
Invited Review

Review of properties of different precedence graphs
for scheduling problems

Jacek Blazewicz a,*, Daniel Kobler b

a Instytut Informatyki, Politechnika Poznanska and Instytut Chemii Bioorganicznej, PAN, Poznan, Poland
b Department of Mathematics, EPFL, CH-1015 Lausanne, Switzerland

Received 17 September 2001; accepted 17 October 2001

Abstract

Precedence constraints are a part of a definition of any scheduling problem. After recalling, in precise graph-the-

oretical terms, the relations between task-on-arc and task-on-node representations, we show the equivalence of two

distinct results for scheduling problems. Furthermore, again using these links between representations, we exhibit

several new polynomial cases for various problems of scheduling preemptable tasks on unrelated parallel machines

under arbitrary resource constraints.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Precedence constraints; Graph theory

1. Introduction

Scheduling problems are formulated in different
contexts, computer systems, manufacturing and
project scheduling being the most representative
[2,4,6,7,18]. An important part of a definition of
any scheduling problem consists in the precedence
constraints among tasks to be processed by pro-
cessors (machines). Arising in different areas, these
constraints are used to represent a technological
order (manufacturing), activity precedences (pro-
ject scheduling) or parallel and sequential parts in

computer programs. It is known that two basic
directed graph representations may be used to de-
pict precedence constraints. They are, respectively,
task-on-arc graphs, where arcs correspond to tasks
and nodes represent time events in a schedule, and
task-on-node graphs, where nodes correspond to
tasks and arcs reflect precedence constraints. The
first, task-on-arc representation, is mainly used in
the project scheduling context [24,26], while the
second, task-on-node representation, is used to
a wider extent in manufacturing and computer
scheduling problems [4,6,7,18].

The aim of the paper is to point out relation-
ships between results for scheduling problems that
turn out to be equivalent, and give some new re-
sults for scheduling preemptable tasks on parallel
machines. In order to achieve this, we recall in
precise graph-theoretical terms the relationship

European Journal of Operational Research 142 (2002) 435–443

www.elsevier.com/locate/dsw

*Corresponding author. Tel.: +48-61-8790-790; fax: +48-61-

771-525.

E-mail address: blazewic@put.poznan.pl (J. Blazewicz).

0377-2217/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (01)00379-4

mail to: blazewic@put.poznan.pl

between the two standard representations of task
precedence constraints. Although this relationship
has been studied for a long time, it is, in our
opinion, not taken enough into account, as we will
show in this paper. As a result of these studies we
will also prove that problem Rmjpmtn; res . . . ;
interval orderjCmax (as denoted with the use of the
well-known notation of scheduling problems [5,10])
is solvable in polynomial time.

Before doing this let us set up the subject more
precisely. Usually in a scheduling problem we are
given a set of (parallel) processors P and a set of
tasks T together with precedence constraints � (a
partial order). Sometimes a set of additional re-
sources R, tasks are competing for, is also given.
Tasks may be preemptable or not and are to be
processed on processors in a certain order opti-
mizing a given criterion. This order must obey
relation �, where Ti � Tj means that task Tj may
be assigned to a processor only after task Ti is
finished. In a standard way, the task precedence
constraints � of a scheduling problem are repre-
sented by a directed graph. A directed graph (or
digraph) is said to be acyclic if it does not contain
any directed cycle (circuit). In particular, loops on
vertices are also forbidden. We will consider set G
of acyclic digraphs (several parallel arcs from a
vertex to another one being allowed) and one of its
subsets, both used to represent precedence con-
straints. To simplify the reading, we will use the
term ‘graph’ to mean ‘directed graph’. The term
‘path’ denotes a ‘directed path’.

The paper is organized as follows. In Section 2
we consider in a formal way the two main methods
for representing task precedence constraints by a
graph. In Section 3, links between the two repre-
sentations are discussed. A thorough analysis al-
lows one to show that problem Rmjpmtn; res . . . ;
interval orderjCmax is solvable in polynomial time.
We conclude in Section 4.

