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Abstract

Recently we observe a great breakthrough in biology connected with the studies on genomes. These achievements

would be impossible without an input from other sciences, combinatorial optimization being one of them. This study is

devoted to a presentation of the most important (to our opinion) area of the computational biology, mostly connected

with DNA studies, where combinatorial optimization impact was clearly visible. They include: sequencing DNA chains,

assembling them, genome mapping and sequence comparison.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years several spectacular events con-
nected with genome studies have occurred, reading

the human genome being one of them. Biological

sciences got a great impact on many aspects of the

everyday life. Since a discovery by Watson and

Crick their double helix model of a DNA chain

[40], biology has made a great progress in under-

standing foundations of life. The progress would
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have not been possible, however, without a help

from other areas of science. Here, let us mention

physics, chemistry and last but not least comput-
ing sciences. We will concentrate on the impact on

biology of the latter science, especially its part

connected with operational research and combina-

torial optimization. Since ties between biology and

combinatorial optimization may be found in very

many fields of biology, we will concentrate on the

most important (to our opinion) examples of the

application of combinatorial optimization meth-
odology in modeling and solving problems aris-

ing in the context of the computational biology.

They include: sequencing DNA chains, assembling

them, genome mapping and sequence comparison.

The aim of the paper was to present these prob-

lems in a way that is interesting to those working

in the field, as well as non-specialists which may
ed.
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become interested by the new exciting applications

of operational research. Thus, an up to date review

of research in the field is complemented by many

examples allowing one for a better understanding

of the concepts introduced. An interested reader is

referred also to the recent monographs, which
describe the above and other problems in a greater

detail: [18,20,30,33,39].

The organization of the paper is as follows.

Section 2 contains a biological primer. Section 3

discusses the DNA sequencing problem, while

Section 4 presents the assembling one. Genome

mapping and sequence comparison are considered,

respectively, in Sections 5 and 6.
2. Biological primer

Biology is a science that provides an under-

standing of the nature of all living things at dif-

ferent levels – from molecules to cells, individuals

and populations. It is accepted that all living
organisms are composed either of a single cell or a

collection of them. At this stage of development a

primary interest of biology lies in molecules and

cells, thus, we have molecular biology. With the

aid of computing science models and tools (com-

binatorial optimization being one of its main

components) it creates so called computational

molecular biology.
One of the main objects of the study of com-

putational biology are DNA chains, coding genetic

information of living organisms. DNA is a string

composed of letters (nucleotides) being members of

the alphabet {A, C, G, T}. Short single-stranded

DNA molecules are called oligonucleotides. The

entire DNA of the organism is called its genome

and its length may reach billions of nucleotides (or
base pairs). The same genome is contained in each

cell of a given living organism (e.g. human beings

have trillions of cells). DNA appears in a form of

a double helix, i.e. a double strand, where A in

one chain can be bound to T only, and C to G,

respectively. This fundamental law of a DNA

construction was discovered by Watson and Crick

[40]. Knowing, thus, one strand of a DNA helix,
the second (complementary) can be easily recon-

structed. What is more, this property of a single
strand (trying to bind to a complementary strand)

called a hybridization, may be used in laboratories

in many processes leading e.g. to a reconstruction

of an unknown chain.

The genetic information contained in DNA is

then used, as stated by the Central Dogma of
Molecular Biology, to produce RNA and ulti-

mately proteins. The latter are the main construc-

tion material of living organisms, deciding of their

functioning as well.

In the following, we will concentrate on DNA

analysis and reconstruction, since these processes

require a considerable input from the combinato-

rial optimization side. We will consider combina-
torial problems connected with DNA reading,

sequence comparison and phylogenetic analysis.

Reading sequences of genomic DNA is usually

a starting point for further molecular biology re-

search. But reading DNA sequences itself is not a

trivial task and may involve some sophisticated

procedures. It follows from the fact that it is not

possible to read a sequence of nucleotides directly,
e.g. using a microscope. Hence, some indirect

methods have to be used. The process of reading

the sequence of a genome is usually divided into

three stages: mapping, assembling and sequencing.

