Sander, 1993a,b, 1994), which was made available as a
web server called PHD. The main reason for its success (better than 70% prediction
accuracy for the first time), among many others, was the concept of profiles. Thus,
instead of presenting a network with a single sequence, many aligned sequences of
homologous proteins were presented. The method of profiles continues to improve
as more and more sequences are becoming available (Przybylski and Rost, 2002).
The reason for the success of the profile based method seems to be that it cap-
tures the fact that protein structures are more conserved than sequences. Because
only mutations that do not disrupt thethree-dimensional structure of a protein will
survive the evolution,sequence divergence under structural constraints reflects the
interactions between amino acid residues of a protein, where the interactions could
be either short range or long range in sequence. Now, most secondary structure
prediction methods achieving on average high performance with Q3! measure
reaching 80% (Riis and Krogh, 1996; Baldi et al., 1999; Cuff and Barton, 1999;
Jones, 1999; Ouali and King, 2000; Pollastri et al., 2002), make use of PSI-BLAST
profiles (Altschul et al., 1997) in combination with an improvement of prediction
algorithms. New machine learning methods such as support vector machines (Hua
and Sun, 2001) should also benefit from PSI-BLAST profiles.

Let us also mention here a successful attempt of using Logical Analysis of Data
to predict secondary structures of protein chains (Btazewicz et al., 2004a, 2005a).

1 Q3 measures structure predictability with three structural forms distinguished, and is calculated as
follows: Q3=(N,3 /N)*100 where N expresses the total number of amino acids in the polypeptide under
consideration, N3 expresses the number of correctly predicted amino acids representing ¢3 structural
form (c3 expresses one among three structural forms: «-helix, §-structure, random coil).
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Its obtained level of accuracy on average varies between 70 and 75% for different
classes of secondary structures and oscillates around 95% for membrane proteins
(Lukasiak, 2004).

4.2 Functional prediction

Protein function prediction is one of the most important problem in the post-genome
era. The classical way for protein function prediction is to find homologies between
a protein and other proteins in protein databases using programs such as FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985) and PSI-BLAST (Altschul
et al., 1997), and then predict functions based on sequence homologies. Another
sequence based approach is called the “Rosetta stone method”” where two proteins
are inferred to have similar functions if they are together in another genome. By
comparing sequenced genomes, the phylogenetic pattern (the presence and absence
of the protein in these genomes) of a protein can be determined. It is believed that
proteins with similar phylogenetic patterns are likely to share similar functions.
Using this idea, the functional links between genes can be predicted based on
phylogenetic patterns.

Methods predicting functional similarities between proteins use two types of
neural networks: layered feed-forward networks usually trained by simple back-
propagation (Rumelhart and McClelland, 1986; Arbib, 1995), and Kohonen maps
(Kohonen, 1982; Arbib, 1995). The first approach is based on multiple networks
(Frishman and Argos, 1992) using proteins of similar sequences as input or on
single networks using different amino acid features as input (Wu et al., 1996).
Some other examples of networks recognizing functional motifs were presented
by Hirst and Sternberg (1991, 1992); Ladunga et al. (1991); Schneider and Wrede
(1993); Hansen et al. (1998); Nielsen et al. (1997). The second approach is based
on using the frequency with which any of the 20%20 possible amino acid pairs
occurs in the sequence (Ferran and Pflugfelder, 1993), or on using the information
extracted from database annotations (Andrade and Valencia, 1997).

There are two ways to describe the principal difference between these two
types of networks. Firstly, the network types can be contrasted in terms of the
final results they produce. Kohonen maps provide a more continuous topography
of protein function similarity, whereas back-propagation networks differentiate the
input into larger categories determined by the number of output units. Secondly,
the network types can be contrasted in terms of the way they are trained. Kohonen
maps find an unknown classification scheme, whereas back-propagation networks
learn from known examples. Consequently, back-propagation networks are useful
to learn a classification from known features (e.g. types of secondary structure),
while Kohonen maps have been applied to render a general classification scheme
of proteins (e.g. A and B, are similar, and A is more similar to C, than B). Such a
classification is a priori not evident (and it is itself an area of controversial research,
e.g., attempting to answer questions like: “Are we more similar to an orangutan than
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toapig?”). One hope guiding such an analysis is to end up with similarities between
proteins that might help to learn details in protein functions.

4.3 Multiple sequence alignment

Multiple alignments of protein sequences are important tools in studying proteins.
The basic information they provide is the identification of conserved sequence
regions. This information is very useful in designing experiments to test and modify
the function of specific proteins, in predicting the function and structure of proteins,
and in identifying new members of protein families.