2. Precedence constraints representations

2.1. The task-on-node representation

The most common representation of precedence
constraints used in the literature is the task-on-node

graph representation (or vertex diagram). The cor-
responding graphH has a vertex for each task, and
an arc (directed) from Ti to Tj if and only if Ti has to
precede Tj according to �. If graph H has a circuit,
the corresponding scheduling problem has clearly
no feasible solution; therefore we may suppose that
H is acyclic. In order to reduce redundant infor-
mation, transitivity arcs in H are not represented;
this is the transitive reduced representation.

Let us denote by Gn the subset of G of graphs
without parallel arcs, without loops and without
transitivity arcs. The graphs used for the task-on-
node representation are members of Gn. Moreover,
every H in Gn can be seen as a task-on-node rep-
resentation of precedence constraints of some
scheduling problem. If dummy tasks are not used,
then precedence constraints � correspond exactly
to one graph H in Gn (up to isomorphism).

If introducing dummy tasks (with processing
time 0) is allowed, then several graphs can be as-
sociated to �. Let us define the following opera-
tions on graphs in Gn:
task-splitting: replace task Ti by two tasks T 0

i and
T 00
i and an arc ðT 0

i ; T
00
i Þ. One of these two tasks is

the original task Ti, and the other is a dummy
task. Each arc that was entering (resp. leaving)
Ti is replaced by an arc entering T 0

i (resp. leaving
T 00
i).
fusion: if there are two sets of tasks V1 and V2
such that there is an arc from each task in V1
to each task in V2, add a vertex v (corresponding
to a dummy task) and replace all arcs from V1 to
V2 by all possible arcs from V1 to v and from v to
V2.
The fusion operation will be called arc-splitting

when jV1j ¼ jV2j ¼ 1. To these three operations
correspond natural reverse operations.

All these operations, and others we did not
mention here, transform graph H 2 Gn into an-
other graph H 0 2 Gn. The two graphs are equiva-
lent from a scheduling point of view: they represent
(essentially) the same task precedence constraints.
In this case we will say that they are s-equivalent.
But from a graph theoretical point of view, they are
not equivalent (that is, isomorphic). Considering
some property of the task-on-node graphs that al-
lows a polynomial resolution of some scheduling
problems, these operations may be useful. If the

436 J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443

task-on-node graph H does not have this property,
an s-equivalent graph having it can perhaps be
obtained through these operations.

Notice that there exist other operations that
allow to obtain s-equivalent graphs. Some of these
operations change the number of non-dummy
tasks, for example by replacing a task by two
shorter ones.

2.2. The task-on-arc representation

Another representation of task precedence
constraints that can be used is the task-on-arc
graph representation (or arc diagram). The corre-
sponding graph G has an arc for each task, the
vertices being time events. If task Ti precedes task
Tj, there must be a path from the terminal end-
point of arc Ti to the initial endpoint of arc Tj. For
the same reason as in the task-on-node represen-
tation, we may suppose that graph G has no cir-
cuit. But here parallel arcs are allowed. Therefore
graphs used for task-on-arc representation are
members of G. And every G in G can be seen as a
task-on-arc representation of the precedence con-
straints of some scheduling problem. On the con-
trary to the task-on-node representation, several
task-on-arc graphs may correspond to a set of
precedence constraints �, even if no dummy tasks
are allowed. A simple such example is given in Fig.
1 where the two graphs represent the same prece-
dence constraints.

A vertex is said to be a source (resp. a sink) if it
has no incoming (resp. outgoing) arc. Let us define
the following operations:
source- (sink-) splitting: replace a source (resp.
sink) v by two sources (resp. sinks) v0 and v00.
Each arc that was leaving (resp. entering) v is re-
placed by an arc leaving (resp. entering) either v0

or v00, the other endpoint remaining unchanged.