The process of reading a long piece of DNA

usually starts with cutting it into smaller pieces of

size about 100 000–1 000 000 nucleotides. (Let us

note that biological experiments take effects usu-
ally on millions of copies of given types of mole-

cules.) During the cutting process the information

about the order of these pieces is lost. But, as one

can guess, it is necessary to recover this informa-

tion and this is done by mapping procedures.

When mapped, the fragment is picked up and cut

into much smaller parts of length about 40 000

nucleotides. Again, mapping is necessary to re-
cover the order of the pieces obtained by the sec-

ond-level cutting [20].

Since sequencing methods allow determining

sequences of lengths not greater than 1000 nucle-

otides, fragments of lengths about 40 000 base

pairs cannot be directly sequenced. So, it is nec-

essary to break them into pieces of appropriate

lengths. This is done randomly. At this stage one
gets DNA fragments suitable for sequencing. After

sequencing the short fragments are tried to be
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ordered in such a way that they form the initial

fragment of length about 40 000 in an assembling

process.

At this moment let us point here to the very

important problem of sequence comparison (align-

ment) occurring especially at the assembling level
of the DNA reading process. It will be considered

after a presentation of all the stages of DNA

reading.
3. Sequencing

The most modern biochemical method allowing
to get the information about a sequence of the

considered DNA fragment is a hybridization

experiment [17,27,36]. (In the labs DNA sequences

are still sequenced by the gel electrophoresis ap-

proach which, however, leads to many errors.) The

aim of this experiment is to detect all oligonucle-

otides of a given length l (usually 8–12 bases)

composing a DNA chain (a few hundreds of
bases). For this purpose the oligonucleotide library,

consisting of all 4l possible single-stranded DNA

fragments of length l, is constructed in a form of

bio-chip. Next, the library is compared (in the

sense of hybridization) with many copies of the

DNA chain. During the hybridization, oligonu-

cleotides from the library complementary to frag-

ments of the DNA chain join its copies. These
oligonucleotides, written as words over the

alphabet {A, C, G, T}, make a set called spectrum,

which, of course, may contain erroneous data.

There are two types of error: a negative error,

i.e. a deficit in a spectrum, and a positive error, i.e.

an excess in a spectrum. Usually a spectrum con-

tains both types of error. The negative error ap-

pears, for example, if an oligonucleotide exists
more than once in an original sequence. Because

spectrum is a set, only one of its elements corre-

sponds to this oligonucleotide. An oligonucleotide

complementary to the DNA chain may also be not

detected as the element of a spectrum as a conse-

quence of an incomplete hybridization reaction.

The positive error is a non-complementary oligo-

nucleotide which joins the chain, i.e. having not all
its bases complementary to the considered DNA

chain. Therefore, as a result of the hybridization
experiment, one obtains a spectrum where not all

words contained in the original sequence appear,

and in which words not contained in the original

sequence appear. Usually no additional informa-

tion about spectrum is known. The length n of the
original sequence can be detected using gel elec-
trophoresis.

The computational phase of a sequencing pro-

cess consists in the reconstruction of an original

sequence on the basis of the spectrum. Older

algorithms solving the sequencing problem as-

sumed only the ideal spectrum, i.e. the one without

errors. It consists of n� lþ 1 different words and

to reconstruct an original sequence, neighboring
words should overlap on l� 1 letters. The first

sequencing algorithm has been presented by Bains

and Smith in [1]. It builds a search tree from the

spectrum, where two oligonucleotides constituting

its nodes are joined by an arc if the l� 1 last letters

of the predecessor coincide with the l� 1 first

letters of the successor. No element can be in-

cluded twice into the current path. In the root, the
element beginning the original sequence is placed,

if it is known. If not, jspectrumj trees differing by
the root must be constructed. The solution is a

path from the root to a leaf, containing all spec-

trum elements (Example 1). The next approach to

the sequencing problem of Lysov et al. [25] used a

transformation to a known problem from graph

theory. In a directed graph, built from the spec-
trum, a Hamiltonian path is looked for. Each ol-

igonucletide corresponds to a different vertex in

this graph labeled by a string corresponding to this

oligonucleotide. Two vertices u and v are joined by
an arc ðu; vÞ if the l� 1 last letters of the label of u
coincide with the l� 1 first letters of the label of v
(Example 1). In [15] the method of Drmanac et al.

similar to the one of Bains and Smith, but avoiding
excessive operations, has been proposed. Subpaths

between branches of the search tree are fixed and

represented by words of length l or longer. The
nodes of the tree are joined if the corresponding

words overlap on l� 1 letters (Example 1).

