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bstract

DNA sequencing by hybridization (SBH) induces errors in the biochemical experiment. Some of them are random and disappear when the
xperiment is repeated. Others are systematic, involving repetitions in the probes of the target sequence. A good method for solving SBH problems
ust deal with both types of errors. In this work we propose a new hybrid genetic algorithm for isothermic and standard sequencing that incorporates

he concept of structured combinations. The algorithm is then compared with other methods designed for handling errors that arise in standard
nd isothermic SBH approaches. DNA sequences used for testing are taken from GenBank. The set of instances for testing was divided into two
roups. The first group consisted of sequences containing positive and negative errors in the spectrum, at a rate of up to 20%, excluding errors
oming from repetitions. The second group consisted of sequences containing repeated oligonucleotides, and containing additional errors up to 5%
dded into the spectra. Our new method outperforms the best alternative procedures for both data sets. Moreover, the method produces solutions
xhibiting extremely high degree of similarity to the target sequences in the cases without repetitions, which is an important outcome for biologists.

he spectra prepared from the sequences taken from GenBank are available on our website http://bio.cs.put.poznan.pl/.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

DNA sequencing by hybridization (SBH) was proposed by
outhern (1988), Bains and Smith (1988) and Drmanac et al.
1989) as an alternative to gel-based methods (Maxam and
ilbert, 1977; Sanger et al., 1977). Although it is not yet widely
sed because of current difficulties in performing biochemical
xperiments with the procedure, SBH is expected to be used
ore and more in the future (Fogel et al., 1998; Blazewicz et al.,

999b; Shamir and Tsur, 2002; Halperin et al., 2003; Fogel and

orne, 2003; Zhang et al., 2003; Heath et al., 2003; Blazewicz
t al., 2004b). SBH consists of two steps. The first, biochemical
ne, is based on the principle of complementary hybridization
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f two single-stranded DNA chains. A set of short, differing
ligonucleotides (probes) is placed on a DNA chip. In the stan-
ard approach to DNA sequencing all the probes are strings of
qual length l. Taking a full library of different oligonucleotides
or the hybridization experiment, there are 4l different probes on
he chip. These probes are compared with many copies of a flu-
rescently labeled DNA sequence (called the target sequence).
uring the biochemical experiment all oligonucleotides that are

everse complementary to the target sequence hybridize and emit
fluorescent signal. After the reaction, by reading the signals,
ne can obtain a set of probes that compose the DNA sequence.
his set is called a spectrum. During the second step of the SBH,
n algorithm reconstructs a sequence from the spectrum.

The ideal spectrum consists of all oligonucleotides that com-
ose the target sequence and, in addition, either the spectrum
ontains no repeated probes or the multiplicity number of each

-mer is known. The problem of finding the target sequence can
e reduced to the problem of finding certain combinatorial path
n a labeled, directed graph (Lysov et al., 1988; Pevzner, 1989).

class of these graphs has recently been given the name DNA
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raphs and their properties have been analyzed by Blazewicz et
l. (1999c).

However, in practice hybridization processes usually gen-
rate some errors. These errors can be of two types: negative
rrors, where some l-mers are missing in the spectrum, and pos-
tive errors, where some additional oligonucleotides appear in
he spectrum. Negative errors can occur either as a result of
rong hybridizations or because some parts of the target se-
uence, at least as long as l, are repeated, to produce what are
alled repetitions.

We refer to the approach of sequencing by reference to probes
f equal length l as the standard sequencing approach. The asso-
iated (standard) DNA sequencing problem has been proved to
e strongly NP-hard in the case where errors occur in the spec-
rum (Blazewicz and Kasprzak, 2003). Several algorithms have
een proposed for solving the sequencing problem, some of them
estricted to problems with only one type of error (Bains and
mith, 1988; Pevzner, 1989; Drmanac et al., 1989; Guénoche,
992; Blazewicz et al., 1997). The most general case was first
tudied in Blazewicz et al. (1999b), where a branch and bound
lgorithm was proposed, and subsequently in Zhang et al. (2003)
nd in Blazewicz et al. (2004b).