The reverse operations are called source- (sink-)
merging. Notice that adding and removing isolated
vertices can be seen as source-splitting and source-
merging (or even sink-splitting and sink-merging).

These operations transform a graph G 2 G into
another graph G0 2 G. These graphs are s-equiva-
lent, but not isomorphic. In fact, if two graphs G
and G0 are s-equivalent, and no dummy tasks are
allowed, we can transform G into G0 (and G0 into
G) with these operations. In other words, the task-
on-arc representation is unique up to the number
of sources, sinks and isolated vertices (and up to
isomorphism) [1,16]. Among all the graphs that
can be obtained from a graph G by using these
operations, we will distinguish one of them. The
graph Gm is obtained from G by removing all
isolated vertices and merging all sources (sinks)
into one source (sink). The graph Gm can be seen
as the result of iterative source- (sink-) merging
applied to G.

If dummy tasks are allowed, there exist further
operations that give s-equivalent graphs. For ex-
ample:
vertex-splitting: replace vertex v by two vertices
v0 and v00, and an arc ðv0; v00Þ corresponding to a
dummy task. Each arc that was entering (resp.
leaving) v is replaced by an arc entering v0 (resp.
leaving v00).
Here also, all the operations might allow to

transform a graph into an s-equivalent graph that
has a desired graph theoretical property allowing a
polynomial resolution of a scheduling problem.

2.3. Links between the two representations

It is well known that every precedence con-
straints � has a task-on-node representation, and
that this is not true for task-on-arc representation
if dummy tasks are not allowed. Indeed, the fol-
lowing constraints on the four tasks T1; . . . ; T4
cannot be represented with a task-on-arc graph
(without dummy tasks):

T1 � T3; T1 � T4; T2 � T3:

But when dummy tasks are allowed, every set of
precedence constraints can be represented with a
task-on-arc graph. The relationship between the
two representations can be explained through the

Fig. 1. Two different representations of the constraints

fT1 � T3; T2 � T3g.

J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443 437

notion of adjoint (also called line digraph or di-
rected line-graph) [3,11,22].

For graph H ¼ ðA;UÞ and vertex a 2 A, we
denote by NþðaÞ (resp. SðaÞ) the set of immediate
successors (resp. successors) of a:

NþðaÞ ¼ fb 2 A j ða; bÞ 2 Ug
and

SðaÞ ¼ fb 2 A j there is a path from a to b in Hg:
The following theorems give characterizations

of the adjoints.

Theorem 1 [3]. A graph is an adjoint if and only if
for every pair of vertices a and b the following is
true:

NþðaÞ \ NþðbÞ 6¼ ;) NþðaÞ ¼ NþðbÞ:

Theorem 2 [12]. An acyclic graph G in Gn is an
adjoint if and only if G has no induced subgraph
isomorphic to N (see Fig. 2).

In Theorem 2, the fact that G is in Gn is im-
portant. If G is not transitively reduced, this result
does not hold, as shown by the graph G ¼ ðfa; b;
cg; fða; bÞ; ðb; cÞ; ða; cÞgÞ. For an adjoint H, finding
a graph G such thatH is the adjoint of G can easily
be done in polynomial time [3,21].

It is well known that a task-on-node represen-
tation of precedence constraints given by a task-
on-arc graph can be obtained by taking the adjoint
of this graph. In other words, if G 2 G and H 2 Gn

is the adjoint of G, then G and H are s-equivalent.
According to Theorem 2, every task-on-node
graph without an induced subgraph isomorphic to
N (a so-called N-free graph) is an adjoint. There-

fore, every partial order � whose task-on-node
graph is N-free (and only such a �) has a task-on-
arc representation without dummy tasks. It is easy
to determine a graph whose adjoint is a given
graph [3,21].

Obviously, not every task-on-node graph H is
an adjoint. But, as also explained in [16] for ex-
ample, it is easy to find a graph H 0 which is s-
equivalent to H and is an adjoint; such a H 0 can be
obtained by performing arc-splitting on each arc
of H.

