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Abstract—The problem of optimal scheduling n independent malleable tasks in a

parallel processor system is studied. It is assumed that an execution of any task

can be preempted and the number of processors allocated to the same task can

change during its execution. We present a rectangle packing algorithm, which

converts an optimal solution for the relaxed problem, in which the number of

processors allocated to a task is not required to be integer, into an optimal solution

for the original problem in OðnÞ time.
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1 INTRODUCTION

WE study the following multiprocessor task scheduling problem.
There are n independent and available at time zero malleable tasks
to be scheduled for execution on m, m � n, parallel identical
processors. At each time instant, any number of processors can be
used to execute a task. However, no processor can handle more
than one task at a time and the total number of processors
executing the tasks should not exceed m at any time.

An amount pj > 0 of work is associated with each task j. If

r processors are used to execute task j in a time interval of length t,

then the amount of work done on this task within this interval is

equal to fjðrÞ � t, where fjðrÞ � 0 is a nondecreasing processing speed

function defined for r 2 f0; 1; . . . ; mg, fjð0Þ ¼ 0. The total amount of

work done on task j must be equal to pj, j ¼ 1; . . . ; n.
For each task, a schedule specifies the time intervals within

which this task is executed and the numbers of processors

allocated to the task within these intervals. The objective is to find

a schedule that satisfies the above constraints and such that the

maximum task completion time, that is, the makespan, denoted as

Cmax, is minimized. Let C�max be the minimum Cmax value.
This problem is motivated by the optimal scheduling of

multiprocessor systems enabling an execution of large-scale

parallel computations. A similar situation appears in scheduling

multiple batch tasks. Batch scheduling consists of executing a

series of independent parallel tasks using algorithms like the

algorithm described in this paper. It is a crucial problem for

managing the resources of clusters of PCs or workstations [5].

Today, only very simple algorithms are used (First-Come First-

Served) and there is a real challenge to design efficient algorithms.

Some solutions have been proposed under an assumption that

processor allocation cannot change during the task execution

(moldable tasks) or the number of processors is given for each task

(rigid tasks) [6], but not for pure malleable tasks [8]. The existing

algorithms like FCFS provide no performance guarantee. More

results concerning multiprocessor tasks scheduling problems can

be found in [1], [3], [7].
Two practical examples in the area of molecular dynamics and

operational oceanography, which directly lead to the model

considered here, are given in an earlier paper by the authors [4].
Note that parallel processors can be viewed as a discrete

renewable limited resource that should be allocated to the tasks

and that can speed up their execution. In the sequel, we refer to our

original problem as problem P-DSCR (discrete). A relaxation of this

problem is problem P-CNTN (continuous), in which the processor

allocation is not required to be integer and the processors can be

viewed as a continuously divisible renewable limited resource. In

problem P-CNTN, processing speed functions fjðrÞ are assumed to

be interpolated by linear functions between the integer points.
In problems P-DSCR and P-CNTN, time is assumed to be

continuously divisible, any task can be preempted at any time, and

the number of processors allocated to this task can change during

its execution. We assume that there is no cost for preemption or

change of processor allocation. Our algorithm for problem P-DSCR

given below constructs a schedule with at most two preemptions

for each task and the number of processors allocated to a task can

differ between at most two values r and rþ 1 for some r.

Therefore, if there are costs for preemption or change in processor

allocation, their total value can be expected to be low.
The following results were obtained in our earlier paper [4]: If

all processing speed functions are convex, an OðnÞ algorithm was

presented to solve both problems P-CNTN and P-DSCR. If the

functions are all concave, problem P-CNTN was shown to be

solvable in Oðnmaxfm;n log2 mgÞ time and it was proven that the

minimum makespan values for problems P-DSCR and P-CNTN

coincide. Concave processing speed functions are more adequate

for the majority of real-life large-scale parallel computations

because the efficiency of task processing degrades while the

number of allocated processors increases due to communication

delays. Concave processing speeds correspond to the realistic

hypothesis of parallelizing actual large numerical codes.
The main result of this paper is a rectangle packing algorithm,

which, in the case of concave processing speed functions, converts

an optimal solution for problem P-CNTN into an optimal solution

for problem P-DSCR in OðnÞ time.

