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Abstract. In the paper, two evolutionary approaches to the general DNA sequencing problem, assuming
both negative and positive errors in the spectrum, are compared. The older of them is based on the idea
of genetic approach and is enhanced by a greedy algorithm. The newly proposed algorithm combines the
tabu search and the scatter search methods. After conducting experiments with random and coding DNA
sequences, our results suggest that the tabu and scatter search algorithm finds solutions of higher quality and
more reliably than the genetic algorithm.
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Throughout the last forty years molecular biology, which aim is to study DNA construc-
tion and functioning, has emerged as a clearly defined research discipline with specific
notions and experimental tools. What is more important, it has also brought about a
significant unification within the biological sciences. This in turn resulted in massive
amounts of data gathered from different sources all over the world. That’s why many
computational methods for analyzing and interpreting results of genetic experiments have
to be developed. It should not be surprising that because of a discrete nature of DNA,
combinatorial optimization is one of the areas intensively used for the above purposes.

One of the most challenging problems in molecular biology is reading DNA chains.
DNA sequencing is the first stage of this process (further ones are assembling and map-
ping), and the most advanced method for it is sequencing by hybridization (SBH). The
present paper addresses the general DNA sequencing problem by hybridization with data
containing both negative and positive errors, and presents heuristic algorithms based on
two most known metaheuristic approaches.
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1. Formulation of the DNA sequencing problem by hybridization

The goal of the DNA sequencing problem is to determine a sequence of nucleotides
of a DNA fragment. The data for the problem come from a biochemical experiment,
called hybridization (Bains and Smith, 1988; Lysov et al., 1988; Drmanac et al., 1989).
During the experiment, short subsequences (usually of equal length) of an unknown
sequence are recognized. These subsequences, called oligonucleotides, can be written
as a set of words of length l, over the alphabet {A, C, G, T} representing four nu-
cleotides composing the subsequences. In order to reconstruct the unknown original
DNA sequence of a known length n on the basis of this set (spectrum), the oligonu-
cleotides should be ordered in such a way that the neighbors overlap each other (see
Example 1).

In the ideal case, where there are no errors in the spectrum, all oligonucleotides must
be used and the neighboring ones must overlap on l − 1 letters. Obviously, in that case
the spectrum has to contain n − l +1 elements. There exists a polynomial time algorithm
solving the DNA sequencing problem without errors (Pevzner, 1989). However, if the
spectrum does not contain some subsequences of the original sequence (i.e., negative
errors appear), or if it contains some oligonucleotides not appearing in the original
sequence (i.e., positive errors), the DNA sequencing problem becomes strongly NP-hard
(Blazewicz and Kasprzak, 2003). The hybridization experiment usually produces errors
in the spectrum. During the reconstruction of the original sequence on the basis of the
spectrum with errors, overlaps on less than l − 1 letters must be allowed and some
oligonucleotides from the spectrum must be rejected (see Example 1).

Example 1. Suppose the original sequence to be found is CCGACGT, n = 7. As a
result of the hybridization experiment performed without errors and with l = 3, one
obtains the ideal spectrum for this sequence, containing all 3-letter substrings of the
original sequence: {ACG, CCG, CGA, CGT, GAC}. The reconstruction of the sequence
in that case consists in finding such an order of the spectrum elements, where each
pair of neighboring elements overlaps on l − 1 = 2 letters. The only possible solu-
tion is (CCG, CGA, GAC, ACG, CGT). To simulate the experiment in a more realistic
way, we introduce some errors into the spectrum. Let the negative error be CGA, and
the positive errors be AAT and TTG. Then, the spectrum would have the following
components: {AAT, ACG, CCG, CGT, GAC, TTG}. Now it is not possible to use all
words to build a sequence of length n; not all neighbors will overlap on l − 1 letters as
well.