Knowing this relationship between the two
representations, one can consider either type of a
graph. In particular, when polynomial cases of
scheduling problems are investigated, properties
about the precedence constraints can be expressed
with respect to either two representations. But de-
spite the fact that many researchers consider this
relationship as very well known, this knowledge is
still not always applied, as we will now show.

3. Polynomially solvable scheduling problems

In this section we will present a polynomial time
approach to precedence constrained scheduling
problems under arbitrary resource constraints.
Although some elements of this approach are
known for several years [4,25], no paper explored
it yet to a full extent. This is especially true for the
task-on-node representation which will be consid-
ered as the second one.

Assume now that tasks T1; T2; . . . ; Tm are to be
processed preemptively on m parallel processors
P1; P2; . . . ; Pm in order to minimize schedule length.
Assume first that these processors are identical, i.e.
each task Tj; j ¼ 1; 2; . . . ; n is characterized by its
processing time pj. There is also given a set of ad-
ditional resources R ¼ fR1;R2; . . . ;Rsg with re-
spective resource limits m1;m2; . . . ;ms. Resource
requirements of task Tj; j ¼ 1; 2; . . . ; n, are speci-
fied by resource requirement vector RðTjÞ ¼ ðR1

ðTjÞ;R2ðTjÞ; . . . ;RsðTjÞÞ, each component of which
denotes a requirement for a particular resource
type, RkðTjÞ6mk; k ¼ 1; 2; . . . ; s. Let the set of
tasks T be partially ordered by precedence con-
straints relation � expressed in a form of a task-on-
arc graph G 2 G (cf. Fig. 3).Fig. 2. Graph N.

438 J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443

Let us assume now, that nodes (being in fact
time events in a schedule) of graph G are ordered
in such a way that an occurrence of node i is not
later than an occurrence of node j, if i < j. Now,
by main set Mi; i ¼ 1; 2; . . . ; n� 1, we will denote
a set of tasks which could be processed, from the
viewpoint of precedence constraints only, between
the occurrence of node i and iþ 1. (In case of
graph G in Fig. 3, three such main sets can be
distinguished: M1 ¼ fT1; T2g, M2 ¼ fT1; T3; T5g,
M3 ¼ fT4; T5g.) By a resource feasible set we will
mean here such a subset of any main set, for which
total processor and resource requirements of tasks
comprising it do not exceed processor and resource
limits (respectively for any resource component).
Let K be a number of different resource feasible
sets. By variable yi the processing time of the ith
resource feasible set, and by Qj the set of indices of
only those resource feasible sets that contain task
Tj 2 T, will be denoted. Now, our scheduling
problem may be formulated as the following linear
programming (LP) one:

Minimize
Xk

i¼1

yi ð1Þ

subject to
X

i2Qj

yi ¼ pj; j ¼ 1; 2; . . . ; n; ð2Þ

yi P 0; i ¼ 1; 2; . . . ; k: ð3Þ

As a solution of the above problem one gets
optimal values y�i of interval lengths in an optimal
schedule. The tasks processed in the intervals are
members of the corresponding resource feasible
subsets.

Let us analyze now, the conditions under which
a solution of the above LP problem gives an op-

timal schedule. We see that it depends on an order
of nodes of graph G and an optimal schedule can
be constructed in the above way if this order is
unique. Graph G with a unique ordering of nodes is
called a uniconnected activity network [25], uan for
short. (In fact graph G in Fig. 3 is a uniconnected
activity network.) To analyze a complexity of this
approach, one should calculate a number of vari-
ables in the above LP problem. We see that it
depends polynomially on the input length (of the
scheduling problem), if the number of processors
m is fixed. (Note that additional resources can only
decrease a number of LP variables.) In such a case
one may use a non-simplex algorithm [15] or [14]
which solves LP problem in time polynomial in the
number of variables and constraints. Thus, using a
notation of scheduling problems (cf. [5,10]), one
may conclude that problem Pmjpmtn; res . . . ; uanj
Cmax is solvable in polynomial time.

