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n important assumption of all protein prediction meth-
ods is that the amino acid sequence completely and

uniquely determines the three-dimensional (3-D)
structure of protein. Proof that protein structure is

dictated by the amino acid sequence alone is based on experi-
ments first carried out by C. Anfinsen [2].

This assumption is supported by the following experimental
evidence. If one unfolds a protein in vitro, such that no other
substances are present, and then releases it, the protein imme-
diately folds back to the same 3-D structure it had before. This
folding process takes less than a second. Therefore, it seems
that all the information necessary for the protein to achieve its
“native structure” is contained in its amino acid sequence. The
sentence above is not true for all proteins because some pro-
teins need “auxiliary molecules” to fold.

The structural features of proteins have been divided into
levels. The first level of the protein structure, called the prima-
ry structure, refers just to the sequence of amino acids in the
protein. Polypeptide chains can sometimes fold into regular
structures (i.e., structures which are the same in shape for dif-
ferent polypeptides) called secondary protein structures. The
secondary structures are very simple and regular (e.g., the loop
of an α-helix structure or the back and forth of a β-sheet struc-
ture). The final shape of a protein is made up of secondary
structures, perhaps supersecondary structural features, and
some apparently random conformations. This overall structure
is referred to as the tertiary structure. Finally, many biological
proteins are constructed of multiple polypeptide chains. The
way these chains fit together is referred to as the quarternary
structure of the protein.

Because protein secondary structure prediction was one
of the first and most important problems faced by computer
learning techniques, there are many methods which have
been developed to solve that problem. These methods can
be divided into three groups based on the information they
need to predict secondary structure. Methods from the first
group make predictions based on information coming from
a single amino acid, either in the form of a statistical ten-
dency to appear in an α-helix (H), β-strand (E), and coil
(C) region [3] or in the form of explicit biological expert
rules [4]. Methods from the second group take into account
local interactions by means of an input-sliding window

with encoding. Values in the output layer identify each
amino acid as belonging to one of three states: α-helix, β-
strand, and coil. Methods from the third group exploited the
information coming from homologous sequences. This
information is processed first by performing a multiple
alignment between a set of similar sequences and extracting
a matrix of profiles (PSSM). The first method to incorpo-
rate profile-based inputs and achieve more than 70% in
accuracy was PHD [5]. The method is composed of cascad-
ing networks. Prediction accuracy can be improved by
combining more than one prediction method [6], [7].
Another well-known profile-based methods is PSIPRED
(protein secondary structure prediction tool based on posi-
tion-specific scoring matrices) [8], which uses two neural
networks to analyze profiles generated from a PSI-BLAST
search, JNet [9], and SecPred. An alternative adaptive
model is presented in [10]. One can find other methods that
are not strictly based on neural network implementations.
NNSSP (nearest neighbor secondary structure prediction)
[11] uses a nearest-neighbor algorithm where the secondary
structure is predicted using multiple sequence alignments
and a simple jury decision method. The Web server JPred
[12] integrates six different structure prediction methods
and returns a consensus based on the majority rule. The
program DSC (discrimination of protein secondary struc-
ture class) [13] combines several explicit parameters to get
a meaningful prediction. It runs the GOR3 algorithm [3] on
every sequence to provide mean potentials for the three
states. The program PREDATOR [14] uses amino acid pair
statistics to predict hydrogen bonds between neighboring
β-strands and between amino acids in helices.

As one can see, most of the methods use homology as the
important factor to determine the secondary and then the ter-
tiary structure of a protein. Unfortunately, if a new protein
sequence that has no homology with a known protein has
been recognized, results obtained by these methods can
include mistakes.

In this article, the Logical Analysis of Data (LAD) algo-
rithm was applied to recognize which amino acids properties
could be analyzed to deliver additional information, indepen-
dent from protein homology, useful in determining the sec-
ondary structure of a protein. 
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Algorithms and Methods
The structure of a protein may be represented hierarchically at
four structural levels, but only the first two levels are useful
for achieving the goal of the analysis described in this article. 

The primary structure of a protein is the sequence of amino
acids in the polypeptide chain; it can be represented as a string
on the finite alphabet �aa, with |�aa| = 20.

Let �aa = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,Y,V,W} be
a set of all amino acids, each letter corresponding to a different
amino acid. Based on the amino acid sequence in a protein,
one can create its relevant sequence of amino acids by replac-
ing an amino acid (primary structure) in the chain with its
code in the Latin alphabet. As a result, a word on the amino
acid’s alphabet is received.