The DNA sequencing problem with negative and positive errors in the spectrum,
and with no additional information about spectrum elements assumed, for the first time
has been formulated in Blazewicz et al. (1999) as a version of the Selective Traveling
Salesman Problem. There, a directed graph was constructed in such the way that its
vertices corresponded to spectrum elements, and its arcs reflected the costs of connecting
oligonucleotides (the greater possible overlap of two oligonucleotides, the smaller cost
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of the arc connecting corresponding vertices). To each vertex a profit equal to 1 was
assigned. Searching for the original sequence was equivalent to searching for a simple
path of maximum total profit and of total cost not greater than a given bound equal to
n − l. Experimental results confirmed, that this model leads to a construction of original
sequences. The following integer programming problem is an alternative formulation of
the DNA sequencing with errors.
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where

S the spectrum,
si an element of the spectrum,
z the cardinality of the spectrum,
n the length of an original sequence,
l the length of a spectrum element,
bi j a boolean variable; it is equal to 1 if element si is the immediate predecessor of

element s j in a solution; otherwise it is equal to 0,
ci j a cost of connection of element si with element s j ; it is equal to the difference

between l and a number of letters of the common part of si and s j coming from
their maximal overlapping.

The criterion function (1) to be maximized is equivalent to the number of spectrum
elements composing the solution. Inequalities (2) and (3) guarantee that every element of
the spectrum will be joined (in the solution) with, respectively, at most one element from
the left side and at most one element from the right side. The addition of equation (4)
ensures that exactly two elements, connected with other elements from one side only, will
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appear in the solution. These elements will constitute the beginning and the end of the
reconstructed sequence. Supplying the above formulation with inequalities (5) allows to
eliminate the solutions including subcycles of elements (when an element in the solution
is simultaneously a successor and the immediate predecessor of another element of the
solution). According to inequality (6) the length of the reconstructed sequence cannot
exceed its known length. (The length can be shorter, for example in case of negative
errors appearing at the end of the sequence.)

Both evolutionary approaches presented in Sections 2 and 3, respectively, solve the
above DNA sequencing problem with negative and positive errors. Their computational
outcomes are compared in Section 4 both for random and for DNA sequences coding
for proteins. The special attention has been paid to the tests on coding sequences with
repetitions, being especially hard for sequencing algorithms. All the tests showed an
advantage of the newly proposed tabu and scatter search algorithm over the genetic
one.

2. Hybrid genetic algorithm

In this section, the hybrid genetic algorithm proposed in Blazewicz, Kasprzak, and
Kuroczycki (2002) will be shortly described. In this algorithm, a standard genetic ap-
proach (Goldberg, 1989) is supplemented by a heuristic greedy improvement. The ge-
netic representation of an individual (i.e., a chromosome) is a permutation of indices of
oligonucleotides from the spectrum. An adjacency-based coding has been used: value i
at position j in the chromosome means that the oligonucleotide i follows the oligonu-
cleotide j . The function evaluating a fitness of an individual (the fitness function) takes
the best substring of oligonucleotides in the chromosome, i.e. the one composed of the
largest number of elements, provided it produces a sequence of length not greater than
n letters. The neighboring oligonucleotides are assumed to be maximally overlapped,
what gives the guarantee of including as many elements as possible in the evaluated
substring. The normalized fitness value, used in the algorithm, equals the number of
oligonucleotides in this substring divided by n − l + 1 (being the maximum number of
spectrum elements in any valid sequence).

The initial population is randomly generated according to a uniform distribution,
and its cardinality is a parameter of the method. Each of the individuals has to be a permu-
tation of indices (as mentioned above) and it has to exclude subcycles containing fewer
indices than the spectrum cardinality. Next, to each individual the normalized fitness
value is assigned. The individual of the greatest value of the criterion function is stored.
Then, the fitness values of all individuals in the population are linearly scaled, and the
best ones are selected according to the stochastic remainder method without replacement
(Goldberg, 1989). The next population is constructed from the best individuals, randomly
paired, using the greedy crossover, an approach similar to the one from Grefenstette
et al. (1985) (see also Glover, 1977 in the context of a scatter search approach). The
greedy crossover is defined as follows. The first oligonucleotide in a chromosome is set
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randomly. Next, with the probability 20% we choose for a given oligonucleotide in the
chromosome the best successor among the remaining oligonucleotides (the ones not yet
used to build the chromosome). The best successor is defined to be the oligonucleotide
which overlaps the previous one on the highest number of nucleotides. With probability
80% the following move is chosen: we take as the successor of a given oligonucleotide
the one with a better overlap in the parents of the chromosome, provided it does not
produce a subcycle in the chromosome; otherwise we take a random oligonucleotide
among the remaining ones. In all cases, if there is more than one best choice, the first
found is chosen. The procedure is iterated until all chromosomes of the population are
constructed.