Some amino acids can be replaced by others without changing tertiary structure.
However, not every amino acid can be replaced by any other. On the contrary, one
evolutionary step (exchange of one amino acid) can destabilize a structure. Residue
substitution patterns observed in protein families are highly specific for a particular
structure, and thus, contain more information about structure than single sequences.
These evolutionary patterns were used by experts (Dickerson et al., 1976; Frampton
et al., 1989; Benner and Gerlof, 1990; Niermann and Kirschner, 1990). However,
this information can also be incorporated into neural networks in the following
way. A sequence of unknown structure (U) is aligned against a database of known
sequences, and proteins with significant sequence identity to U are extracted. Then,
for each sequence position, the profile of residue exchanges in the final multiple
alignment is compiled and fed into a network.

Almost any imaginable algorithm has been applied to the secondary structure
prediction problem. However, once researchers left the path of trying to optimise
black-boxes, it was through neural network applications that many break-throughs
were achieved. For example, a neural network system for predicting various aspects
of 1D structure based on evolutionary information is by far the most widely used
prediction method (Rost et al., 1994). Other network-based methods are unique, or
superior in their field (Ferran and Pflugfelder, 1993; Riis and Krogh, 1996; Andrade
and Valencia, 1997; Hansen et al., 1997; Nielsen et al., 1997). Furthermore, neural
networks revealed data base errors, and principles underlying protein structures
(Brunak, 1991; Rost et al., 1994; Tolstrup et al., 1994; Blom et al., 1996). Thus, the
neural network approach has matured from loosing the competition against experts
to the method used by experts arriving at more reliable predictions than ever before.

4.4 Protein fold classification

In the pioneering works of Ptitsyn and Finkelstein (Ptitsyn and Finkelstein, 1980;
Finkelstein and Ptitsyn, 1987) it has been shown that the three-dimensional ar-
rangement of helices and strands in larger proteins can be obtained by the stepwise
addition of secondary structure elements (SSEs) to basic structural motifs (Efimov,
1997). Whether this addition of SSEs reflects either a possible folding pathway for
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the protein or an evolutionary history is debatable, but irrespective of any of these
rationalizations, it provides a valid approach for the classification of protein folds.

Using this approach, the protein folds become organized into a phylogenetic tree
(which may include ‘missing-links’). Unlike clustering by similarity, the tree can
be arbitrarily deep, so relating the most dissimilar folds. A disadvantage, however,
is that the construction of the trees is a manual operation that embodies an implicit
set of assumptions and rules that are only stated explicitly to varying degrees.

Solving the problems of protein fold classification with domain definition, a
series of ideal folds (called forms) were developed and matched to known structures
at the level of secondary structures (Taylor, 2000, 2002a). Each successful match
simultaneously identifies a fold and defines the domain. The set of ideal folds can
be organized in a table that is (not unlike a protein) equivalent to the periodic table
of elements (Taylor, 2002b).This analogy is based on the correspondence between
layers of a secondary structure with electronic orbitals. Just as the orbitals become
filled with electrons, so the layers become filled with secondary structures. In this
arrangement,a step in any direction in the table represents the addition or deletion
of an SSE in one of the layers.

The organization of known structures, based on their ideal forms,embodies
many of the principles discussed above for the alternativeapproaches. For exam-
ple, the standard feed-forward neural networks combined with an appropriate reg-
ularization scheme can classify the fold class of a protein given solely its primary
sequence at least as well as other machine learning methods that have been applied
to this problem (Edler et al., 2001; Markowetz et al., 2003). They clearly outper-
formed standard statistical approaches (like the nearest neighbor method etc. (Edler
et al., 2001)) and did not perform worse than Support Vector Machines (SVMs).

4.5 Clustering

Clustering of protein sequences from different organisms has been used to iden-
tify orthologous and paralogous protein sequences, i.e. to find protein sequences
unique to an organism, and to derive the phylogenetic profile for a cluster of protein
sequences. These are some of the essential components of a comparative genomics
study of protein sequences across several genomes.

With the overwhelming growth of biological sequence databases, handling these
amounts of data has increasingly become a problem. Protein sequences constitute
one such data type. The number of unique entries in all protein sequence databases
together exceeds now about a million. However, biological evolution lets proteins
fall into so-called families, thus imposing a natural grouping. A protein family
contains sequences that are evolutionally related. Generally, this is reflected by se-
quence similarity. Therefore, one aims at organizing the set of all protein sequences
into clusters based on their sequence similarity.

Clustering a large set of sequences, as opposed to dealing only with the individ-
ual sequences, offers several advantages. A frequent problem is the identification
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of sequences that are similar to a new query sequence. This task can be executed
much quicker when only one comparison to an entire cluster has to be performed
rather than one comparison per sequence. Another application lies in the possibility
of analyzing evolutionary relationships among the sequences in a cluster and in the
species they come from. Moreover, the presence or absence of sequences of a group
of species can give useful information about their evolutionary relationship, if their
complete set of protein sequences is known.

The aim of clustering protein sequences is to get a biologically meaningful
partitioning.