The word s is called a protein primary structure, on the con-
dition that letters in this word are in the same order as the
amino acids in the protein chain. Let the length of the word s
be denoted as C(s) and let A(s, j) denote an element of word s,
where j is an integer number from the set [1, C(p)].

The protein secondary structure refers to the set of local con-
formation motifs of the protein and schematizes the path fol-
lowed by the backbone in the space. The secondary structure
of a protein is built from three main classes of motifs: α-helix,
β-strand, and loop (or coil). An α-helix is built up from one
continuous region in the sequence through the formation of
hydrogen bonds between amino acids in positions i and
i + 4. A β-strand does not represent an isolated structural
element by itself, because it interacts with one or more β-
strands (which can be distant in sequence) to form a pleated
sheet called a β-sheet. Strands in a β-sheet are aligned adja-
cent to each other such that their amino acids have the same
biochemical direction (parallel β-sheet) or have alternating
directions (antiparallel β-sheet). Often connecting α-helices
and β-strands are loop regions, which can significantly vary
in length and structure, having no fixed regular shape as the
other two elements. Every amino acid in the sequence
belongs to one of the three structural motifs; therefore, the
protein secondary structure can be reduced to a string on the
alphabet �ss = {H; E; C}, having the same length as the pro-
tein primary structure.

A secondary structure is represented here by a word on the
relevant alphabet of secondary structures �ss; each type of
secondary structure has its own unique letter. One can denote
this word by d, where the length of word d is equal to the
length of word s.

Now, one may define the problem as finding a secondary
structure of a protein (word d) based on the protein primary
structure (i.e., word s). Moreover, for each element A(s, j) one
should assign an element A(d, j) so that the obtained protein
secondary structure r is as close as possible to a real secondary
structure of the considered protein. 

Several standard performance measures were used to assess
the accuracy of the prediction of protein secondary structures.
The measure of the three-state overall percentage of correctly
predicted amino acids is usually defined by Q3 as follows:

Q3 (%) =
∑

i∈{H,E,C} number of residues correctly predicted in state i
∑

i∈{H,E,C} number of residues observed in state i

∗ 100. (1)

The segment overlap measure (SOV) [15], [16] is calculated
as shown below:

SOV = 1

N

∑

i∈{H,E,C}

∑

s(i)

(
minov(s1, s2) + δ

maxov(s1, s2)
∗ len(s1)

)
100,

(2)

where S(i) is the set of all overlapping pairs of segments
(s1, s2) in conformation state i, len(s1) is the number of amino
acids in segment s1, minov(s1, s2) is the length of the actual
overlap, and maxov(s1, s2) is the total extent of the segment.

The LAD method [17] has been widely applied to the
analysis of a variety of real-life data sets classifying objects
into two sets. It is not possible to use the original LAD
method [17]–[21] directly for the considered problem. The
first problem lies in the input data representation. Here, one
has a sequence of amino acids, but to use the LAD
approach, one should have a set of observations. Each
observation must consist of a set of attributes, and all of
them should be in a number format. If all of them are writ-
ten as binary, one can resign from the binarization stage;
however, that is not the case here, and the binarization pro-
cedure must be applied. The second problem lies in the
number of classes considered in an original approach where
a classification into two classes has been introduced. The
proposition of an extension of the LAD into more than two
classes is presented in Figure 1 [22].

Because of a complexit of the LAD algorithm [23], it is
hard to present all aspects of this method. The most important
ones are described below.

To make analysis more understandable, one can introduce
the following terminology:

➤ observation: a point in a k-dimensional space
(k = 1, 2, . . . , p)

There are several lines of research

that point to the importance of HRV 

in emotion and health.
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➤ database: a set of p observations
➤  attribute i: each dimension of the k-space

(i = 1, 2, . . . , k;≤)
➤  class: a subset of the database and as a cut point (x, i), value

x for attribute i.
The binarization stage is needed only if data are in numeri-

cal (not binary) or nominal formats (e.g., color, shape, etc.). 
The simplest way to transform a numerical attribute into a

binary attribute (or attributes) is the one-cut-per-change
method (3) as follows:

For two observations ai and bi belonging to different classes

ai < x = ai + bi

2
< bi, (3)

and there is no observation c with ai < ci < bi.
To make such problems useful for LAD, one has to trans-

form all data into a binary format. As a result of this stage, all
attributes for each observation are changed into binary attrib-
utes. After the binarization phase, all of the observations that
belonged to different classes are still different when binary
attributes are taken into account.