Example 1. Let us assume, that the hybridization

experiment has been carried out without errors
for the original sequence ACTCTGG, and that

we know the starting element ACT. The ideal
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spectrum is {ACT, CTC, CTG, TCT, TGG}. We

see, that jspectrumj ¼ n� lþ 1, where n ¼ 7 and

l ¼ 3. The method of Bains and Smith explores the

tree from Fig. 1.

The lower path goes through all elements of the
spectrum, so it is the solution. The original se-

quence can be reconstructed reading labels of the

nodes from the root to the leaf.

The graph corresponding to the method of

Lysov et al. [25], built on the basis of the same

spectrum, has been presented in Fig. 2.

In the graph, there exists exactly one Hamilto-

nian path, what corresponds to one sequence of
given length n, possible to reconstruct on the basis
of the spectrum.

The method by Drmanac et al. searches for the

solution in the tree shown in Fig. 3. Similarly, the

solution is the path from the root to the leaf

containing all the spectrum elements. Here, it is the

path (ACT, CTCT, CTGG) corresponding to se-

quence ACTCTGG.

The three approaches accept as input data only

the ideal spectrum, but despite this they have

exponential complexity. The first and only poly-

nomial time algorithm solving the sequencing

problem without errors has been presented by
Fig. 1. The search tree from the method of Bains and Smith [1].

Fig. 2. The graph from the method of Lysov et al. [25].

Fig. 3. The search tree for the method of Drmanac et al. [15].
Pevzner in [29]. In this method a directed graph is

constructed, and an Eulerian path is looked for.

Now, each oligonucleotide corresponds to a dif-

ferent arc, leaving the vertex labelled by its first

l� 1 letters and entering the vertex labelled by its

last l� 1 letters (Example 2). Thus, the number of
vertices in the graph is equal to the number of all

possible subwords of length l� 1 in the spectrum.

In the original paper Pevzner did not prove the

correctness of the transformation proposed. This

problem was addressed later in [10], where the

equivalence of the two representations was proved

using the concept of directed line graphs. More

formally, a directed line graph is Hamiltonian

(Lysov model) if and only if its original directed

graph is Eulerian (Pevzner model). As a byprod-

uct, a new class of directed graphs, called DNA

graphs, which are used for the representation of

the results of the ideal (without errors) hybridiza-

tion experiment, was defined. These graphs are

induced subgraphs of de Bruijn graphs [14] and,

moreover, Lysov graphs are the DNA graphs.
Their properties were analyzed in a number of

papers [6,10,28], but some problems remain open.

In his paper, Pevzner [29] proposed also a

method for a spectrum with negative errors, but it

not always lead to the solution of the problem and

it may be treated only as a heuristic approach.

(The sequencing problem in the presence of nega-

tive or positive errors in the spectrum has been
proved to be strongly NP-hard in [12].) Each

negative error causes the lack of one arc in the

graph. Pevzner looks for the missing arcs solving a

flow problem in a network based on a bipartite

graph. The bipartite graph is constructed from the

vertices of the original graph, having different

numbers of entering and leaving arcs. The num-

bers of vertices used are equal to the values of
these differences. Arcs in the bipartite graph leave

the vertices with greater in-degree and enter the

others. The arc costs are set to the value of a

minimum shift corresponding to a maximum

overlap of vertex labels. If the flow cost is equal to

n� lþ 1� jspectrumj, the original graph is com-

pleted by the arcs used by the flow. Next, an

Eulerian path can be looked for in the graph,
under the condition that it is connected (Example

2).
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Example 2. For the ideal spectrum from Example

1: {ACT, CTC, CTG, TCT, TGG}, the graph

created by the Pevzner’s method is presented in

Fig. 4.

The Eulerian path in this graph corresponds to
the original sequence ACTCTGG. Let us assume

now, that as a consequence of an experimental

error we loose the element CTG. To complete the

graph we should find a flow of cost 1 in the net-

work given in Fig. 5.