Current systems for the classification of protein structures use different methods.
SCOP (Murzin et al., 1995) is principally a manual approach while FSSP (Holm
and Sander, 1997) is an automated method. Between these lie CATH (Orengo et al.,
1997) and HOMSTRAD (Mizuguchi et al., 1998) which combine automation with
manual curation. The basic approach, however, is the same. Proteins are divided
into their component domains which are then compared pairwise and clustered into
groups of similar structures. This approach works well when there is clear similarity
between the structures. For distantly related (or unrelated) structures, however, it
becomes difficult to define a rational hierarchy on the relationships. This difficulty
is further compounded by the problem of domain definition where differences in the
definitions can result in inconsistent fragmentary similarities between structures.
Indeed many of the differences between the current classification systems are largely
due to different domain definitions (Hadley and Jones, 1999). In contrast, CLUGEN
(Ma et al., 2005) is a novel method for the clustering of protein sequences based on
anew metric derived from prediction using neural networks and further utilizing the
metric to model the transitive sequence homologue to detect the remote homologue.
CLUGEN uses fully connected feed-forward back propagation neural network and
has one hidden layer with sigmoid activation functions. The output layer of the
neural network has one output unit.

4.6 Fold recognition — threading

The threading approach predicts the three-dimensional protein structure by align-
ing representative template protein structures with an amino acid sequence called
the target sequence. The alignment computation and evaluation usually gives a
sequence-structure similarity score for each alignment as the result of applying a
scoring function. According to the fold recognition protocol, the alignments ob-
tained are then sorted by their score, which yields a ranking list of target-template
alignments. The best-scoring alignment should identify the template structure and
its corresponding fold class which is the most compatible with the target sequence
and thus constitutes a meaningful model for the yet unknown structure of the target
sequence.

A number of threading programs have been developed with reduced compu-
tational cost. For example, GenTHREADER (Jones, 1999a) uses a classical se-



Some operations research methods for analyzing protein sequences and structures 107

quence alignment algorithm to generate query-template alignments, and then eval-
uates the alignments by a threading potential. It provides a confidence measure
for each predicted fold recognition using a neural network. The program 3D-
PSSM (Kelley et al., 2000) encodes the 1D and 3D profiles, based on multiple
sequence alignments among proteins of the same superfamily, into each residue
position of each template protein. It finds an optimal alignment between a target
sequence or its sequence profile and each template structureby matching their se-
quence profiles. FUGUE (Shi et al., 2001 )represents one of the better performing
threading programs currentlyavailable. One of its unique feature is that it utilizes
environment-specific amino acid substitution tables and structure-dependent gap
penalties. Some other groups (Rychlewski et al., 2000; Yona and Levitt, 2002) have
applied profile—profile alignmentalgorithms rather than the traditional sequence—
sequence or sequence—profile alignment algorithms. Interested methods in protein
folding/threading can be found in Andonow et al. (2004), Balev (2004), Greenberg
et al. (2004), Veber et al. (2005), Xu (2003), Xu and Li (2003), Xu et al. (2003) and
Xu et al. (2004).

4.7 Domain prediction

Protein structures are usually analyzed at the level of the domain. However, the
definition of a domain is not always straightforward.Small structural differences
between otherwise similar proteins can have major consequences in the way a
protein structure is broken into domains and even within a domain such differences
can alter the way in which its fold (or topology) is perceived. Expert judgment
can be used to some extent to overcome these problems, but experts do not always
agree.

Sequence similarity searching is a crucial step in analyzing newly determined
protein sequences. Whereas similarity searching by programs such as BLAST
(Pearson and Lipman 1988; Altschul et al., 1990, 1997) or FASTA (Wilbur and Lip-
man, 1983; Lipman and Pearson, 1985) allows the inference of homology and/or
function in many cases, identification of multidomain proteins is often problematic
because their similarities point to various unrelated protein families. The best solu-
tion to this problem is the use of pattern databases that store the common sequence
patterns of domain groups in the form of consensus representations (Attwood,
2000). Various pattern representation methods are in use, including regular ex-
pressions (Bairoch and Apweiler, 2000), position-dependent frequency matrices
(Gribskov et al., 1987), and hidden Markov models (HMMs) (Sonnhammer et al.,
1998). All of these representations are based on multiple sequence alignments. Even
though these consensus pattern representations — such as used in PROSITE (Hof-
mann et al., 1999), PRINTS (Attwood et al., 2000), PFAM (Bateman et al., 2000),
PRODOM (Corpet et al., 2000), BLOCKS (Henikoff et al., 2000), PROTFAM
(Mewes et al., 2000), INTERPRO (Apweiler et al., 2000), and others (Attwood,
2000) — can be optimized and reached a very high prediction performance.
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It is well known that construction of multiple alignments as well as updating
them with the stream of new domain sequences requires a substantial human over-
head, which is partly due to the high computational complexity of the problem.
BLAST or FASTA searches on domain sequence databases (Corpet et al., 2000;
Murvai et al., 2000) offer a good alternative, however, the evaluation of the output
requires human judgement and/or iterative search strategies, such as those used
by PSI-BLAST (Altschul et al., 1997). One of the underlying problem is that the
known structural and functional domain groups are quite variable in terms of size,
sequence length, as well as similarity between the members, and especially, short
and variable domain sequences are sometimes quite hard to detect (Atwood, 2000).