Let us now consider the case of parallel, un-
related processors. In such a model each task Tj

is characterized by a processing time vector
pj ¼½pj1; pj2; . . . ; pjm�T, where pji denotes a process-
ing time of tasks Tj on processor Pi (provided that
all the required additional resources are granted).
In this case one may formulate a similar LP
problem to (1)–(3), but now for each resource
feasible set one must consider several processing
modes (each task being assigned to different pro-
cessors). Eq. (2) also changes a form and the
summation is done over a normalized time, so that
the right-hand side is equal to 1 (or 100%) instead
of pj. Again, we see that a number of LP variables
(different processing modes) is bounded from
above by a polynomial in the input length of the
scheduling problem if a number of processors m is
fixed. Thus, in this case, one may conclude that
problem Rmjpmtn; res . . . ; uanjCmax is solvable in
polynomial time.

We see that a property of precedence con-
straints allowing for polynomial solvability is
called uniconnectedness and can be defined equiv-
alently as follows: an activity network (task-on-arc
graph) is said to be a uniconnected activity net-
work (uan for short) if for every pair of vertices v
and w, there is a path from v to w or from w to v
(but not both since we deal with acyclic graphs
only).

Fig. 3. An example task-on-arc graph G.

J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443 439

We will first show that being uniconnected is
equivalent to having a Hamiltonian path.

Theorem 3. Let G be an activity network (task-on-
arc graph). G is uniconnected if and only if G has a
Hamiltonian path.

Proof. We first show the ‘if’ part. Let v and w
be two vertices of G. It is clear that if G has a
Hamiltonian path, then there is a path from v to w
or from w to v (simply follow the Hamiltonian
path). The graph, being acyclic, cannot have both
paths.

We now prove the ‘only if’ part. Consider a
longest path P (in the sense of a number of nodes)
in G. Let v1 be its first vertex and vp its last. Notice
that since the graph is acyclic, such a path is simple
and can be found in polynomial time. Assign to
each vertex w value rðwÞ of the length of a longest
path from v1 to w. If there is no path from v1 to w,
set rðwÞ ¼ 1. Again, all longest paths are simple
and the values rðwÞ can be determined in polyno-
mial time. Notice that rðv1Þ ¼ 0.

We first show that vertex w with rðwÞ ¼ 1
cannot exist. If the graph is uniconnected, there is
a path from v1 to w or from w to v1. But v1 is the
first vertex of P and therefore has in-degree 0.
Hence the path between v1 and w must be from v1
to w. Therefore rðwÞ is finite. Second, we notice
that for each arc ðv;wÞ we have rðvÞ < rðwÞ, by
definition of the values rð�Þ and by the absence of
circuits.

Finally, we show that no vertex is outside of P.
For, if such a vertex, say x, exists, consider a
longest path Px from v1 to x and let y be the last
vertex that is both on P and Px. By definition of P,
y cannot be vp. Let v be the successor of y in P and
w the successor of y in Px. Then we have
rðvÞ ¼ rðwÞ. But this is not possible: there must be
a path from v to w or from w to v. As noticed
before, the value of rð�Þ can only increase when
following a path, hence the equality rðvÞ ¼ rðwÞ is
a contradiction, and the vertex x cannot exist.
Therefore P is a Hamiltonian path. �

Now let us turn our attention to the task-on-
node graphs. To define an interesting class of
graphs let us consider a finite set V and a collection

ðIvÞv2V of intervals Iv on the reals. This collection
defines a partial order � on V as follows:

v � w () Iv is entirely before Iw:

Such a partial order is called an interval order.
Without loss of generality, we may assume that the
intervals have the form ½n1; n2Þ with n1 and n2 in-
tegral. It can be shown that � is an interval order
if and only if the transitive closure of the task-on-
node representation of this order does not contain
2K2 (see Fig. 4) as an induced subgraph [8].