Following source s we have the vertices of

greater in-degree in the original graph (i.e. the

graph in Fig. 4 with arc CTG deleted), before sink
t the vertices of greater out-degree. The arcs of

costs greater than 1 represent in fact a sequence of

arcs and vertices, not necessarily appearing in the

original graph. Capacities of all arcs are equal to 1.

There exists one flow pattern of value 1 and cost 1;

it contains arc (CT,TG) corresponding to the

missing vertex CTG in the original graph.

The first method assuming existence of positive

errors in the spectrum was presented in [16].

However, the error model was very restricted. A

positive error could appear only together with an

associated negative error, and the improper letters

could only be the first or the last ones. Three

negative errors in this model could not appear

consecutively. The algorithm in a few steps
Fig. 4. The graph obtained by the Pevzner’s method for the

spectrum from Example 1.

Fig. 5. The network obtained by the Pevzner’s method for the

graph given in Fig. 4.
assembled subsequences into a larger contigs and

removed obvious errors.

The three following algorithms require addi-

tional information about spectrum elements. The

first of them, described in [37], has to know a

probability of a hybridization of all 4l oligonu-
cleotides (they could be read from the hybridiza-

tion image and come from the brightness of its

points). The method generates all possible 4n se-

quences and associates with them values being the

sums of the probability degrees of all oligonucle-

otides composing the sequences. The sequence of

maximum value is taken as the solution. However,

the authors admitted that the method does not
work in practice for n greater than 20, because of
its large consumption of time and memory. The

algorithm from [24], besides the knowledge about

error types in the spectrum, requires the knowl-

edge of the percentage of errors within the spec-

trum (separately for positive and negative ones).

Any negative errors are permitted in this method,

the model of positive errors has been taken from
[16]. The method has been derived from the Pevz-

ner method for negative errors [29], thus cannot be

treated as an exact one. The directed bipartite

graph representing the whole spectrum is created,

and to every arc the probability of existence in a

solution is assigned. The best assignment in this

graph, corresponding to the best matching of oli-

gonucleotides, is looked for using the Hungarian
method. The probabilities of arcs are then updated

and a new assignment is chosen, until convergence

of successive assignment values. The next algo-

rithm [21] assumes that approximate numbers of

appearances of all oligonucleotides in the original

sequence are known. It accepts any negative errors

in the spectrum. In the graph built on 4l�1 vertices,

where arcs correspond to spectrum elements and
have assigned the already mentioned approximate

numbers, the most probable path is looked for.

The algorithms mentioned below do not require

any additional information besides the spectrum

and the length of the original sequence; they accept

any error type and are based on the approach

proposed in [8]. Its criterion function to be maxi-

mized is the number of spectrum elements com-
posing a sequence not longer than n. The problem
of DNA sequencing is reduced here to a variant of



590 J. Bła_zewicz et al. / European Journal of Operational Research 161 (2005) 585–597
prize collecting traveling salesman problem

(known also as a selective traveling salesman

problem) in a special graph constructed on the

basis of the spectrum. The prize collecting traveling

salesman problem (PCTSP in short) differs from

the classical version of TSP by the existence of
profit values on nodes, besides usual penalties

(costs) on directed arcs [23]. The goal is to find the

most profitable simple path (total profit is maxi-

mum) which does not exceed the assumed cost

(penalty). In the case of the DNA sequencing

problem, Lysov model is used but now all the di-

rected arcs between vertices are possible, their cost

being equal to a minimum shift between the two
labels of the two vertices connected by the arc. A

cost greater than one corresponds to a missing

oligonucleotide(s). Profits of all vertices are set to

1. Now, one looks for a most profitable simple

path (a maximum number of oligonucleotides

from the spectrum will be chosen) of total cost not

exceeding n� l (the length of the constructed se-

quence will not exceed value n). Example 3 gives
more details of this construction.

Example 3. Once more let us consider the spectrum

from Example 1, but now let oligonucleotide CTC

be lost, while a new (error) element GAT is re-

corded. Thus, the erroneous spectrum has the form

{ACT, CTG, GAT, TCT, TGG}. The corre-

sponding graph for the PCTSP is shown in Fig. 6.
In the graph given in Fig. 6 there are two paths

being equivalent solutions for the corresponding

prize collecting traveling salesman problem. One of

them, i.e. (ACT, TCT, CTG, TGG), leads to the

desired sequence.