Every new population is submitted to the above series of operations, and each
time the best individual found so far is recorded. The steps are repeated until a given
number of iterations without improvement of the criterion function value is reached.
The solution returned by the algorithm is a part of the best individual found during the
computations.

3. Tabu and scatter search algorithm

The main scheme of the algorithm is based on tabu search (Glover and Laguna, 1997),
utilizing scatter search (Glover, 1977, 1999) as a part of the diversification strategy.
In our approach the spectrum is represented by two data structures: an ordered list
of oligonucleotides composing a current solution, and an unordered set of remaining
oligonucleotides, called a trash set. At each stage of the computation, the number
of elements from the list cannot be greater than the one that would produce a se-
quence of at most n nucleotides (with a maximum possible overlapping of the neighbors
on the list). To satisfy this constraint, only the moves that do not lead to sequences
of length greater than n are considered. Such moves are called feasible. At the be-
ginning, the initial solution is created by the greedy heuristic from Blazewicz et al.
(1999).

Three basic types of moves are used: an insertion (a move transferring an oligonu-
cleotide from the trash set to the solution), a deletion (a move transferring an oligonu-
cleotide from the solution to the trash set), and a shift (a move within the solution).
Actions on single oligonucleotides are often not sufficient, so we have added moves
using clusters. A cluster is a group of neighboring elements from the solution, linked
together with overlaps on l − 1 letters in each case. The list of clusters is updated after
every move. Inserted or shifted oligonucleotides are remembered by storing them on the
tabu list for a given number of iterations. The list is checked if an attempt to shift or to
delete an oligonucleotide is made, and these moves are prevented if the oligonucleotide
is on the list. An element found on the tabu list may be deleted or shifted together with
the cluster containing it. The element also may be deleted if there is no other feasible
move. In such a case, an element that has been on the tabu list for the greatest number of
iterations is chosen.
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The global criterion function to be maximized is the number of spectrum elements
composing the solution. On the other hand, a function that is able to compare all kinds
of moves is a condensation, defined for each solution to be the ratio of the number of
oligonucleotides from the spectrum in the solution to the number of nucleotides in the
solution. If the moves were compared by the global criterion function only, deletions or
shifts would be used very rarely. Maximizing the condensation causes the initial solu-
tion to be transformed into a series of collections of well-matched oligonucleotides. (If
a maximal value of the condensation is achieved by more than one move, the method
selects the move resulting in the greatest number of elements in the solution. Conse-
quently, insertion is the most preferred move with shifts, deletion of an oligonucleotide
and deletion of a cluster being next.) Obviously, using the condensation as the only cri-
terion for choosing a move would lead after a number of iterations to the creation of
a single cluster of length much less than n letters. Consequently, we use both criterion
functions (the global one and the condensation) during the search for a solution: the first
one lenghtens the current solution, the second one condenses it. The above process of
improving the current solution is the intensification part of the algorithm. The elements
of the diversification strategy consist of extending moves and restarts based on the scatter
search.