Interval orders are useful in scheduling, since
several problems become polynomial when the
precedence constraints have that form [13,17,19,
20]. In particular.

Theorem 4 [19]. Problem Pmjpmtn; interval orderj
Cmax can be solved in polynomial time.

The proof of Theorem 4 is based on the poly-
nomial resolution of a linear programming pro-
gram. To find more about interval orders, see for
example [16].

Below we will show that the result of Theorem 4
is in fact a special case of the already presented
polynomial-time approach for solving problem
Rmjpmtn; res . . . ; uanjCmax. Let us consider the fol-
lowing theorem.

Theorem 5. If G is a uan, then G is a task-on-arc
representation of an interval order.

Proof. By Theorem 3, G ¼ ðV ;AÞ is composed of a
Hamiltonian path P ¼ ðv1; . . . ; vnÞ with possibly
some additional arcs of the form ðvi; vjÞ with i < j.
The interval order we are looking for is defined by
the following collection of intervals ðIaÞa2A. For
every arc a ¼ ðvi; vjÞ of A, we put the interval ½i; jÞ
into the collection.

Fig. 4. Graph 2K2.

440 J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443

We have now to show that Ia ¼ ½i; jÞ is entirely
to the left of Ia0 ¼ ½i0; j0Þ if and only if a has to
precede a0 in the task precedence constraints rep-
resented by G. This is easy to show, since:

Ia ¼ ½i; jÞ is entirely to the left of Ia0 ¼ ½i0; j0Þ
() j6 i0

() there is a path from vj to vi0 in G ðalong P Þ
() a with head j has to precede a0 with tail i0:

�

If dummy tasks are not allowed, an interval
order does not necessarily have a task-on-arc
representation. Indeed, if we consider the collec-
tion of intervals f½1; 2Þ; ½1; 3Þ; ½2; 4Þ; ½3; 4Þg, its task-
on-node representation is graph N in Fig. 2.
According to the remark following Theorem 2, it
implies that this partial order does not have a task-
on-arc representation without dummy tasks. But
the equivalence of task-on-node and task-on-arc
representations can be obtained through the use of
dummy tasks. Since we allow them also here the
following result can be proved.

Theorem 6. Any interval order has a task-on-arc
representation with a Hamiltonian path (and there-
fore corresponds to a uan).

Proof. Consider any collection of intervals ðIaÞa2A
with Ia ¼ ½ba; eaÞ. We define the following graph
G ¼ ðV ;EÞ. Set

V ¼ fba ja 2 Ag [fea ja 2 Ag:

For any v in V, let nextðvÞ be the vertex w > v such
that there is no x in V with v < x < w (nextðvÞ is
not defined for the largest ea). Set

A0 ¼ fðv; nextðvÞÞ jv 2 V and nextðvÞ definedg
and

E ¼ A0 [fðba; eaÞ ja 2 Ag:

The arcs in A0 represent dummy tasks. This graph
G has indeed a Hamiltonian path, starting with the
smallest ba (mina2A ba), following the arcs in A0 and
ending at the largest ea (maxa2A ea). It remains to
show that Ia ¼ ½ba; eaÞ is entirely to the left of
Ia0 ¼ ½ba0 ; ea0 Þ if and only if arc ðba; eaÞ has to pre-
cede arc ðba0 ; ea0 Þ in the task precedence constraints

represented by G. We do not have to deal with arcs
in A0 since they represent dummy tasks:

Ia ¼ ½ba; eaÞ is entirely to the left of Ia0 ¼ ½ba0 ; ea0 Þ
() ea 6 ba0

() there is a path from ea to ba0 in G

ðusing the arcs in A0Þ
() ðba; eaÞ with head ea has to precede

ðba0 ; ea0 Þ with tail ba0 : �

The following corollary is a direct consequence
of Theorems 5 and 6:

Corollary 1. Let O be a partial order. If dummy
tasks are allowed, O is an interval order if and only
if O can be represented as a uan.