Artificial neural networks (ANNs) have been used very successfully in bio-
logical sequence analysis for purposes as diverse as protein secondary structure
prediction, recognition of signal peptide cleavage sites, gene recognition, etc. (for
review, see Baldi and Brunak, 1998). Representation of sequence data in a form
suitable for nonrecursive ANNs in the scope of domain prediction can be quite
difficult because of the varying length of the sequences. A common solution to this
problem is to use a window sliding over the protein sequence (Jagla and Schuch-
hardt, 2000). On the other hand, a sequence window encompassing, for example,
19 amino acids can be mapped to a 19 x 20 = 380 dimensional vector. Training an
ANN recognizer for so many input parameters would require an enormous data set
for training (Jagla and Schuchhardt, 2000). Adaptive encoding techniques can be
used to find a smaller number of relevant parameters in the course of the training
process. However, recognition of a short pattern, such as a signal peptide cleavage
site, still required 79 input parameters (Jagla and Schuchhardt, 2000). Recogni-
tion of substantially longer protein domains, may thus require a prohibitively large
number of parameters.

5 Dynamic programming

Owing to the rapid growth in the number of completely sequencedgenomes, the
need for fast, reliable and automated computationaltools to derive structures and
functions from protein sequences, is increasing. Recognition of native-like struc-
tural folds of an unknown protein from solved protein structures, represents the
first step towards understanding its biological functions and serves as the founda-
tion for its detailed tertiary structure prediction by comparative modeling. Dynamic
programming method (cf. Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996) for a
thorough introduction to dynamic programming principles) is used successfully
for this purpose. Before describing this in a greater detail in Section 5.2 we make
a comment on the application of this method to the classical sequence alignment
(Section 5.1).
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5.1 Sequence alignment

The classical sequence alignment is probably the most successful application of
dynamic programming in the area of computational biology. Basically, this ap-
proach is very similar for both types of sequences: DNA (RNA) and proteins. Its
idea comes from Needleman and Wunsch (1970), and Smith and Waterman (1981);
see also Setubal and Meidanis (1997) for a discussion of the approach. Since this
method was presented in detail in the previous survey (Btazewicz et al., 1997) in
the context of DNA chains, we will not discuss this subject here.

5.2 Fold recognition

Methods of protein fold recognition attempt to detect similarities between protein
3D structure that are not accompanied by any significant sequence similarity. There
are many approaches, but the unifying theme is a trial to find folds that are compa-
rable with a particular sequence. Unlike sequence-only comparison, these methods
take advantage of the extra information made available by 3D structure information.
As aresult, it turns the protein folding problem on its head: rather than predicting
how a sequence will fold, they predict how well a fold will fit a sequence.

Generally, existing fold recognition methods fall into two classes. The first
class uses solely sequence information. The hidden Markov model (HMM) meth-
ods (Karplus et al., 1999) and PSI-BLAST (Altschul et al., 1997) can be classified
into this category. The second class uses structural information in addition to the
sequence information, in various ways. In the profile method introduced by Bowie
et al. (Bowie et al., 1991), structural information, representing the local environ-
ment, is coded into each residue of a structural template. Then, various dynamic
programming schemes are used for finding the optimal sequence—profile align-
ment (Waterman, 1995). In the threading approach, structural information is used
more explicitly through evaluating the compatibility between a query sequence
and a structural template in terms of residue-residue contacts, hydrophobicity, etc.
Threading methods generally require more complicated algorithms to deal with
the residue-residue contact term. Previous studies have shown that each approach
has its own strength and weakness. For example, a threading-based method such as
THREADER (Jones, 1999a) performs worse in homology recognition at the family
and superfamily levels than a sequence-based method, while it achieves better per-
formance at the fold level recognition (Lindahl and Elofsson, 2000). Motivated by
such observations, researchers have attempted to combine both approaches (Jones,
1999a; Kelley et al., 2000; Panchenko et al., 2000; Shi et al., 2001), although find-
ing an optimal way to take the full advantage of both approaches, turned out to be
difficult (Lindahl and Elofsson, 2000).