A few years ago new approaches to sequencing were pro-
osed. Some of them are based on designing a new chip, which
ses universal bases, i.e., nucleotides that hybridize with each
f the standard bases (A, C, G or T) (Preparata et al., 1999a;
eath et al., 2003; Halperin et al., 2003). This approach uses
apped probing patterns instead of standard l-mers. One of the
roposed gapped probes, GP(s, r), is of the form “Xs(Ns−1X)r”,
here X is one of the nucleotides A, C, G, T, and N is the uni-
ersal base. Thus, the number of specified nucleotides in the
ligonucleotide is equal to k = s + r. If there are no restrictions
n the set of probes, an information-theoretic argument yields an
pper bound on the length of unambiguously reconstructible se-
uences: θ(4k) (Preparata et al., 1999b). In contrast, in a standard
NA sequencing problem the expected length of a sequence that

an be unambiguously reconstructed with probes of length l is
(2l). Although the approach with gapped probes uses a small
umber of oligonucleotides in the hybridization experiment, it
ssumes the knowledge of the s(r + 1)-prefix and the procedure
s vulnerable to error.

Another approach to SBH, called the isothermic approach,
ses libraries of isothermic oligonucleotides, i.e., oligonu-
leotides of the same melting temperature, instead of those of
n equal length l. It is well known that DNA duplexes of C/G
ich l-mers are more stable than A/T rich l-mers. This obstacle
an result in numerous errors in the spectrum. The dependence
f the duplex formation on the base composition can be reduced
y high concentration of chaotropic salt (Maskos and Southern,
993). Moreover, by increasing the length of A/T rich duplexes,
ne can also increase their stability. In the earliest studies us-
ng allele specific oligonucleotides in DNA mutation analysis,

simple equation was used to count melting temperatures of

ligonucleotide duplexes assuming 4◦ for every G/C pair and 2◦
or every A/T pair (Wallace et al., 1981). It is known that the
bove description is not very exact although it reflects a general
elative stability of different duplexes quite well.
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Oligonucleotides in an isothermic library should form du-
lexes with their complements in a more narrow range of exper-
mental conditions (temperature, salt concentration, etc.) than
hat characteristic for an oligonucleotide library with oligonu-
leotides of the same length. Therefore, the hybridization ex-
eriments performed with isothermic libraries should result in
smaller number of experimental errors. Several computational
ethods were proposed for solving the isothermic sequencing

roblem (Blazewicz et al., 2004a, in press).
This paper first compares standard and isothermic approaches

or dealing with the DNA sequencing problem with errors, es-
ecially errors coming from repetitions. While many methods
xist for each approach, we restrict our attention to those that
ive the best results, as a basis for comparison. We cannot in-
lude the gapped-probe pattern approach in our study because
rior studies either restrict attention to cases having a low error
ate in data used for computations (Preparata et al., 1999a) or
he results are presented using types of measures that cannot
e compared with those customarily adopted (Preparata et al.,
999a; Halperin et al., 2003).

The computational tests designed for comparison were per-
ormed on the same target sequences for each method. Target
equences are DNA sequences that are coding human proteins
nd are taken from GenBank. For different approaches separate
pectra were created with the same error rate, standard spectra
ith equal-length oligonucleotides, and isothermic spectra with
ligonucleotides of the same temperature. The comparison of
he selected methods (the best one for each approach) with such
repared spectra showed that isothermic spectra have more
rrors coming from repetitions than standard spectra, the recon-
truction of an unknown sequence is then ambiguous and the
robability of finding the correct sequence is smaller. We then
ropose a revised hybrid genetic algorithm, based on the main
cheme of the hybrid genetic algorithm developed earlier for the
sothermic approach (Blazewicz et al., in press). The results are
mproved significantly by this revised hybrid genetic algorithm
sing standard (i.e., equal length oligonucleotides) libraries,
ven for sequences with repeated oligonucleotides, where
he average similarity to the target sequence is around 90%
nd almost half of the tested instances give the desired target
equence.

The next section defines isothermic libraries, describes the
reparation of data for computational testing, and presents the
esults of comparison of the best algorithms for isothermic and
tandard sequencing. The following two sections describe our
evised hybrid genetic algorithm and report the results of com-
utational tests of the new method compared to other algorithms.
he last section contains conclusions.