Every pattern is defined by a set of conditions; each
involves only one of the variables. For example, if pattern P1

is defined by

x−3 > −0.705, x−1 > 0.285,

x0 < 0.065, x+2 < −0.620

using values from hydrophobicity scale (pi-r), then the
meaning is as follows: structure H should appear for an
amino acid situated in position a0 if, simultaneously, the
value of the hydrophobicity scale is: greater than –0.705 for
the amino acid situated in position a−3;  greater than 0.285
for the amino acid situated in position a−1; smaller than
0.065 for the amino acid situated in position a0; and smaller
than –0.620 for the amino acid situated in position a+2 (see
Table 1). The precise definition of a pattern P1 involves
two requirements. First, there should be no observations
belonging to other classes that satisfy the conditions
describing P1, and, on the other hand, a huge number of
observations belonging to class H should satisfy the condi-
tions describing P1.

Clearly, the satisfaction of the condition describing P1 can
be interpreted as a sufficient condition for an observation to
belong to class H.

The observation is covered by a pattern if it satisfies all the
conditions describing P1. For the pattern-generation stage, it
is important not to miss any of the “best” patterns. The pat-
tern-generation procedure is based on the use of combinatori-
al enumeration techniques, which can follow a breadth first

Fig. 1. The modified Logical Analysis of Data (LAD) stages.
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search strategy (for the pat-
terns of up to degree 8) and
depth first search strategy (for
other patterns).

For any particular class
there are numerous patterns
which cover only observations
belonging to that class. The list
of these patterns is too long to
be used in practice. Therefore,
we restricted our attention to a
subset of these patterns, called
the [class_indicator] model (H
model).  Similarly,  if  one
studied those observations
that do not belong to the par-
ticular class, one can consider
the not-H model.

An H model is simply a list
of patterns associated
with the observations
that belong only to class
H, having the following
two properties:
➤ if an observation is

covered by at least one
of the patterns from the
the H model in position
a0, class H appears for
that observation

➤ if an observation is
covered by none of the
patterns from  the H
model in position a0 ,
class H does not appear
for that observation. 

Before this stage is per-
formed, every positive (or
negative) observation
point is covered by at least
one positive (or negative)
pattern, and it is not cov-
ered by any negative (or
positive) patterns that have
been generated. Therefore,
it can be expected that an
adequately chosen collec-
tion of patterns can be
used for the construction
of a general classification
rule. This rule is an extension of a partially defined Boolean
function, and will be called a theory below.

A good classification rule should capture all the significant
aspects of the phenomenon.

The simplest method of building a theory consists in defin-
ing a weighted sum (4) of positive and negative patterns, and
classifying new observations according to the value of the fol-
lowing weighted sum:

� =
r∑

k=1

ω+
k Pk +

s∑

l=1

ω−
l Nl, (4)

where 
➤ ω+

k is a nonnegative weight for positive pattern Pk

(for 1 ≤ k ≤ r), r is a number of positive patterns
➤ ω−

l is a nonpositive weight for negative pattern Nl

(for 1 ≤ l ≤ s), s is a number of negative patterns.
See [24], [17] for a more detailed description of the LAD

method.
As in previous experiments (i.e., [22], [25]), at the begin-

ning three binary one-versus-rest classifiers were constructed;
here, one means positive class (e.g. H) and rest means nega-
tive class (in that case E, C), denoted as: H/~H, E/~E, C/~C.
The one-versus-rest classifiers often need to deal with two

Table 1. An example of rules (a horizontal line in a cell means 
that the value of the attribute is not important for making a decision for that pattern).

# a–3 a–2 a–1 a0 a+1 a+2 a+3 Property

1 > 0.705 — >0.285 <0.065 — < 0.620 — Hydrophobicity 

2 < 0.620 < 0.130 — >1.795 — > 0.020 — scale (pi-r)

3 — >1.745 <0.195 >1.225 >1.795 — >0.195 class H

1 — — <11.705 >14.195 <11.365 >14.765 <11.295 Avg. surround. 

2 >15.285 — >12.700 >12.295 — <11.705 — hydrophobicity

3 >15.690 <11.395 — <13.195 >15.285 — — class E

1 >10.45 — — >9.10 <5.60 >10.45 >9.10 Polarity (p)

2 >11.95 >10.90 — <10.45 >12.65 — — class C

3 — >9.80 >8.80 >11.95 — <6.60 —

Fig. 2. The decision graphs for classifiers; each of them is made up of two binary classifiers:
a) classifiers H/~H, E/C; b) classifiers E/~E, H/C; and c) classifiers C/~C, H/E.
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data sets with different sizes,
i.e., unbalanced training data
[26]. Therefore, during
experiments, three additional
classifiers were added: H/E,
H/C, E/C. The set of all six
classifiers allows one to dis-
tinguish the observation
between each of two states.
However, a potential prob-
lem of the one-versus-one
classifier is that the voting
scheme might suffer from
incompetent classifiers. One
can reduce that problem by
using a decision graph [27]
with some modifications (as
shown in Figure 2).