In the original paper [8] an exact method based

on branch and bound has been proposed. The
Fig. 6. A reduction from the erroneous spectrum to PCTSP.

Solid arcs have costs equal to 1, while dashed ones equal to 2.

For the sake of simplicity arcs with costs equal to 3 are not

drawn.
same criterion function has been used in a few

metaheuristic approaches: the tabu search algo-

rithms [3,9] and the hybrid genetic algorithm [13].

The heuristic algorithm from [4] composes a

solution from the most probable segments created

by maximization of a thickness function.
To this end let us also mention a totally new

approach to the hybridization stage of the

sequencing problem, based on equal melting tem-

peratures instead of lengths of oligonucleotides

composing the library [7]. More stable duplexes

should lead to spectra containing less experimental

errors.
4. Assembling

As mentioned earlier, by using sequencing

procedures it is possible to read DNA sequences of

length up to 1000 nucleotides. Obviously, there is a

need to assemble the sequenced short fragments

into longer ones. This is probably the most difficult
stage of reading genomic sequences. There are

many problems very difficult to handle. One of

them is how to manage errors following from

subsequence repetitions. Known assembling algo-

rithms usually treat long repetitive fragments as

several occurrences of the same subsequence. It

means that as a result the algorithms produce se-

quences containing only one copy of such a
repetitive fragment.

In general, the assembling approach consists of

three main steps: overlap detection, fragment lay-

out and deciding the consensus [20].

In the first step, for each ordered pair of frag-

ments it is determined how well they match each

other. As the fragments for sequencing are ob-

tained by random cutting of a great number of
longer sequences, the short sequenced fragments

should overlap. The goal of this step is to find the

best overlap of each pair. To be more precise, for a

pair of sequences ðs; tÞ the goal is to find a suffix of
s and a prefix of t whose similarity is maximal over
all pairs of suffices and prefices of these two se-

quences [20]. The similarity is usually defined in a

similar way to those used in determining sequence
alignments (which are described later). Observe,

that due to sequencing errors it is not enough to
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find the largest suffix of the first sequence that

exactly matches the prefix of the second one.

Example 4. Fig. 7 shows an example of assembling

a few DNA fragments. Overlaps between the

fragments usually are not exact, they may contain
mismatches (when two overlapping letters are

different) and gaps (when a letter appears against a

space). Table 1 contains scores for selected over-

laps of the fragments, with the assumed values of

match¼+1, mismatch¼)1 and gap¼)1. The

consensus sequence for the assembly is written

below the line on Fig. 7.

In the second step of the assembling procedure,

an ordering of the short fragments is determined.

At this stage of the approach greedy algorithms

are usually used. One approach is as follows [20].

A pair of sequences with the highest suffix–prefix

similarity is chosen. The two sequences are

merged. Next, the second most similar (in ‘‘suffix–

prefix’’ sense) pair is chosen and merged. At this
point one may obtain one contig consisting of

three fragments or two distinct contigs containing

four fragments. Then, the third best matched pair

of sequences is determined and merged, and so on.

In this approach only the information about

similarity determined in the previous step of the
Fig. 7. Example of a DNA sequence assembly.

Table 1

Selected overlaps of the fragments from Fig. 7

s t Shift Similarity

score

CTCAAGGAT GCATCAGGA 5 +2

CTCAAGGAT AACATTAAG 3 +2

GCATCAGGA GGAACTT 6 +3

GGAACTT TTTC 5 +2

AACATTAAG GCATCAGGA 2 +2

AACATTAAG GGAACTT 8 +1
approach is used. It means that if two contigs or

one contig with a single fragment are merged, then

the information about similarity of these strings is

not used. This information would increase the

quality of the layout obtained, but, on the other

hand, the approach would be more time consum-
ing.