. Comparison of standard and isothermic approaches
o SBH

Among many approaches to SBH we focus on the alternative

o the standard approach that makes use of isothermic libraries
Blazewicz et al., 1999a, 2004c). In the previous section we
riefly described the isothermic oligonucleotide library. Now
e give a more formal definition.
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efinition. An isothermic library L of temperature tL is a library
f oligonucleotides satisfying relations

wAxA + wCxC + wGxG + wTxT = tL,

wA = wT, wC = wG and 2wA = wC,

here xi is the number of occurrences of nucleotide of type i in
he oligonucleotide, and wi denotes an increment of a nucleotide
f type i added to the melting temperature of an oligonucleotide
i ∈{A, C, G, T}).

Without loss of generality we assume that wA = wT = 2◦
nd wC = wG = 4◦. This corresponds to increments that allow
ucleotides to form stable oligonucleotide duplexes. In what fol-
ows, the sum of increments of nucleotides forming an oligonu-
leotide will be called an oligonucleotide temperature.

In order to perform a proper hybridization experiment (when
ll oligonucleotides covering an analyzed DNA sequence can be
etected) it is proved that it is sufficient to use two such libraries
iffering by one increment of A or T (by 2◦) and that one such
ibrary is not enough (Blazewicz et al., 2004c).

To evaluate the cardinality of isothermic libraries we use two
quations—(1) for oligonucleotides with temperatures divisi-
le by 4 and (2) for oligonucleotides with temperatures non-
ivisible by 4 (Blazewicz et al., 2004c).

ard(t) =
t/4∑
i=0

[(
t
4 + i

2i

)
2(t/4)+i

]
(1)

ard(t) =
�t/4�∑
i=0

[(
� t

4� + i + 1

2i + 1

)
2�(t/4)�+i+1

]
(2)

ow, the problem of isothermic SBH can be formulated as fol-
ows. As the input data one gives spectrum S, i.e., a set of oligonu-
leotides that possibly hybridize with the target sequence, and
he length n of the sequence. The goal is to maximize the number
f probes used to form the output sequence.

For comparison of the standard and isothermic approaches,
e chose the best method for each approach. For standard li-
raries the one that achieves the best results is the tabu and scatter
earch algorithm that was described in Blazewicz et al. (2004b).
he algorithm has the following structure. The spectrum con-
ists of two sets: solution—an ordered list of oligonucleotides
hich compose a sequence not longer than n, and trash—an un-
rdered set of remaining oligonucleotides. The oligonucleotides
n the solution set that are well fitted to their neighbors (the l-1
ight nucleotides of an oligonucleotide are overlapping l-1 left
ucleotides of the next oligonucleotide) form a cluster, i.e., a
lock that cannot be broken during performing the next move.
he clusters may change after each move. The algorithm starts
ith an initial solution and searches for the best solution in the
eighborhood. After a chosen number of iterations where the
umber of oligonucleotides in the solution set does not increase,
he method stops and re-starts the search in a different part of the

olution space. During local search computations, a set of the
est solutions, whose members are not too similar, is collected
nd serves as a reference set for creating a new starting point
y the re-starting process. This algorithm achieved very good

1
I
f
1
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esults for tested instances, even with a high rate of errors in the
pectrum, as it will be shown later.

The second algorithm, used for isothermic libraries, is the hy-
rid genetic algorithm presented in Blazewicz et al. (in press).
his method operates on a population of individuals. Each in-
ividual is a permutation of all oligonucleotides from the spec-
rum. Fitness of an individual is the greatest number of neigh-
oring oligonucleotides that form a sequence not longer than n.
fter selecting the individuals as parents, operators such as mu-

ation and crossover are applied. The offspring inherits the best
eatures of the parents, enhanced by the structured crossover;
hus, the next generation is more adapted to the environment (i.e.,
he solution is composed of higher number of oligonucleotides).
fter a selected number of iterations without improvement, the

lgorithm stops and offers the best sequence found as its output.
he algorithm often solves tested instances to optimality and the
equences obtained usually yield a 100% similarity measure by
eference to the original sequences.