2 A RECTANGLE PACKING ALGORITHM FOR PROBLEM

P-DSCR

Denote the optimal makespan value of problem P-CNTN as C0
max.

Following Weglarz [9] (cf. also [2]), to explain the main idea of

finding a solution for the P-CNTN problem, we introduce set

R ¼ r ¼ ðr1; . . . ; rnÞ j rj � 0;
Xn
j¼1

rj � m
( )

of feasible (with respect to problem P-CNTN) resource allocations

and set

U ¼ fu ¼ ðu1; . . . ; unÞ j uj ¼ fjðrjÞ;
j ¼ 1; . . . ; n; r 2 Rg

of feasible transformed resource allocations. Denote p ¼ ðp1; . . . ; pnÞ.
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Theorem 1 (Weglarz [9]). Let n � m, convU be the convex hull of the

set U , i.e., the set of all convex combinations of the elements of U , and

u ¼ p=C be a straight line in the space of transformed resource

allocations given by the parametric equations uj ¼ pj=C,

j ¼ 1; . . . ; n. Then, the minimum makespan value for problem

P-CNTN can be found from

C0
max ¼ minfC j C > 0; p=C 2 convUg: ð1Þ

From Theorem 1, it follows that the minimum makespan value

C0
max for problem P-CNTN is determined by the intersection point

of the straight line u ¼ p=C, C > 0, and the boundary of the set

convU in the n-dimensional space of transformed resource alloca-

tions. Denote such an intersection point by u0 (cf. Fig. 1).
Since functions fj are all concave and piecewise linear, set U is a

convex polytope in the n-dimensional space of transformed

resource allocations. Therefore, convU ¼ U in this case. To find

intersection point u0, we used a bisection search procedure and,

from fjðr0
j Þ ¼ u0

j ; j ¼ 1; . . . ; n, we calculated optimal resource

allocation r0 such that

r0
i � 0; i ¼ 1; . . . ; n;

Xn
i¼1

r0
i ¼ m; ð2Þ

and

C0
max ¼ pi=fiðr0

i Þ; i ¼ 1; . . . ; n: ð3Þ

In the optimal solution for problem P-CNTN with the

makespan value C0
max, there is a single processing interval

½0; C0
max� for each task and vector r0 ¼ ðr0

1; . . . ; r0
nÞ represents the

processor allocations for the tasks.
More complex explanations and details of the algorithm may be

found in the earlier paper [4], where it was shown that

C�max ¼ C0
max. Moreover, an Oðnmaxfm;n log2 mgÞ time algorithm

to find r0 if the processing speed functions are all concave was

presented there.
Now, we describe an algorithm which converts an optimal

solution for problem P-CNTN satisfying (2) and (3) into a solution

for the original problem P-DSCR with the same makespan value

C0
max in OðnÞ time. Therefore, it constructs an optimal solution for

problem P-DSCR in case all processing speed functions are

concave.
Our algorithm, denoted as PACK, uses a geometrical inter-

pretation of a solution for problem P-DSCR. Its parameters are

obtained by rounding the parameters of an optimal solution for the

corresponding problem P-CNTN.

Observe that a solution for problem P-DSCR can be represented

as a collection of disjoint rectangles in the two-dimensional space

ðx; yÞ, see Fig. 2.
Here, ð0; yÞ is the axis corresponding to the number of

processors allocated to a task and ð0; xÞ is the time axis. Each

rectangle is associated with a task. There can be several rectangles

associated with the same task. Projection of a rectangle on axis

ð0; xÞ determines the time interval, where the corresponding task is

executed and the height of a rectangle (its length with respect to

the axis ð0; yÞ) determines the number of processors allocated to the

task within this time interval.
It is easy to see that a collection of disjoint rectangles

corresponds to an optimal solution for problem P-DSCR if and

only if the following conditions are satisfied:

1. The heights of all rectangles are integer.
2. All rectangles fit into the rectangle, called BIG, with heightm

and width (length with respect to the axis ð0; xÞ) C0
max.