The protein secondary
structure is assigned from the

experimentally determined tertiary structure by DSSP [28],
STRIDE [29], or DEFINE [30]. To implement the methods
and extract the basic properties of proteins, examples were
obtained from the Dictionary of Protein Secondary Structures.

There are many ways to divide protein secondary structures
into classes. Here, we used the most popular based on infor-
mation obtained from DSSP.

Data gained from the DSSP set consist of eight types of
protein secondary structures: α-helix (structure denoted by H
in DSSP), 310-helix (G), π -helix (I), β-strand (E), isolated
β-bridge (B), turn (T), bend (S), and rest (−). The following
sets of secondary structures have been created: 
➤ helix (H) consisting of: α-helix (structure denoted by H in

DSSP), 310-helix (G) and π -helix (I)
➤ β-strand (E) consisting of E structure in DSSP
➤ the rest (C) consisting of structures belonging neither to set

H nor to set E.
In making a transformation from a protein sequence to the

set of observations, one must assume that the main influence
on the secondary structure is having amino acids situated in
the neighborhood of the observed amino acid. We also took
into account that some n-mers are known to occur always in
the same structure in many proteins, while others do not.
Certain 4-mers and 5-mers are known to have different sec-
ondary structures in different proteins. To fulfill this
assumption and avoid naive mistakes, a concept of windows
[31] was used to create a set of observations. It should be
done carefully because if the size of window is too short, it
may lose some important classification information and pre-
diction accuracy; if a window is too long, it may suffer from
the inclusion of unnecessary noise. For the experiments, the
window of size 7 [22] was used. An example is presented
here, illustrating the way a protein chain is changed into a
set of observations.

Let us consider a protein chain called 4gr1 (in PDB).
The first and the last 15 amino acids in the sequence are
shown here:

VASYDYLVIGGGSGG . . . VAIHPTSSEELVTLR

For every amino acid the corresponding protein secondary
structure in DSSP is given as follows:

Table 2. The accuracy of the prediction of secondary structures for three classes using
MODLEM [33] and LAD (ninefold cross-validation test: 9 proteins, 2,100 amino acids).

Property Accuracy of Prediction (%)
MODLEM LAD

Normalized consensus hydrophobicity scale 59.86 62.86

Mobilities of amino acids on chromatography paper (RF) 60.71 65.86

Hydrophobicity scale based on free energy of transfer (kcal/mol) 58.24 65.19

Hydrophobicity indices at pH 7.5 determined by HPLC 59.95 64.33

Average surrounding hydrophobicity 59.24 64.71

Hydrophobicity indices at pH 3.4 determined by HPLC 62.71 67.67

Retention coefficient in TFA 58.67 64.38

Hydration potential (kcal/mol) at 25◦C 58.95 71.60

Retention coefficient in HPLC, pH 7.4 59.38 65.86

HPLC = high power liquid chromatography

Table 3. A set of the best properties for class H.

# Description

1 Molecular weight of each amino acid

2 Hydrophobicity scale (pi-r)

3 Hydrophobicity scale (contact energy derived from

3-D data)

4 Hydrophilicity

5 Normalized consensus hydrophobicity scale

Table 4. A set of the best properties for class E.

# Description

1 Average surrounding hydrophobicity

2 Bulkiness

3 Hydrophilicity scale derived from HPLC peptide 

retention times

4 Hydrophobicity scale (contact energy derived from

3-D data)

5 Hydrophobicity scale (pi-r)

Table 5. A set of the best properties for class C.

# Description

1 Polarity (p)

2 Hydropathicity

3 Retention coefficient in TFA

4 Retention coefficient in HFBA

5 Hydrophobic constants derived from HPLC peptide 
retention times
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_EE_SEEEE__SHHH . . . ___SS_SGGGGGS__

One may change this structure into a protein secondary
structures involving three main secondary structures only in
the manner depicted here:

XEEXXEEEEXXXHHH . . . XXXXXXXHHHHHXXX

A window of length 7 generates an observation with 7
attributes (a−3, a−2, a−1, a0, a+1, a+2, a+3) representing a pro-
tein secondary structure corresponding to the amino acid
located in place a0. Of course, at this moment all values of
attributes are symbols of amino acids. Secondary structures of
proteins on the boundaries (the first three and the last three
amino acids) have been omitted and treated as unknown
observations. For example, the first observation can be con-
structed by amino acids VASYDYL and that observation
describes the class for an amino acid situated in the middle
(amino acid Y) – class X; the next observation is created by a
window shifted one position to the right, etc. 