The tests of these two algorithms were divided into two stages
ased on two sets of instances. The first set, A, is generated from
equences with no repetitions of oligonucleotides. Additional er-
ors were introduced into these spectra: 5% of negative errors
nd 5% of positive errors, or 20% and 20%, respectively. The
econd set, B, contains spectra with errors coming from repe-
itions. This set contains two different types of instances: one
ncluding only repetitions in the spectra and one containing ad-
itional positive and negative errors.

The preparation of set A proceeded as follows. Forty se-
uences coding human proteins were obtained from GenBank.
Their accession numbers can be found in Appendix A.) From
refixes of these sequences of length 200, 400, 500 and 600 nu-
leotides, respectively, two kinds of ideal spectra were created,
ne for a standard library with oligonucleotide length l = 10
nd one for an isothermic library with oligonucleotide temper-
tures t = 26◦ and t + 2 = 28◦. According to Eqs. (1) and (2)
he cardinality of this standard library is approximately the same
s the sum of cardinalities of the two isothermic libraries. The
pectra contained no repeated oligonucleotides. Next, random
ositive and negative errors were introduced into the spectra at
he level of 5% or 20% of the initial cardinalities. Positive er-
ors were compelled to be different from the oligonucleotides
lready present in the spectra.

Set B was prepared in a similar way. Forty sequences coding
uman proteins were obtained from GenBank, but this time their
refixes of length 600 nucleotides induced some repetitions both
n isothermic and standard spectra. (Accession numbers of the
equences can be found in Appendix B.) Spectra created from
hese sequences contained some negative errors (repetitions). In
rder to choose a typical set of sequences for our experiment, we
ook the ones, which resulted in the same average number of rep-
titions as 1000 randomly chosen sequences coding human pro-
eins from GenBank. For our instances generated with respect to
he standard libraries the number of repetition errors varied from

to 17 probes where average for the spectrum was 4 repetitions.

n the case of isothermic libraries the number of errors coming
rom repetitions for the spectra was 4–30 and the average was
6 oligonucleotides. Set B.1 contained only errors coming from
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Table 1
Results of tests for set A—sequences without repetitions

Length of the sequence

200 400 500 600

5%a 20%a 5%a 20%a 5%a 20%a 5%a 20%a

Tabu and scatter search with standard libraries
Usage of oligonucleotides (%) 99.93 99.93 99.90 99.67 99.83 99.64 99.84 99.36
Similarity (%) 99.87 98.44 98.96 95.70 95.76 92.41 95.82 88.50
No. of optimal solutions 39/40 38/40 37/40 28/40 32/40 27/40 32/40 19/40
Running time (s) 5.62 8.99 47.38 68.50 82.94 125.54 127.57 186.26

Hybrid genetic algorithm with isothermic libraries
Usage of oligonucleotides (%) 100.00 100.00 100.00 99.99 100.00 99.98 100.00 99.98
Similarity (%) 99.94 99.20 99.21 99.18 99.81 99.59 97.96 97.97
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ducing variation into the individuals). Hence, new individuals
will have somewhat different features compared to their parents.
In a new generation, the fitness of the offspring is evaluated in
a fashion similar to that for their parents. This birth process to-

Table 2
Results of tests for set B.1—sequences of length 600 with repetitions of oligonu-
cleotides without additional errors in spectra and for set B.2—sequences of
length 600 with repetitions of oligonucleotides and additional up to 5% of neg-
ative and 5% of positive errors

Algorithm Set B.1 Set B.2

Tabu and scatter search with standard libraries
Usage of oligonucleotides (%) 99.86 99.55
Similarity (%) 88.45 82.63
No. of optimal solutions 14/40 10/40
Running time (s) 84.30 129.95

Hybrid genetic algorithm with isothermic libraries
No. of optimal solutions 39/40 37/40 38/
Running time (s) 6.50 8.52 23.9

a Error rate.

epetitions while in set B.2 additional random negative errors up
o 5% and additional 5% of positive errors were introduced.