3. Projections on axis ð0; xÞ of the rectangles corresponding to
the same task may intersect only at the endpoints.

4. Let h1; . . . ; hk and w1; . . . ; wk be the heights and widths,
respectively, of all rectangles associated with task i. Then,
equation

Pk
l¼1 wlfiðhlÞ ¼ pi must be satisfied for all i.

Condition 1 ensures that the processor allocation is integer.

Condition 2 ensures that all the tasks use no more than

m processors at any time and that the makespan is minimum.

Condition 3 ensures that, at any time, the height of the rectangle is

the number of all processors allocated to the corresponding task at

this time. Condition 4 ensures that all the work associated with

task i has been done.

We now pass to a description of the main characteristics of

algorithm PACK. At the beginning, the set of tasks is partitioned

into two subsets of so-called 0-tasks and 2-tasks. Here, task i is a

0-task if r0
i is integer. Otherwise, it is a 2-task.

Algorithm PACK consists of two phases.

In the first phase, one rectangle is constructed for each 0-task i.

It has height r0
i and width C0

max. Thus, in an optimal solution for

the original problem P-DSCR, each 0-task is executed on

r0
i processors in the interval ½0; C0

max�. It means that, in the P-CNTN

problem, an integer number of processors is allocated to each

0-task and its processing time is exactly equal to C0
max. Therefore,

we may reduce P-DSCR problem by removing all such tasks.
For each rectangle of a 0-task, conditions 1, 2, and 3 are

evidently satisfied. As for condition 4, since only one rectangle of

width C0
max and height r0

i is associated with 0-task i, we have

C0
maxfiðr0

i Þ ¼ pi:
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Fig. 1. An illustration for Theorem 1: straight line u ¼ p=C intersects a boundary of

set convU .

Fig. 2. Solution to problem P-DSCR.
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Rectangles for 0-tasks are packed into the rectangle BIG at its

bottom and problem P-DSCR is reduced by removing 0-tasks from

the original set of tasks.

In the second phase, the reduced problem is considered in

which the number of tasks is �nn ¼ n� jN0j and the number of

processors is �mm ¼ m�
P

i2N0
r0
i , where N0 is the set of 0-tasks.

Two rectangles with dimensions (height, width) ðai; viÞ and

ðbi; wiÞ are constructed for each 2-task i. We set

ai ¼ br0
i c; bi ¼ dr0

i e; vi ¼ ðbi � r0
i Þpi=fiðr0

i Þ

and

wi ¼ ðr0
i � aiÞpi=fiðr0

i Þ:

Observe that bi � ai ¼ 1 for any 2-task i.
If ai ¼ 0; , then there is no corresponding rectangle. However,

for convenience, we assume that this degenerated rectangle with zero

height is present. It is clear that condition 1 is satisfied for any

rectangle of a 2-task.

An idea of a construction of an optimal allocation of an integer

number of processors to any 2-task i rests on rounding the

processor allocation r0
i up and down to integer values and on

representing r0
i as a linear combination of these both values. Next,

one can easily construct two (or one, if one of the integers is equal

to 0) rectangles with a total area equal to the area of the original

task in the P-CNTN problem solution.

The following property of the two rectangles of the same 2-task

i is used in the second phase of algorithm PACK:

Lemma 1. The total width of two rectangles of the same 2-task is equal

to C0
max.

Proof. We have

vi þ wi ¼ piðbi � aiÞ=fiðr0
i Þ ¼ pi=fiðr0

i Þ ¼ C0
max

for any 2-task i. tu
The second phase of algorithm PACK can be described as

follows: It consists of �nn iterations. In each iteration, rectangles

corresponding to an arbitrary 2-task are assigned to the unoccu-

pied area of the rectangle BIG and this task is excluded from

further considerations. The higher of the two rectangles is assigned

first. The common rule for assigning a rectangle can be called as

the rule of the southwest corner and it is as follows: “Assign a rectangle

to the bottommost line of the unoccupied area of BIG and to the leftmost

position of this line”.