In the last step of the approach, a sequence of

nucleotides of the assembled longer fragment is

determined [20]. The layout determined in the

second step assigns each nucleotide of every short

fragment to a unique position in the target se-

quence. If all nucleotides assigned to a particular

position are the same then the target sequence is
recovered. Otherwise, when different nucleotides

are assigned to a given position, one particular

nucleotide has to be chosen. It may also happen

that it is impossible to determine such a nucleotide

because there is too much variety of different nu-

cleotides assigned and none of them is dominant.

The simplest way to determine a proper nucle-

otide is to check the frequency of each character at
each position of the layout and let the researcher

decide how to use such information. Another ap-

proach is to determine regions of the layout where

disagreements are large. For each such region the

subsequences contained in it are multiple aligned.

Observe that this may change the layout a bit be-

cause in the first step of the assembling procedure

only pairwise comparisons were done. Another
approach is based on remerging the subsequences

in the layout. This is done similarly like in the

second step, but this time each fragment is merged

to its contig using an alignment of itself with a

profile of fragments already present in the contig,

which is less time consuming than making a mul-

tiple alignment.

At the end of this subsection let us shortly de-
scribe three particular assembling methods, which

use some of the ideas described for the sequencing

stage (cf. Section 3).

In [26] the problem was solved by a maximum-

likelihood reconstruction algorithm. The multi-

graph is constructed, in which vertices correspond

to DNA fragments being assembled and edges

correspond to their overlaps. The overlaps are al-
lowed between fragments from the same DNA

strand or from different strands. Next, the graph is



(a)

592 J. Bła_zewicz et al. / European Journal of Operational Research 161 (2005) 585–597
reduced in a few steps. First, the vertices corres-

ponding to fragments contained in longer ones

are deleted. Next, the transitive edges are removed,

i.e. the edge ðu; vÞ while ðu;wÞ and ðw; vÞ exist in
the graph. And finally, unique subpaths are re-

placed by single vertices. In the new graph, the
shortest sequence corresponds to a simple path

maximizing overlaps of its edges. The most likely

solution is looked for by a branch and bound

procedure.

The method proposed in [22] applied the method

from [29] to the sequence assembly problem. Every

input sequence of length n is represented there as a
collection of n� lþ 1 oligonucleotides of length l
composing the sequence. Next, a graph is built

from these collections and an Eulerian path is

looked for. In order to save information about the

input sequences, a large value of l is preferred. This
method works properly only for instances without

sequencing errors.

The next method, described in [31], solves the

assembly problem for instances including several
errors, and even for whole genomes including long

repeats. It eliminates errors from an instance and

looks for the Eulerian superpath in a graph. The

error correction stage consists in a modification of

the instance such that in a relatively small number

of mutations in fragments, the maximum number

of potential errors coming from the sequencing

stage are eliminated. The effectiveness of the
mutations is measured by the overall number of

oligonucleotides in the instance: the change of one

erroneous nucleotide usually eliminates a series of

oligonucleotides. The graph is constructed in a

similar way as in the Pevzner’s method, and in

addition a collection of paths in the graph, corre-

sponding to the DNA fragments to be assembled,

is stored. The goal is to find an Eulerian path
containing all the stored paths as its subpaths.
(b)

Fig. 8. An example of mapping by hybridization: (a) clones A,
B, C, D, E, F and G with hybridizing probes 1, 2, 3, 4, 5 and 6;

(b) the resulting interval graph.
5. Genome mapping

As we said, mapping is applied at the highest

level of the process of reading genomic sequences.

The goal of the mapping procedure is to recover an
order of relatively long DNA fragments lost during

cutting a DNA molecule. This goal is reached by
determining the location of markers. The latter can

be defined and then used to construct a physical

genome map in two ways: either by hybridization

techniques or by restriction site analysis.

In the first approach, one must verify whether

or not some small markers (called probes) hybrid-
ize with the analyzed DNA fragment. In general,

the mapped DNA molecule is broken up into

fragments of different sizes. Each resulting frag-

ment is cloned and as a result several copies

(clones) are obtained, forming a clone library. A

hybridization experiment is made to check if

known probes hybridize with particular clones.