For these spectra, the results of testing our two algorithms
re presented in Tables 1 and 2. In the tables all entries, except
he number of optimal solutions, are given as the average value
f 40 different instances. The percentage of oligonucleotides
rom the spectrum used for composing the target sequence is
resented in the row ‘usage of oligonucleotides’. The figure
100%’ means that the number of oligonucleotides from the
pectrum is the same as the number of proper oligonucleotides,
.e., the cardinality of the ideal spectrum diminished by the num-
er of negative errors. ‘Similarity’ is calculated according to
he pairwise sequence alignment of Needleman–Wunsch algo-
ithm (Needelman and Wunsch, 1970). The number of solved
nstances, where the sequence obtained has 100% similarity to
he original one, is presented in the next row. ‘Running time’
s the average total time of computations made on Pentium 4,
.0 GHz, with 512 MB RAM.

Analyzing the results, we can state that the hybrid genetic
lgorithm with isothermic libraries deals very well with the in-
tances where no repetition of oligonucleotides appears, while in
he case with repetitions the tabu and scatter search method with
tandard libraries works better. This might be for the following
eason: isothermic libraries cause so many repetitions that solv-
ng the problem is much more difficult. In description of prepa-
ation of Set B (sequences with repetitions of oligonucleotides)
t was mentioned that the average number of repetitions is 4 for
tandard libraries and 16 for isothermic libraries for the same
equences. Although isothermic libraries cause fewer experi-
ental errors, they give more repetition errors than standard

ibraries, because an isothermic library consists of nucleotide
robes shorter than 10 nucleotides for the GC rich sequences.
s a result, one might suppose that connecting the standard li-
raries with hybrid genetic algorithm would give the best results.
lthough there were many different genetic algorithms applied

o this problem (Blazewicz et al., 2002; Bui and Youssef, 2004)

e propose a new one in the next section. The revised hybrid al-
orithm was based on the main pattern of the approach described
n Blazewicz et al. (in press) but adopted to handle standard li-
raries.
36/40 39/40 35/40 36/40 32/40
30.81 46.49 53.64 80.91 91.57

. Revised hybrid genetic algorithm

General idea of the genetic algorithm was proposed by
olland (1975), and has been applied to different combinatorial
roblems (Aarts and Lenstra, 1997; Voss et al., 1998). Specifi-
ally, the genetic algorithm is a mechanism that simulates natural
volutionary processes. Its basic components are: population, in-
ividuals (also called chromosomes), fitness of the individuals,
eproduction process including selection of parents and genera-
ion of children (genetic operation), replacement and completion
f generation processes. A typical genetic algorithm starts with
n initial population of individuals representing possible solu-
ions to the problem. Each individual is evaluated by its fitness,
hich is determined by the associated value of the objective

unction. The next generation (offspring) is created after apply-
ng genetic operators to the fittest individuals from the parent
opulation. There are several different genetic operators. Among
hem there are crossover (adopting the common features of each
arent and mixing the remaining features) and mutation (intro-
Usage of oligonucleotides (%) 99.99 100.00
Similarity (%) 78.34 79.12
No. of optimal solutions 2/40 3/40
Running time (s) 90.64 108.67
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ether with a death process will define a generation, as well as
population size. However, the population size usually remains
onstant from one generation to the next. This procedure is re-
eated until a stopping criterion is reached. The output of the
imulated evolution process of a genetic algorithm will be the
est chromosome found, which can be a highly evolved solu-
ion to the problem. The effectiveness of the algorithm depends
n how the particular components of genetic algorithm are de-
igned. Below we describe the implementation of these issues
n our proposed algorithm.

Our hybrid genetic algorithm adopts the general structure
escribed except that we use a special type of crossover called
tructured crossover that shares ideas in common with those pro-
osed in the setting of tabu search. We implemented each of the
omponents of the algorithm by considering the characteristics
f the DNA sequencing by hybridization problem as explained
elow:

Data coming from the hybridization experiment are the spec-
trum S, i.e., a set of oligonucleotides of the same length l,
and the length of the original sequence n.

Initial population consists of s randomly generated individuals.
s is the population size, and it is kept constant during
computations.

Individual (chromosome) is a permutation of |S| indices of
oligonucleotides from the spectrum. Every permutation
is decoded into a sequence, usually longer than n, and
its best subsequence of length not greater than n, i.e., in-
cluding the largest number of oligonucleotides from the
spectrum, is a potential solution.