Below, we prove that a higher rectangle of a 2-task i cannot go

above the top of the rectangle BIG. If it goes on the right of the right

borderline of BIG, then we cut it by this borderline into two

rectangles. The left of these two rectangles is considered as having

been assigned and the right rectangle is assigned according to the

rule of the southwest corner. From Lemma 1, we know that the

projections of the latter two rectangles on axis ð0; xÞ can intersect

only at the endpoints. If they do not intersect, then, due to the facts

that bi � ai ¼ 1 and vi þ wi ¼ C0
max, the lower rectangle of the same

2-task i fills the gap between the two pieces of the higher rectangle,

see Fig. 3.
Thus, in any iteration of algorithm PACK, the occupied area of

the rectangle BIG looks like a staircase with at most one step.

Furthermore, if there is a step, then its height is equal to 1.
Algorithm PACK stops when the rectangles corresponding to

all 2-tasks are assigned.
The following three lemmas prove the validity of algorithm

PACK.

Lemma 2. The total area of the rectangles is equal to mC0
max.

Proof. The total area of the rectangles for 2-tasks can be calculated

as follows:

X�nn

i¼1

ðaivi þ biwiÞ ¼
X�nn

i¼1

pi½ðbi � r0
i Þai þ ðr0

i � aiÞbi�=fiðr0
i Þ

¼
X�nn

i¼1

pir
0
i =fiðr0

i Þ ¼ C0
max

X�nn

i¼1

r0
i ¼ �mmC0

max:

To derive these equations, we used (2) and (3). Then, the total

area of all the rectangles is equal to mC0
max. tu

Lemma 3. No rectangle for a 2-task can go above the top of the

rectangle BIG.

Proof. Assume that a rectangle of a 2-task i goes above the top of

the rectangle BIG. There are two cases to consider.
In first case (no step), the higher rectangle starts from the

leftmost position; in the second case (as shown in Fig. 4), there
is a step of height 1 and the higher rectangle starts from this
step.

In both cases, we use Lemma 1 and equation bi � ai ¼ 1 and
see that the total area occupied by the rectangles of task i is
greater than the unpacked area of the rectangle BIG before task
i is considered, which contradicts Lemma 2. tu

Finally, we prove:

Lemma 4. The total work on any 2-task i is equal to pi.

Proof. In the formulation of problem P-CNTN, we assumed that

fiðrÞ is a linear function for r 2 ½ai; bi�: Since bi � ai ¼ 1; , it can

be represented as

fiðrÞ ¼ fiðaiÞðbi � rÞ þ fiðbiÞðr� aiÞ for r 2 ½ai; bi�:
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Fig. 3. Assigning a 2-task.
Fig. 4. The higher rectangle of a 2-task goes above the top of the rectangle BIG.
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Then, the total work on a 2-task i can be calculated as

fiðaiÞvi þ fiðbiÞwi ¼

fiðaiÞðbi � r0
i Þ þ fiðbiÞðr0

i � aiÞ
fiðr0

i Þ
pi ¼ pi:

ut

The above lemmas prove that a collection of rectangles

constructed by algorithm PACK satisfies conditions 1, 2, 3, and

4. Therefore, it determines an optimal solution to problem P-DSCR

if all processing speed functions are concave.
In this optimal solution, the number of processors allocated to

the same task i changes at most two times between at most two

different values ai and bi ¼ ai þ 1. Furthermore, there are at most

three rectangles for each task, which means that each task can be

preempted at most two times.
Let us evaluate the time complexity of algorithm PACK