The biggest disadvantage of threading-based methods is that they are computa-
tionally expensive when attempting to solve the sequence-structure alignment prob-
lem rigorously. It has been proven that the threading problem is NP-hard (Lathrop,
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1994). Hence, most ofthe existing threading methods employ heuristic approaches
to avoid computational difficulty at the expense of performance accuracy. These
methods include double dynamic programming (Jones et al., 1992), frozen approx-
imation (Godzik et al., 1992) and the Monte Carlo sampling algorithm (Bryant,
1995).

Another method for fold recognition is added to the general protein structure
prediction package PROSPECT II (Kim et al., 2003). This method (PROSPECT II)
has four key features. (i) an efficient way to utilize the evolutionary information for
evaluating the threading potentials including singleton and pairwise energies. (ii)
a two-stage threading strategy: (a) threading using dynamic programming without
considering the pairwise energy and (b) fold recognition considering all the energy
terms, including the pairwise energy calculated fromthe dynamic programming
threading alignments. (iii) a combined z-score (z-score also referred as z-ratio or
z-value is equal to a value of variable X minus the mean of X, divided by the
standard deviation) scheme for fold recognition, which takes into consideration
z-scores of each energy term. (iv) based on z-scores, a confidence index has been
calculated, which measures the reliability of a prediction and a possiblestructure-
function relationship based on a statistical analysis of a large data set consisting
of threadings of 600 query proteins against the entire FSSP (Holm and Sander,
1994) templates. Tests on severalbenchmark sets indicate that the evolutionary
information and other features of PROSPECT II greatly improve the alignment
accuracy. The performance of PROSPECT II for fold recognition is significantly
better (over 10%) than any other method available at all levels of similarity. The
improvement in the sensitivity of fold recognition, especially at the superfamily and
fold levels, makes PROSPECT II a reliable and fully automated protein structure
and function prediction program for genome-scale applications.

6 The hidden Markov models

In nature one can observe a wide range of biological, physical and chemical pro-
cesses that transform systems from one state into another. In some of the systems,
the successive states can be represented as sequences of random variables in which
the future variable value is determined by its present value independently of the
way in which the present state arose from its predecessors. More precisely, the
states observed in the given discrete points of time #; seem to be determined in a
probabilistic manner by the state in the previous point (or k-points) of time #;_1 (or
Liks Bimktls oo Bi—1)-

Assuming that the process runs only from time O to time n and that the initial
and final states are known, the state sequence is then represented by a finite vector.
If such a process has a finite number of states, which are observed in memoryless
noise, then it is called a first (or k-) order Markov process. More detailed description
of Markov processes can be found in the paper written by Papoulis (Papoulis, 1984).
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In 1966 Baum and Petrie (Baum et al., 1966) introduced a hidden Markov
model (HMM) as a statistical model in which one assumes that the changes of
the system being modeled can be well defined as a probabilistic random process,
that is a stochastic Markov process. The challenge is to determine (estimate) the
hidden parameters in a precise, well defined manner, from the observable parameters
(Rabiner, 1989).

In the following paragraphs one can find a small spectrum of possible applica-
tions of the Hidden Markov Models for protein structure analysis.

6.1 Secondary structure prediction

In 1993 Asai and coworkers (Asai et al., 1993) introduced a new method for analyz-
ing the amino acid sequences of proteins using the hidden Markov model (HMM).
Secondary structures such as helix, strand and turn (see Lesk, 2001) are learned
by HMMs, and after that applied to new sequences without known structures. The
output probabilities from the HMMs are used to predict the secondary structures of
the sequences. The prediction system was tested on approximately 100 sequences
from a public database (Brookhaven PDB) and although the implementation was
‘without grammar’ (no rule for the appearance patterns of secondary structures),
the result was reasonable.

An interesting overview on the biological sequence analysis can be found in the
book written by Durbin et al. (Durbin et al., 1998).

In 2005 Li (L1, 2005) proposed a new kind of HMMs, so called Hidden Markov
models with states depending on observations (HMMSDO). HMMSDO may have
advantages over HMM in some cases such as prediction of protein secondary struc-
tures. When using HMM to predict a protein secondary structure, the observations
are regarded as amino acid residues, and the states are regarded as tokens of a
secondary structure (Asai et al., 1993). According to the basic assumption of bio-
chemistry, i.e. a protein secondary structure depends on its primary structure, it
may be theoretically better to use HMMSDO than HMM in this case. The current
state in HMMSDO depends both on the immediately preceding state and the imme-
diately preceding observation. Although some experiments show that HMM often
outperforms HMMSDO in this application, HMMSDO may perform better than
HMM when a large number of training data are used, as can be partly explained by
the higher number of parameters used by the former approach (see Lee 2005).

6.2 I-sites and HMMSTR

Proteins have recurrent local sequence patterns that reflect evolutionary selective
pressures to fold into stable three-dimensional structures and many of these local
patterns correlate with common structural motifs. A general model of a protein se-
quence that captures these local features could lead to improved methods for gene
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finding, protein structure prediction, remote homology detection and other appli-
cations relating to the interpretation of genomic sequence information (Bystroff et
al., 2000).