Fitness (objective function) is the number of oligonucleotides
from the spectrum used to form the best subsequence,
which is not longer than n.

Selection: Individuals from the current population are selected
based on their fitness values to form the mating pool for
the reproduction step. The aim of the selection is to keep
good individuals and to eliminate the bad ones from one
generation to the other. This selection is performed by
using the part sum selection procedure in our implemen-
tation. This procedure has some components of propor-
tional selection schemes like roulette wheel selection and
of remainder schemes like deterministic procedure. First,
each individual in the population is evaluated according
to its fitness value to obtain the probability of selecting
this individual as a parent. Then, in a deterministic way,
the individuals are selected.

Reproduction: New individuals (offspring) in the next gener-
ation are obtained by applying the operators: structured
crossover and mutation to the mating pool obtained in the
previous step, with the probability, respectively, c and m.
Thus, in the next generation c · s new individuals will be
created with structured crossover and at most m · s · |S|
new individuals will come from mutation. The probabil-

ities (c, m) were determined during our preliminary tests
to set their best combination. In the mutation operator,
described below, we use the concept of overlap degree,
which is the number of nucleotides overlapping in two ad-
y and Chemistry 30 (2006) 313–320 317

jacent oligonucleotides. We further define the total overlap
degree of an oligonucleotide as the overlap degree with
its predecessor plus the overlap degree with its successor.

Structured crossover: Two parents are chosen randomly from
the mating pool. The first oligonucleotide in the offspring
is chosen randomly. This oligonucleotide, oi, is identified
in both of the parents. The construction of the child from
this starting point departs from that of classical crossover
operations, and uses a strategic design that accords with
the concept of structured combinations as introduced in
Glover (1994). The construction proceeds as follows. The
successors of oi and the predecessors of oi in the par-
ent individuals are considered. The one that fits better in
front of oi (for all predecessors in the parent chromo-
some) or at the end of oi (for all successors in the parent
chromosome) is placed at the proper position in the off-
spring. The new oligonucleotide together with oi in the
offspring now form a block. In the next steps instead of
oi, the terminal oligonucleotides of the block are consid-
ered and predecessors of the first oligonucleotide of the
block and successors of the last oligonucleotide of the
block are checked in the parent individuals. If there is
neither unused successor nor unused predecessor in the
parent individuals, then the best fit oligonucleotide from
the remaining individuals is chosen. The best fit oligonu-
cleotide is the one with the lowest value of the ratio of the
number of oligonucleotides in the block to the length of
the sequence. This in fact means that the newly built se-
quence should be the shortest. The procedure of creating
the individual is stopped when all oligonucleotides from
the spectrum are in the block. In this formulation one child
is created from two parents. As previously mentioned, the
process of creating our new offspring is different from the
classic genetic algorithm, where most of the process goes
randomly. Our structured crossover operator incorporates
the idea of structured combination by treating the individ-
uals as vectors to establish precedence relationships be-
tween oligonucleotides. Selection of an oligonucleotide
at each step can be compared to choosing the best vote
from two vectors (parents). Hence, the offspring inher-
its the best characteristics (votes) from parents (vectors).
Such an algorithmic construction process that uses “vot-
ing evaluations” based on the composition of the parents
and the problem objective is also a basic feature of path
relinking (Glover and Laguna, 1993).

Mutation can occur both in the parents and in the offspring pop-
ulation with the probability m. The individual to be mu-
tated is selected randomly. In this individual the oligonu-
cleotide with the lowest overlap degree is found (if more
than one exist, the first one is chosen). This oligonu-
cleotide is swapped with its neighbor that has lower over-
lap degree with it. If the selected oligonucleotide is the first
(last) one, then it is swapped with the last (first) oligonu-

cleotide. The new individual then replaces the old one.

Creation of the next generation: Apart from the newly created
individuals, the best individuals from the parent popula-
tion go on to the next generation.
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Stopping criterion is a chosen number of generations in which
no improvement occurs in the objective function.