assuming that r0 is given. In the first phase of this algorithm, sets

of 0-tasks and 2-tasks are constructed. This operation can be

performed in OðnÞ time. Rectangles for 0-tasks can be constructed

and packed into the rectangle BIG in OðjN0jÞ time, where N0 is the

set of 0-tasks.
In the second phase, using the rule of the southwest corner, we

perform �nn ¼ n� jN0j iterations. In each iteration, at most two

rectangles for some 2-task are packed into the rectangle BIG. One of

these rectangles can be partitioned into two pieces. Since the

occupied area of the rectangle BIG before and after each iteration

looks like a staircase with at most one step, each iteration of the

second phase of algorithm PACK can be implemented in a constant

time. Thus, the time complexity of algorithm PACK is OðnÞ.
Example. Consider problem P-DSCR in which there are n ¼ 5 tasks

with processing times p ¼ ð30; 15; 10; 20; 5Þ. The total number of

processors is equal to m ¼ 10. The processing speed functions

are the same for all tasks:

fiðrÞ ¼ fðrÞ ¼
ffiffiffi
r
p

for r ¼ 1; . . . ;m; i ¼ 1; . . . ; n:

For an optimal solution of problem P-CNTN, we have

C0
max ¼ C�max ¼ 13:17

r0 ¼ ð5:20; 1:33; 0:76; 2:33; 0:38Þ:

Using vector r0, determine 0-tasks and 2-tasks. Since r0 has no

integer component, there are no 0-tasks.
Calculate ð2n� 2Þ matrix containing dimensions of rectan-

gles for 2-tasks, see Fig. 5.
Apply the rule of the southwest corner to pack the

above rectangles into the rectangle BIG with dimensions
ðm;C0

maxÞ ¼ ð10; 13:17Þ, see Fig. 6.

In the corresponding optimal schedule for problem P-DSCR,
task 1 is executed by 6 processors in the interval ½0; 2:59� and by
5 processors in the interval ½2:59; 13:17�: Processing intervals
and processor allocation for the remaining tasks can be easily
calculated.

3 TIME COMPLEXITY EVALUATION

We performed a set of computational experiments to measure the

time complexity of our algorithm on average (including time spent

on finding a solution for the P-CNTN problem). As we mentioned,

our rectangle packing algorithm converts an optimal solution for

problem P-CNTN into an optimal solution for problem P-DSCR in

OðnÞ time. Therefore, the time complexity of the algorithm solving

the P-DSCR problem is determined by the complexity of finding a

solution of the P-CNTN problem.
To measure an average computational time of the algorithm, we

performed a set of experiments. First, the number of tasks was

constant and equal to 500 and we varied m between 500 and 1,400

to see the influence of changing a number of processors on the

average time complexity of the algorithm (see Table 1(a)). Next, we

set a number of processors as a constant and equal to 1,000 while

the number of tasks was changed between 100 and 1,000 (see

Table 1(b)).
For both cases, task processing times pi have been generated

from a uniform distribution in the interval [1..100]. Processing

speed functions have been chosen as fiðrÞ ¼ ra; 0 � a � 1 and were

different for each task. The results of our experiments are gathered
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Fig. 5. Dimensions of the rectangles.

Fig. 6. Rectangles packed by algorithm PACK.

TABLE 1
Average Computational Time of the Algorithm for: (a) Varying Number of
Processors (N = 500) and (b) Varying Number of Tasks (M = 1,000)
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in Table 1. Each entry in this table is the mean value of time (in
seconds) for 25 instances, which were randomly generated
according to the above description.

From the experiments conducted, we see that the average time
complexity of the algorithm depends more on the number of tasks.
It is justified by the fact that the time complexity of the rectangle
packing algorithm PACK does not depend on the number of
processors. We observe that the tested algorithm gives optimal
solutions very fast for a big number of tasks and processors.

4 CONCLUDING REMARKS

Further research can be undertaken to find a more efficient
algorithm for solving the relaxed problem P-CNTN. In our earlier
paper [4], this problem is solved in Oðnmaxfm;nlog2mgÞ time. An
extension to heterogeneous processors or hierarchical systems that
select the grid and the problems with n > m and/or arbitrary
nondecreasing processing speed functions are also of interest.
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