Bystroff and coworkers described the development of such a model, based on
the so called I-sites library of sequence-structure motifs. The I-sites (invariant or
initiation sites) library consists of an extensive set of short (3 to 19 amino acids)
sequence motifs obtained by exhaustive clustering of sequence segments from a
nonredundant (there is no motif that contains another shorter motif completely)
database of known structures (Han et al., 1996; Bystroft and Baker, 1998). However,
many of the motifs overlap. The isolated motif model does not capture higher order
relationships, such as the distinctly non-random transition frequencies between the
different motifs. The redundancy inherent in the I-sites model suggests a better
representation that would model both the diversity of the motifs and their higher
order relationships. A hidden Markov model is well suited for this purpose. It
consists of a set of states, each of which is associated with a probability distribution
for generating a symbol, such as an amino acid residue or a secondary structure
type, and a set of transition probabilities between the states. Unlike the linear
hidden Markov models used to model individual protein families, HMMSTR - a
hidden Markov model for local sequence-structure correlations in proteins, has a
highly branched topology and captures recurrent local features of protein sequences
and structures that transcend protein family boundaries. The model extends the I-
sites library by describing the adjacencies of different sequence-structure motifs
as observed in the protein database and, by representing overlapping motifs in a
much more compact form, achieves a great reduction in parameters. The HMM
attributes give a considerably higher probability to the coding sequence than does
an equivalent dipeptide model. It predicts a secondary structure with an accuracy
of 74,3%, backbone torsion angles better than any previously reported method and
the structural context of strands and turns with an accuracy that should be useful
for tertiary structure prediction (Bystroff et al., 2000). During the CASP6 (see:
http://predictioncenter.org/) HMMSTR method was used as one of
the components of the method for predicting contact maps (Yuan et al., 2004), so
called residue-residue interactions, which gave good average results.

6.3 Contact maps

Pollastri and Baldi (2002) have proposed a set of flexible machine learning ar-
chitectures for the prediction of contact maps (see Section 3.5). The architectures
can be viewed as recurrent neural network implementations of a class of Bayesian
networks, so called Generalized Input Output HMMs (GIOHMMs). Contextual in-
formation is propagated laterally through four hidden planes, one for each cardinal
corner. Experiments showed that these architectures can be trained from examples
and yield contact map predictors that outperform previously reported methods. The
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method accurately predicted 60.5% of contacts at a distance cutoff below 8 A and
45% of distant contacts below 10 A, for proteins of length up to 300.

6.4 Distant homology detection

A common problem in protein structure prediction (PSP), especially in comparative
modeling, is the way of finding a correct template structure. A template structure is
usually identified on the basis of the sequence similarity (the measure that makes it
possible to compare two or more sequences and gives higher values for sequences
with a larger number of identical amino acids on the corresponding positions) with
the assumption that homologous structures often have a similarity score above
average. The problem is how to identify the homologous structures with a low
sequence similarity. An interesting solution of this problem has been proposed by
Gough et al. (Gough et al., 2001). It is worth noting that the same methods can be
used for annotating sequences of unknown structures.

According to Gough et al. (Gough et al., 2001) among the sequence comparison
methods, profile-based methods perform with a greater selectivity than those using
pairwise comparisons. Of the profile methods, hidden Markov models (HMMs)
are apparently the best. In the cited paper (Gough et al., 2001) calculations that
improve the performance of HMMs and a good procedure for creating HMMs for
sequences of proteins of known structures have been shown. For a family of re-
lated proteins, more homologues are detected using multiple models built from
diverse single seed sequences than from one model built from a good alignment
of those sequences. Some errors arising at the model-building stage of the proce-
dure can be additionally detected and corrected. These two improvements greatly
increase selectivity and coverage. Moreover, a library of HMMs, called SUPER-
FAMILY, has been constructed and it represents essentially all proteins of the known
structures. The sequences of the domains in proteins of the known structures, that
have identities less than 95% (such threshold decreases a number of redundant
structures in the library and increases a diversity of sequences corresponding to
the given domain), are used as seeds to build the models. The SUPERFAMILY
model library has been used to annotate the sequences of over 50 genomes. The
models match twice as many target sequences as are matched by pairwise se-
quence comparison methods. For each genome, close to half of the sequences
are matched in all or in part and, overall, the matches cover 35% of eukaryotic
genomes and 45% of bacterial genomes. On average, roughly 15% of genome se-
quences are labeled as being hypothetical yet homologous to proteins of the known
structure. The annotations derived from these matches are available from a pub-
lic web server at: http://stash.mrc-1lmb.cam.ac.uk/SUPERFAMILY.
This server also enables users to match their own sequences against the SUPER-
FAMILY model library.