After many preliminary tests a set of best parameter values
as established. The cardinality of the population was set to

he half of the length of the target sequence. For the shortest
equences s was equal to 100 individuals, and for the longest se-
uences 300 individuals. The probability that mutation of each
ligonucleotide in the chromosome occurs was m = 0.001, and
he probability that structured crossover occurs for any two indi-
iduals was c = 0.9, where the stopping criterion was set to be
0 generations without improvement of the objective function.

. Computational results of the revised hybrid genetic
lgorithm

Our revised hybrid genetic algorithm was tested with the same
wo sets of spectra, one without errors coming from repetitions
set A) and the other with errors coming from repetitions (set B)
n spectra, that we used in our earlier comparisons of standard
nd isothermic approaches. The results for set A are presented in
able 3 and for set B in Table 4 as the average values calculated
or 40 instances.

For comparison with our revised hybrid genetic algorithm for
he sequences without repetition, among many algorithms dedi-
ated for the problem of standard SBH we chose two algorithms.
he first one is the combined tabu and scatter search method of
lazewicz et al. (2004b) as described earlier and the other is a ge-
etic algorithm presented in Bui and Youssef (2004), referred to
s the ‘enhanced genetic algorithm’. Comparison to some other
lgorithms was not possible because of different types of tested

nstances (Halperin et al., 2003) or because of different measures
sed to evaluate solutions (Zhang et al., 2003). The genetic algo-
ithm, presented in Endo (2004), obtained the results (shown in
rackets in his paper) that exceeded the maximal possible value.

a
T
i
t

able 3
omparison of results of different algorithms for standard sequencing

Length of the sequence

200 400

5%a 20%a 5%a

Revised hybrid genetic algorithm (PC Pentium 4, 2.0 GHz, 512 MB RAM)
Usage of oligonucleotides (%) 100.00 100.00 100.00
Similarity (%) 100.00 98.88 100.00
No. of optimal solutions 40/40 39/40 40/40
Running time (s) 4.30 6.32 11.90

Tabu and scatter search (Blazewicz et al., 2004b) (PC Pentium 4, 2.0 GHz, 512 MB R
Usage of oligonucleotides (%) 99.93 99.93 99.90
Similarity (%) 99.87 98.44 98.96
No. of optimal solutions 39/40 38/40 37/40
Running time (s) 5.62 8.99 47.38

Enhanced genetic algorithm (Bui and Youssef, 2004) (PC Pentium 4, 2.4 GHz, 512 M
Similarity (%) – 97.60 –
No. of optimal solutions – 26/40 –
Running time (s) – 1.50 –

equences have no repetitions—set A.
a Error rate.
y and Chemistry 30 (2006) 313–320

The authors of the enhanced genetic algorithm (Bui and
oussef, 2004) introduced an additional step of preprocessing.
hey combine single oligonucleotides into ‘clusters’, in such
way that in one cluster neighboring oligonucleotides overlap
ith l − 1 nucleotides. The idea of combining oligonucleotides

nto the cluster is very similar to the one described for tabu and
catter search, but in this enhanced genetic algorithm procedure,
he clusters are fixed and the genetic operations are performed
nly on these clusters. After this initial step the classical ge-
etic algorithm was applied with three-point crossover. The en-
anced genetic algorithm was tested with a set of spectra coming
rom 40 sequences, different from ours, without repetitions of
ligonucleotides. Spectra contained 20% of negative and 20% of
ositive errors; thus, comparison was not possible in every case.

Analyzing the results of tests with set A one can notice that
ur revised hybrid algorithm works very well even for very hard
nstances—for sequences of length 600 nucleotides and 20%
f error rate. In almost all cases it finds the target sequence
nd almost all of the proper oligonucleotides were composing
he solution. It improves significantly the results of tabu and
catter search and enhanced genetic algorithm for the problems
n this test set, especially in the number of generated optimal
olutions. Number of oligonucleotides from the spectrum used
o form the solution is usually close to optimum. (Note that these
esults are also significantly better than the ones obtained for the
revious version of this algorithm designed for the isothermic
ibraries, as given in the previous section.) The computation
ime of our algorithm was much shorter than for tabu and scatter
earch, especially for long sequences, but slightly longer than
or enhanced genetic algorithm.