Extending moves are feasible moves selected by the use of frequency-based mem-
ory instead of the condensation function. They are executed after a given number of
condensing moves without an improvement of the global criterion function value. The
frequency-based memory is a tabu search structure that remembers the number of times
each element from the spectrum appears in solutions. There are two types of extending
moves: the insertion of an oligonucleotide and the deletion of an oligonucleotide. The
more highly preferred move is the insertion, and the oligonucleotide with the lowest
frequency value is chosen. If no insertion is possible, the oligonucleotide of the highest
frequency value is deleted from the solution. After the execution of extending moves, the
algorithm returns to the normal scheme with the condensation as the criterion function.
Such a combination of condensing and extending the solution guarantees that the number
of oligonucleotides will increase from some value in the initial solution to a near-optimal
or even optimal value in the final one.

Diversification is also present in the procedure of restarting the algorithm, based
on the scatter search approach. During a given number of the cycles of condensing and
extending moves, our scatter search approach constructs a reference set by remembering
a selected number of the best generated solutions. The reference set is used in our
present method as a source to generate a new initial solution within the restart procedure.
The above use of the scatter search to guide the restarting process is different than its
customary role, which operates within the main body of the algorithm.

A solution is a candidate to enter the reference set if it is better than one of the
solutions in the set, i.e. it has a greater value of the global criterion function. The worst
solution from the set is then deleted. To avoid the situation where a number of highly
similar good solutions (e.g. differing only by one move) fill the set, the set can be
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updated only if at least 10 moves have been executed after the last update. The greater
the difference between solutions in the set is, the greater the possibility of a good restart for
the next intensification cycle is. This restriction is not used when considering a solution
better than all the solutions present in the set. After that, we generate a solution using
the greedy heuristic, in the same way as at the beginning of the algorithm. This solution
replaces the worst one from the set. Then, we generate a new solution on the basis of
the reference set, again using the greedy heuristic. However, this time the heuristic does
not operate on all possible connections between oligonucleotides from the spectrum, but
takes into account only those connections that are present within the solutions from the
reference set. (An exception occurs when the current element has no successors. Then
the method chooses the first not yet used oligonucleotide as its successor.) Hence, the
graph representing the connections becomes rather sparse, as opposed to the complete
graph used in the previous application of the heuristic. Now, as the first oligonucleotide
in the solution we take in turn all spectrum elements, and the solution having the greatest
value of the global criterion function is chosen as the new initial solution for the next
cycle of condensing and extending moves. At the end, all algorithm variables are set to
initial values (except for the variables remembering the best solution found so far), and
the next search process can start, independently of the previous ones. The number of
the restarts is a parameter of the algorithm. Once this number is reached, the solution
containing the greatest number of oligonucleotides from the spectrum, found so far, is
returned by the algorithm.

4. Computational experiment

In the computational experiment, the two described algorithms have been compared.
The experiment was performed on a PC station with a Pentium II 300 MHz proces-
sor, 256 MB RAM and the Linux operating system. We used in the tests random and
coding DNA sequences. The coding sequences were taken from GenBank (National
Institute of Health, USA). They are fragments of several genes coding human proteins
(see Appendix). The random sequences have been generated according to the uniform
distribution.

In the first part of the experiment (Tables 1–4), the lengths of sequences varied
between 109 and 509 nucleotides (with step 100), and the length of oligonucleotides
was always set to 10. First, we generated spectra without errors from these sequences,
and their cardinalities were between 100 and 500 oligonucleotides. Next, we introduced
randomly generated errors into these spectra: 20% of negative errors and 20% of positive
errors, what resulted in spectra of the same cardinality. In the following notation “spec-
trum size = 500” means, that in the instance 100 randomly chosen oligonucleotides are
missing and in addition 100 oligonucleotides are erroneous, i.e. the instance contains 400
oligonucleotides being parts of the original sequence. Finally, the spectra were sorted al-
phabetically in order to lose the information about the original order of oligonucleotides
within sequences.
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Parameters of the algorithms were set to values resulting (approximately) in similar
computation times. The hybrid genetic algorithm was called with the number of iterations
without improvement of the criterion function value set to 20, and with the population
size set to 50. The tabu-scatter algorithm was called with: the number of condensing
moves performed without improvement of the global criterion function value equal to 2,
the number of extending moves equal to 4, the number of the cycles of condensing and
extending moves equal to 300, the number of intensification stages (i.e. the number of
restarts + 1) equal to 15, the length of the tabu list equal to 10, and the cardinality of the
reference set used in restarts equal to 8. Parameter values for both methods were based
on initial experimentation.