Syslo proved a similar result in that direction in
[23], but not in relation to uan. Although the
statement of his Theorem 2 is a little bit mislead-
ing, he showed that a partial order O is an interval
order if and only if its canonical arc diagram (a
particular arc diagram representing O) has a
Hamiltonian path (of a specific form). 1

Using the above corollary, we now have:

Theorem 7. Problem Rmjpmtn; res . . . ; interval
orderjCmax is solvable in polynomial time.

This result shows the importance of taking into
account the relationship between task-on-node
and task-on-arc representations of precedence con-
straints, and its impact on previous results.

As mentioned in Section 2.1, the task-on-node
graph is usually given by its transitive reduced
form. But the characterization of interval orders
(2K2-free) applies to the transitive closure of the
task-on-node graph. Therefore, a description of
transitive reduced form of the task-on-node graph
of an interval order is interesting. This problem
has been considered in [9], based on results of [17].

1 Let us notice at this point that the definition of canonical

representation/arc diagram in [23] is based on two functions

lðpÞ and rðpÞ whose definitions suffered from typos: it should

be N�
p ¼ MlðpÞ and Nþ

p ¼ NrðpÞ (instead of N�
p ¼ NlðpÞ and

Nþ
p ¼ MrðpÞ).

J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443 441

Definition. An acyclic digraph G ¼ ðV ;AÞ is an
interval directed acyclic graph (dag) if and only if
for any pair of vertices u and v, we have either
SðuÞ � SðvÞ or SðvÞ � SðuÞ.

Proposition 1 [9]. The transitively closed interval
dags are exactly the task-on-node graphs of interval
orders.

Therefore, the adjoint of a uan is an interval
dag (by Theorem 5). Moreover, it is easy to check
that the adjoint of a uan is transitively reduced (by
the properties of an adjoint). We could have used
the characterization given in Proposition 1 to
prove Theorems 5 and 6, but this would not sim-
plify the proofs.

To this end let us also comment on some other
classes of precedence graphs, well known in the
literature. For example directed caterpillars are
special cases of interval orders, and thus, such a
structure results in polynomial time algorithm. On
the other hand, out-trees (as well as in-trees and
series–parallel precedence constraints) although
for some simple cases equivalent to interval orders
(and uan) in general differ from the latter, and
thus, cannot be solved in polynomial time by the
described approach (cf. Fig. 5).

4. Conclusion

Although the links between task-on-node and
task-on-arc representations of precedence con-
straints of scheduling problems are considered as
well known, it is useful to remember them. Indeed,

in this paper we showed that the notions of a
uniconnected activity network and an interval
order are equivalent from the scheduling point of
view. This allowed us in a first step to show that
two distinct results from the literature are in fact
equivalent. Moreover, we were also able to exhibit
further polynomially solvable cases, especially
problem Rmjpmtn; res . . . ; interval orderjCmax. We
hope that this will illustrate the importance of a
good understanding of the various classes of vertex
and arc diagrams.

Acknowledgements

The paper has been written while the second
author stayed at Instytut Informatyki, Politechn-
ika Poznanska whose support under KBN grant
8T11A01618 is gratefully acknowledged.

References

[1] M. Aigner, On the linegraph of a directed graph, Math-

ematische Zeitschrift 102 (1967) 56–61.

[2] K. Baker, Introduction to Sequencing and Scheduling,

Wiley, New York, 1974.

[3] C. Berge, Graphs and Hypergraphs, North-Holland, Am-

sterdam, 1973.

[4] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, J.

Weglarz, Scheduling Computer and Manufacturing Pro-

cesses, Springer, Berlin, 1996.

[5] J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Sched-

uling subject to resource constraints: Classification and

complexity, Discrete Applied Mathematics 5 (1983) 11–

24.

[6] P. Brucker, Scheduling Algorithms, Springer, Berlin,

1997.