The results of tests performed on set B with our algorithm

re presented in Table 4. Comparing these with the results of
able 2, we can notice that for each measure the results were

mproved, especially the number of optimal solutions increases
o almost half of the tested instances. The similarities of obtained

500 600

20%a 5%a 20%a 5%a 20%a

100.00 100.00 100.00 100.00 99.98
100.00 100.00 99.75 100.00 99.98
40/40 40/40 38/40 40/40 37/40
20.46 18.07 27.19 25.69 44.19

AM)
99.67 99.83 99.64 99.84 99.36
95.70 95.76 92.41 95.82 88.50
28/40 32/40 27/40 32/40 19/40
68.50 82.94 125.54 127.57 186.26

B RAM)
92.90 – 92.00 – –
13/40 – 13/40 – –
8.60 – 15.10 – –
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Table 4
Results of tests of the revised hybrid genetic algorithm

Set B.1 Set B.2

Usage of oligonucleotides 100.00 99.99
Similarity (%) 90.99 92.60
No. of optimal solutions 18/40 18/40
Running time 24.17 25.13
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by hybridisation. Bioinformatics 20, 2181–2188.
et B.1—sequences with repetitions without additional errors in spectra. Set
.2—sequences with repetitions and additional negative and positive errors up

o 5%.

equences to the original ones were above 90%, which is very
atisfying. We note that the earlier hybrid genetic algorithm de-
igned for isothermic sequencing in Blazewicz et al. (in press)
lmost never found an original sequence for set B, although the
ain scheme is very similar to our algorithm. This confirms our

arlier observation that isothermic libraries are more repetitive
nd produce more than one sequence with the same value of the
bjective function. Hence, the probability of finding a proper
equence is lower.

. Conclusion

In this paper various methods and approaches to sequenc-
ng by hybridization were considered. The performance of the
lgorithms depended upon the nature of the sequences. In the in-
tances where sequences have no repetitions the method that per-
orms best is the hybrid genetic algorithm designed for isother-
ic sequencing (Blazewicz et al., in press). For problems that

ontain some repeated subsequences in the target sequence
he tabu with scatter search method for standard sequencing
Blazewicz et al., 2004b) proved much better, finding optimal
olutions with considerably greater frequency. This quite nat-
rally suggested revising the hybrid genetic algorithm with a
ew crossover operator and combining with the standard library
f oligonucleotides. This new revised hybrid genetic algorithm
olves the SBH problem optimally in most of the cases (con-
idering maximization of the objective function). In the case
ithout repetitions the method found the same sequence as the

arget sequence, an outcome that is highly important for biol-
gists. Moreover, for sequences having repetitions, it behaved
xtremely well, producing results outperforming by far all other
xisting algorithms.
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ppendix A

Accession numbers of the sequences used for com-
utational tests. Set A—sequences have no errors com-
ng from repetitions: NM 016055, NM 016080, NM 152373,

M 002938, BC040844, NM 152763, NG 002692, BC0-
4213, NG 002660, NG 002481, BC007770, BC015575,
C004538, BC063108, NG 002361, NG 001569, BC056270,
M 153834, HSA519841, BC053904, BC062471, BC062325,

F

y and Chemistry 30 (2006) 313–320 319

C057825, NG 001151, NG 001292, NM 005337, NM
32293, NM 032292, NM 198197, NM 032423, NM 021807,
M 015435, NM 024622, NM 030633, NM 172366, NM
77959, NM 005337, NM 003318, AF435957, AF497481.

ppendix B

Accession numbers of the sequences used for com-
utational tests. Set B—sequences contain errors coming
rom repetitions: NM 002052, NM 003008, NM 183353,
C008923, BC012982, NG 002363, BC009854, NM 194310,
M 006402, NM 194300, NM 020690, NM 005745, BC-
00774, NM 182498, BC047640, NM 004902, NM 020713,
C062620, NM 032866, NG 000980, BC026171, NM
00321, BC063041, BC005805, NM 144767, BC001077,
M 032349, BC053852, NM 021934, NM 015698, BC-
50425, NM 018046, NM 004663, BC007398, NM 016428,
M 177423, BC026078, NM 031205, BC041372, NM
33318.
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