A method similar to the one presented above has been proposed by Tsigelny
and coworkers in 2002 (Tsigelny et al., 2002). HMMSPECTR is a tool for finding
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putative structural homologs for proteins with known primary sequences. HMM-
SPECTR contains four major components: a data warehouse with the hidden
Markov models (HMM) and alignment libraries; a search program which compares
the initial protein sequences with the libraries of HMMs; a secondary structure pre-
diction and comparison program; and a dominant protein selection program that
prepares the set of 10-15 “best” proteins from the chosen HMMs. The data ware-
house contains four libraries of HMMs. The first two libraries were constructed
using different HMM preparation options of the HAMMER program (Eddy, 1998).
The third library contains parts (“partial HMM?”) of initial alignments. The fourth
library contains trained HMMs. The program was tested against all of the protein
targets proposed in the fourth edition of CASP. The data warehouse included li-
braries of structural alignments and HMMs constructed on the basis of proteins
publicly available in the Protein Data Bank before the CASP4 meeting. The newest
fully automated versions of HMMSPECTR 1.02 and 1.02ss produced better results
than the best result reported at CASP4 in 64% (HMMSPECTR 1.02) and 79%
(HMMSPECTR 1.02ss) of the cases. The improvement is most notable for the
difficult fold recognition targets.

7 Clustering

During the analysis of biological data it is often necessary to gather similar objects
into some larger collections and group them together. Such grouping or clustering
increases efficiency of data analysis and makes it possible to focus only on inter-
esting observations. Moreover, it also allows to deduct some global relationships
between biological objects, for example protein structures.

One of the most popular method of clustering is hierarchical clustering proposed
by Johnson (Johnson, 1967). The method developed a useful correspondence be-
tween any system of clustering and certain kinds of distance measures (Johnson,
1985). Nowadays this kind of methods are commonly used for representing relation-
ships between organisms in a sense of similarities and dissimilarities. Relationships
are in most cases based on the genome and protein sequence analysis, sometimes
clusters and dendrograms (hierarchy trees) are based on functional and structural
properties.

Liu and Rost (2003) presented an interesting overview of the recent manual
and automatic methods that attempt to classify proteins. They divided most pop-
ular classification strategies into several categories. First of all, they divided the
methodologies between human-driven and fully automatic. In the first category
they distinguish motif-based classifications, structure-based domain classification,
and methods for classifying structural domain-like families. In the second category—
fully automatic methods, they described measures for presenting similarities be-
tween proteins and their sequences. One important reality of sequence comparisons
is that alignment methods optimize the similarity between sequences. ‘Less similar’
does not imply ‘more distant’. To illustrate this point for structural similarity, 90%
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of all pairs of proteins that have 15% identical residues over their entire length have
different structures; however, 90% of the pairs of proteins with similar structure
have less than 15% identical residues (amino acids).

The most widely used and comprehensive databases are SCOP (Murzin et al.,
1995), CATH (Orengo et al., 1997), and FSSP (Holm and Sander, 1994), which
present three methods of classifying protein structures: purely manual, a combina-
tion of manual and automated, and purely automated, respectively. A systematic
comparison of these three methods can be found in the paper written by Hadley
and Jones (Hadley and Jones, 1999).

The SCOP (Structural Classification of Proteins) database (Murzin et al., 1995;
Andreeva et al., 2004) is developed as an evolutionary classification, in which
the main focus is to place the proteins in a coherent evolutionary framework,
based on their conserved structural features. The database aims at providing a
comprehensive and detailed description of the relationships between all proteins
whose 3D structures have been determined. A fundamental unit of classification
in the SCOP database is the protein domain. A domain is defined as an evolu-
tionary unit observed in nature either in isolation or in more than one context in
multidomain proteins. The protein domains are classified hierarchically into fam-
ilies, superfamilies, folds and classes. The seven main classes in the latest release
(1.65) contain 40 452 domains organized into 2 327 families, 1 294 superfamilies
and 800 folds. These domains correspond to 20 619 entries in the Protein Data
Bank (PDB). Statistics of the current and previous releases, summaries and full
histories of changes and other information are available from the SCOP website
(http://scop.mrc-1lmb.cam.ac.uk/scop/) together with parsable files
encoding all SCOP data (for details see Andreeva et al., 2004).

The CATH database is a hierarchical classification of domains into sequence-
and structure-based families and fold groups. In the lowest level, so called S-Level,
of the hierarchy, sequences are clustered according to significant sequence simi-
larity (35% identity and above). At higher levels domains are grouped according
to whether they share significant sequence, structural and/or functional similarity
(homologous superfamilies, or H-level), or just structural similarity (fold or topol-
ogy group, or T-level). Fold groups sharing similar architectures, i.e. similarities in
the arrangements of their secondary structures regardless of connectivity are then
merged into the common architectures — this level of the hierarchy is called the A-
Level. At the top of the hierarchy, domains are clustered depending on their class,
i.e. the percentage of « helices or S-strands (the C-Level) (Pearl et al., 2005).