Fig. 5. An example of an out-tree (a) being not an interval order nor a uniconnected activity network (b).

442 J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443

[7] E.G. Coffman Jr. (Ed.), Scheduling in Computer and Job

Shop Systems, Wiley, New York, 1976.

[8] P.C. Fishburn, Intransitive indifference in preference the-

ory: A survey, Operations Research 18 (1970) 207–228.

[9] H.N. Gabow, A linear-time recognition algorithm for

interval dags, Information Processing Letters 12 (1981) 20–

22.

[10] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rin-

nooy Kan, Optimization and approximation in deter-

ministic sequencing and scheduling theory: A survey,

Annals of Discrete Mathematics 5 (1979) 287–326.

[11] R.L. Hemmiger, L.W. Beineke, Line graphs and line

digraphs, in: L.W. Beineke, R.J. Wilson (Eds.), Selected

Topics in Graph Theory, Academic Press, London, 1978,

pp. 271–305.

[12] C. Heuchenne, Sur une certaine correspondance entre

graphes, Bulletin de la Soci�eete Royal des Sciences de Li�eege

33 (1964) 743–753.

[13] K. Jansen, Analysis of scheduling problems with typed task

systems, Discrete Applied Mathematics 52 (1994) 223–

232.

[14] N. Karmarkar, A new polynomial-time algorithm for

linear programming, Combinatorica 4 (1984) 373–395.

[15] L.G. Khachiyan, A polynomial algorithm for linear

programming, Doklady Akademii Nauk SSSR 244 (1979)

1093–1096 (in Russian).

[16] R.H. M€oohring, Computationally tractable classes of or-

dered sets, in: I. Rival (Ed.), Algorithms and Order,

Kluwer Academic Publishers, Dordrecht, 1989, pp. 105–

193.

[17] C.H. Papadimitriou, M. Yannakakis, Scheduling interval-

ordered tasks, SIAM Journal of Computing 8 (1979) 405–

409.

[18] M. Pinedo, Scheduling: Theory, Algorithms, and Systems,

Prentice-Hall, Englewood Cliffs, NJ, 1995.

[19] N.W. Sauer, M.G. Stone, Preemptive scheduling of inter-

val orders is polynomial, Order 5 (1989) 345–348.

[20] G. Steiner, Minimizing the number of tardy jobs with

precedence constraints and agreeable due dates, Discrete

Applied Mathematics 72 (1997) 167–177.

[21] M.M. Syslo, A labeling algorithm to recognize a line

digraph and output its rootgraph, Information Processing

Letters 15 (1982) 28–30.

[22] M.M. Syslo, A graph-theoretic approach to the jump-

number problem, in: I. Rival (Ed.), Graphs and Orders,

Reidel, Dordrecht, 1985, pp. 185–215.

[23] M.M. Syslo, The jump number problem on interval orders:

A 3/2 approximation algorithm, Discrete Mathematics 144

(1995) 119–130.

[24] F.B. Talbot, J.H. Patterson, An efficient integer program-

ming algorithm with network cuts for solving resource-

constrained scheduling problems, Management Science 24

(1978) 1163–1174.

[25] J. Weglarz, J. Blazewicz, W. Cellary, R. Slowinski, An

automatic revised simplex method for constrained resource

network scheduling, ACM Transactions of the Mathemat-

ical Software 3 (1977) 295–300.

[26] J. Weglarz (Ed.), Project Scheduling, Recent Models,

Algorithms and Applications, Kluwer Academic Publish-

ers, Dordrecht, 1999.

J. Blazewicz, D. Kobler / European Journal of Operational Research 142 (2002) 435–443 443

	Review of properties of different precedence graphs for scheduling problems
	Introduction
	Precedence constraints representations
	The task-on-node representation
	The task-on-arc representation
	Links between the two representations

	Polynomially solvable scheduling problems
	Conclusion
	Acknowledgements
	References