The last step of the preprocessing is to replace in each obser-
vation symbols of amino acids (treated as attributes) with num-
bers representing relevant properties of amino acids. During the
experiment only the physical and chemical properties of the
amino acids have been taken into account. Originally, 54 proper-
ties were considered, but after a discussion with domain experts,
28 were chosen for the experiment. The chosen set seems to con-
sist of the most important properties from a biology viewpoint.
At the end of transformation, a chain consisting of n amino acids
is transformed into a set consisting of n-6 observations.

Results and Discussion
During experiments to develop and test the algorithms, 20 pro-
teins from the nonhomologous data set proposed by [1] were
applied. This set consists of 126 nonhomologous proteins
which can be obtained from ftp.cmbi.kun.nl/pub/molbio/
data/dssp. The physico-chemical properties of amino acids
were used as attributes.

Prediction accuracy for structure H was between 18–57%,
and the best result was obtained using as attributes the values
of molecular weight of each amino acid.

For structure E, results varied between 7–74%; the best
result was acheived when average surrounding hydrophobic-
ity was treated as an attribute of observation.

The average accuracy for structure C was between 15–
69% and the best property for class C was polarity (p). The
best average accuracy for all three classes was achieved using
optimized matching hydrophobicity (OMH). Unfortunately it
was not possible to find a single property which could serve
as a universal property for detecting all secondary structure
types in a protein shape, but one should not expect results like
that. It would be all too easy if only one property could be
responsible for the protein 3-D structure.

It seems that the accuracy of a prediction of a secondary
structure for each class can be higher if a few properties with
the best ability of prediction can be treated simultaneously as
attributes. The average accuracy of the prediction of sec-
ondary structures of proteins can be higher if the best proper-
ties from different classes of secondary structures would have
been taken into consideration simultaneously.

A comparison of the results between two different machine-
learning methods (Table 2) shows that the results obtained by

LAD can be treated as representative results obtained by
machine-learning methods, and the properties presented in
Tables 3 through 5 should be analyzed during the process of
the artificial construction of a protein’s 3-D shape before a
homology stage.

The system constructed, using LAD as its engine, generates
results comparable to the best methods currently used for pro-
tein secondary structure prediction. Table 6 shows that results
obtained using LAD are worse than results obtained by PHD
and CONSENSUS. However, the advantage of LAD is that
LAD is not a “black box” as PHD is. Rules generated by LAD
can deliver important information for the understanding of the
mechanism causing the phenomenon. An example of rules
generated by LAD is shown in Table 1.

Conclusions
This article presents the application of a new machine-learn-
ing algorithm for the prediction of secondary structures of
proteins. The results obtained from the experiments show
that this method can be successfully applied. Although it is
not possible to predict all the secondary structures for every
protein chain (the protein backbone often folds back on
itself in forming a structure, so flexibility is an important
attribute that has not been taken into account during experi-
ments), it has been shown that information included in some
types of amino acid properties (presented in Tables 3–5) is
important and can serve as basic information about the pro-
tein shape. Based on the experiments and protein chains
taken for analysis, it can be said that the most important
property for class H is the molecular weight of each amino
acid, for class E it is the average surrounding hydrophobici-
ty, and for class C it is polarity (p).

To get better results, LAD should be used as a first stage of
analysis in combination with another method that is able to
take into account a more detailed understanding of the physi-
cal chemistry of proteins and amino acids. It seems to be valu-
able and important for the prediction of protein secondary
structures to construct a library of rules, which can describe
the core of the considered phenomenon.
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Table 6. A comparison of different methods. Results for
PHD, DSC, PREDATOR, and CONSENSUS were obtained
from [7]. The PHD results were obtained from [1], [15]. The
LAD results are from a new method proposed by authors
(tested on 20 randomly selected proteins from the RS 126
benchmark data set).

Method Q [%] SOV

PHD 70.8 73.5
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DSC 71.1 71.6

PREDATOR 70.3 69.9

NNSP 72.7 70.6

CONSENSUS 74.8 74.5

LAD 70.6 70.3
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