FSSP is known as Families of Structurally Similar Proteins or Fold classifica-
tion based on Structure-Structure alignment of Proteins. FSSP is fully automated
and does not assign proteins into classes, fold families or superfamilies. Instead
proteins of a representative set (sequence similarity between proteins or domains
are not greater then 25%) and members of sequence-homologue set (homologues
with greater then 25% sequence identity) are structurally compared using the Dali
method (Holm and Sander, 1993). A fold tree is constructed using hierarchical clus-
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tering methods; an indexing system is also incorporated by dividing the pairwise
structural comparisons at z-scores of 2, 3, 4, 5, 10 and 15 (see Hadley and Jones,
1999).

Interesting aggregations of various sequence-motif and sequence-clusters data-
base have been done by Kriventseva et al. (2001). They are collected in InterPro.
Because the contributing databases have different clustering principles and scor-
ing sensitivities, the combined assignments complement each other for grouping
families and delineating domains.

During the CASP6 (see http: //www.predictioncenter.org) exper-
iment, Kolinski and Bujnicki used an average linkage hierarchical clustering al-
gorithm, with the distance root-mean-square separation as a measure of structure
similarity, as part of a strategy for rebuilding full atom models from the high-
resolution reduced lattice CABS model, generated as a result of Replica Exchange
Monte Carlo folding simulations (see Kolinski and Bujnicki, 2004).

Eyrich et al. (Eyrich et al., 1999) used a clustering algorithm which sorts the in-
termediate results of protein folding simulations into geometrically distinct groups,
which can then be treated via a higher level methodology. The number of alterna-
tive predictions that are passed on to a more accurate (but more expensive) scoring
function must be sufficiently small so that those computations are tractable.

Zhang and Skolnick (Zhang and Skolnick, 2004) proposed a simple and effi-
cient strategy to identify near-native folds by clustering protein structures generated
during computer simulations. In the method, called SPICKER, the most populated
clusters tend to be closer to the native conformation than the lowest energy struc-
tures. To assess the generality of the approach, SPICKER was applied to 1489
representative benchmark proteins consisting of 200 residues that cover the PDB at
the level of 35% sequence identity; each contains up to 280 000 structure decoys,
generated using the TASSER (Threading ASSembly Refinement) algorithm. The
best of the top five identified folds has a root-mean-square deviation (RMSD) from
the native fold in the top 1.4% of all decoys (structures). For 78% of the proteins, the
difference in RMSD from native to the identified models and RMSD from native to
the absolutely best individual decoy is below 1. Although native fold identification
from divergent decoy structures remains a challenge, these results show significant
improvement over previous clustering algorithms.

Tendulkar et al. (2003) presented the geometric invariant-based approach for
discovering recurring structural patterns in proteins via clustering. In the method,
geometric invariants were used to decide superimposability of structural patterns.
As aresult the computationally explosive step of pairwise comparison of structures
has been eliminated.

Mohseni-Zadeh et al. (2004) proposed an algorithm for the large scale clustering
of protein sequences based on the extraction of maximal cliques. The Cluster-C
program enables a stand-alone and efficient construction of protein families within
whole proteomes (proteome is the complete set of proteins present in a cell or in
an organism). In the presented analysis the z-value was used as the criterion for
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connecting sequences. The clusters built with low threshold were consistent with
known protein families.

Clustering large protein databases like the NCBI Non-Redundant database (NR)
using even the best currently available clustering algorithms is very time-consuming
and only practical at relatively high sequence identity thresholds. In 2001 the pro-
gram CD-HI written by Li et al. (2002), clustered NR at 90% identity in one hour
and at 75% identity in one day on a 1 GHz Linux PC. However, even faster clus-
tering speed is needed because the size of protein databases are rapidly growing
and many applications desire lower attainable thresholds. It was shown (Li et al.,
2002) that tolerating some redundancy in output database makes far more efficient
use of short-word filters and increases the program’s speed by 100. Although some
redundancy is present after clustering, the new results only differ from the previous
results by less than 0.4%. The program and its previous version are available at
http://bioinformatics.burnham.org/cd-hi/.

8 Summary

Protein analysis plays a central role in understanding the mechanisms of life. With
several complete genomes and a reasonably complete set of protein structures,
the problem facing bioinformatics shifts from its past challenge of finding weak
similarities among sparse data, to one of finding closer similarities in a wealth of
data. However, concentrating on protein sequence data, simplifies the data process-
ing problem considerably and the increased computation demands can be met by
the equally rapid increase in the power of computer and effective operations re-
search techniques. Nowadays, one can find these techniques in almost each aspect
of protein analysis: from secondary and tertiary structure prediction to functional
analysis. There is a strong need to decode information obtained from proteins but
without operations research techniques any progress seems to be impossible.
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