In Tables 1–4, all entries with average values have been calculated for 40 different
instances. The quality is the number of spectrum elements composing a solution. The
average quality is the mean value of the maximized criterion function in the algorithms.
The optimal quality is the difference between the spectrum size and the number of

Table 1
Results of the hybrid genetic algorithm for random sequences.

Spectrum size 100 200 300 400 500

Average quality 80.0 159.5 238.0 316.3 391.8
Optimal quality 80 160 240 320 400
Optimally solved instances 40/40 33/40 21/40 15/40 5/40
Average similarity score (%) 99.8 98.1 91.5 88.4 77.1
Average computation time (sec) 12.8 60.0 144.9 263.6 446.9

Table 2
Results of the tabu and scatter search algorithm for random sequences.

Spectrum size 100 200 300 400 500

Average quality 80.0 160.0 239.5 319.1 397.3
Optimal quality 80 160 240 320 400
Optimally solved instances 40/40 40/40 33/40 29/40 18/40
Average similarity score (%) 99.8 99.9 93.1 95.2 85.6
Average computation time (sec) 9.5 42.5 134.4 321.9 567.7

Table 3
Results of the hybrid genetic algorithm for DNA coding sequences.

Spectrum size 100 200 300 400 500

Average quality 80.0 159.2 237.5 316.2 392.8
Optimal quality 80 160 240 320 400
Optimally solved instances 40/40 29/40 22/40 15/40 6/40
Average similarity score (%) 99.7 98.0 91.8 90.9 80.9
Average computation time (sec) 13.1 61.3 145.9 273.9 432.2
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Table 4
Results of the tabu and scatter search algorithm for DNA coding sequences.

Spectrum size 100 200 300 400 500

Average quality 80.0 159.8 238.9 318.6 397.0
Optimal quality 80 160 240 320 400
Optimally solved instances 40/40 38/40 31/40 23/40 15/40
Average similarity score (%) 99.7 98.9 93.5 89.7 83.5
Average computation time (sec) 9.6 44.2 127.7 321.7 570.9

negative errors. Below the qualities, the numbers of instances (out of 40) for which the
algorithms returned optimal solutions, are shown. Similarity score shows how much
the original and generated sequences differ (with the maximum 100% in case the two
sequences are equal). The sequences were compared by a classical pairwise alignment
algorithm (Waterman, 1995), called with the following parameters: match = 1, mismatch
= −1, and gap = −1.

Tables 1 and 2 present results of both algorithms tested on randomly generated
sequences. As we see, the tabu and scatter search algorithm produces better solutions,
concerning qualities as well as similarities to original sequences. However, the hybrid
genetic algorithm also gives very good results, for example, all smallest instances were
solved optimally. (The similarity less than 100% in that case is caused by few missing
nucleotides at the ends of the generated sequences, what follows from negative errors
placed at the ends.) The average qualities from Table 2 have near optimal values, what
shows the high quality of the proposed strategy. Also the percentage of optimally solved
instances is very high, especially for the great number of errors introduced to the spectra.

In general, DNA sequences coding human proteins are more difficult to reconstruct
for sequencing algorithms than the random ones for they contain a greater number of
repetitive subsequences, being a natural cause of ambiguous reconstruction. Tests on
these sequences make it possible to check how the algorithms would work in practice.
Tables 3 and 4 contain results of tests with spectra generated from DNA coding sequences.
The average qualities are slightly lower than for the random sequences (however, not in
all entries). It can be justified by the greater number of good connections in the set of
oligonucleotides than in the case of random sequences. Once again the results produced
by the tabu and scatter search algorithm are a little better than the ones of the genetic
algorithm.

In order to make a deeper comparison of the two approaches, we performed the
second part of the experiment on sequences with natural repetitions of oligonucleotides.
Here, we used other 59 DNA coding sequences of length 509 nucleotides. We cut out
spectra from these sequences, with oligonucleotide length set to 10, and we got spec-
tra with natural repetitions of oligonucleotides. The repetitions are treated as special
negative errors, and our instances contained from 1 to 32 such errors. Parameters of
the algorithms had the same values as in the previous tests. The spectra also were
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Table 5
Results of both algorithms for DNA coding sequences containing

repetitions.

Algorithm hybrid GA Tabu + Scatter

Average obtained quality 493.6 495.4
Average optimal quality 496.2 496.2
Optimally solved instances 26/59 52/59
Average computation time (sec) 394.6 285.3

sorted alphabetically. The results of tests performed on these instances are shown in
Table 5.

This time the difference between the two algorithms is a bit easier to observe. The
qualities obtained by the algorithms are similar, however, the tabu and scatter search
algorithm returned the number of optimal solutions two times greater than the other, and
it did it in much shorter computational time. It should be noticed that the repetitions
of oligonucleotides within an original sequence are much harder to solve than random
negative errors. Every next repetition can increase the number of potential optimal so-
lutions for the instance. Thus, it is impossible to evaluate the quality of an algorithm
by comparing its results with original sequences. For this reason, we did not used the
algorithm for pairwise alignment here.

5. Conclusions

In the paper, the DNA sequencing problem has been considered. Two algorithms: the
hybrid genetic one and tabu and scatter search have been presented, and tested on instances
containing negative and positive errors. Both algorithms returned results of a very high
quality. However, the tabu and scatter search approach proves a little better for the easier
instances and notably better for the harder instances.

A question arises, what the limit on length of sequences to be solvable is. Probably
results of the algorithms for much longer sequences, especially the qualities and compu-
tation times, would be also satisfying. However, with the growing length of sequences,
the probability that they contain repetitions of oligonucleotides increases. Then, we can-
not guarantee that a solution of a very high quality covers the original sequence, since
there are many possible optimal solutions (from the combinatorial point of view) for the
problem. We suppose, that the applicability of the algorithms is limited to the sequences
of lengths between 600 and 800 nucleotides.

The research plans for the future include both developing the existing algorithms
and improving the idea of the hybridization experiment. The genetic algorithm may
behave better after changing some of its steps towards more deterministic ones, especially
the generation of the initial population. On the other side, some modification of the
hybridization phase could reduce the number of errors in the spectrum (see the idea of
isothermic oligonucleotide libraries in Blazewicz et al. (2004)).
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Appendix

The list of accession numbers from GenBank database corresponding to 40 DNA coding
sequences used in the computational experiment (see Tables 3 and 4) is the follow-
ing: D00723, D11428, D13510, X13440, X51535, X00351, X02994, X04350, Y00264,
X58794, Y00649, X05299, X51841, X02160, X04772, X13561, X14758, X15005,
X06537, Y00711, X05908, X07994, X13452, Y00651, X07982, X05875, X53799,
X05451, X14322, X14618, X55762, X14894, X57548, X51408, X54867, X02874,
X06985, Y00093, X15610, X52104.

The accession numbers of 59 DNA coding sequences with natural repetitions of
10-mers (see Table 5) are the following: X58377, X56088, X03350, X01098, X00318,
X53279, X07577, X03663, X07173, Y00503, X07696, X03444, X03445, Y00815,
Y00062, X13967, X17206, X01393, Y00809, X53331, X07362, X12510, X05450,
Y00695, X54304, X13403, X13097, X04217, X04808, X03795, X04741, X52997,
X04412, X07767, Y00345, X12385, X13405, X53605, Y00971, X13973, X00129,
X54534, X04654, X06617, X13697, X12496, X02317, X07898, X02812, X05615,
X01394, X16316, D10570, D28468, D12686, D90224, D14012, D11327, D16105.

The instances used in the computational experiment are available on request to the
authors.
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