The above information is then translated into the
DNA molecule map, i.e. an ordering of clones (and

hence probes) in the molecule. A very interesting

way of representing the above hybridization pro-

cess by means of special graphs was proposed by

Benzer [2]. Here, each clone corresponds to a node

of a graph and two nodes are joined by an arc if

and only if there exists a probe hybridizing with

two clones. In an ideal case, if the experiment had
no errors, the resulting graph will be an interval

graph, i.e. one where nodes correspond to intervals

drawn in line and two nodes are joined by an

undirected arc if and only if they correspond to

intervals with a non-empty intersection (see

example in Fig. 8). The inventor of interval graphs

(S. Benzer) used them in the analysis of the genetic

map of region II of phage T4.
What is more interesting, probes and clones can

be described by matrix



Fig. 9. An example of a double digest problem instance. A

DNA sequence is cut by enzyme a, enzyme b and by both en-

zymes. Three multisets of fragment lengths are obtained:

A ¼ f1; 2; 3; 3; 3g, B ¼ f1; 1; 4; 6g and C ¼ f1; 1; 1; 1; 1; 2; 2; 3g.
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A ¼ ½aij�s	t;

where

aij ¼
1 if probe j hybridizes with clone i;

0 otherwise;

�
s – a number of clones;

t – a number of probes:

Finding a genetic map is now equivalent to

finding a permutation of columns (probes) of

matrix A, for which in each row ones appear con-

secutively without breaks, i.e. the matrix has the

consecutive ones property (C1P for short). In case

of an ideal hybridization experiment matrix A has

C1P and such a permutation can be found in
polynomial time (e.g. [19]).

Let us now come back to the second way of

genome mapping, i.e. the restriction site analysis.

The input data are in this case the lengths of the

fragments and information about the method used

to cut the long DNA by restriction enzymes. There

are two main approaches known in the literature:

double digest method and single digest method

[33,39]. In the former one the target DNA mole-

cule is cut by two enzymes, let us say a and b. As a
result one gets three sets of DNA fragments, i.e.

one coming from the cuts of the molecule by en-

zyme a, one from the cuts by enzyme b, and one

from the cuts by both enzymes. As we said before,

one knows only the lengths of the fragments. Let

us formally define the double digest problem [39].
Let A ¼ fa1; a2; . . . ; amg and B ¼ fb1; b2; . . . ;

bng be multisets of lengths of restriction fragments
obtained by cutting the DNA molecule by enzymes

a and b, respectively. Moreover, let C ¼ fc1;
c2; . . . ; ckg be a multiset of lengths of fragments

obtained by cutting the molecule by both enzymes.

Let w and x be permutations of elements from sets

f1; 2; . . . ;mg and f1; 2; . . . ; ng, respectively. By
ordering multisets A and B according to permu-

tations w and x one obtains a set of possible

locations of the cut sites:

S ¼ s : s

(
¼

X
16 i6 p

awðiÞ _ s ¼
X

16 i6 q

bxðiÞ;

06 p6m; 06 q6 n

)
:

Let us number the elements of set S such that for

every pair fsi; sjg 2 S, si 6 sj iff i6 j, for 06 i; j6 k.
The double digest induced by a pair ðw;xÞ is

multiset

Cðw;xÞ ¼ fciðw;xÞ : ciðw;xÞ ¼ si � si�1;

16 i6 kg;
where for every fciðw;xÞ; cjðw;xÞg, ciðw;xÞ6
cjðw;xÞ iff i6 j, for 06 i; j6 k.
The solution of the problem is pair ðw;xÞ such

that C ¼ Cðw;xÞ.
Intuitively, a solution to the double digest

problem consists of permutations of elements from

the three sets such that if they were placed on a line

the fragments from sets corresponding to enzymes

a and b would ‘‘produce’’ the fragments from the

third set as shown in Fig. 9.

Let us comment here on the complexity of the

double digest problem. It is easy to notice that the
decision version of the problem is a trivially easy

problem, because if multisets A, B and C come

from real digestion experiments, the answer to the

question concerning the existence of proper per-

mutations w and x is always positive. On the other

hand, the search version of the double digest

problem (i.e. finding permutations w and x) is NP-
hard in the strong sense. The latter result was
obtained by a quite involved technique using

polynomial Turing reduction from the Partition

problem [11].

From the practical point of view the double

digest problem besides its high complexity has also

another drawback which is its high number of

alternative solutions. It grows exponentially with

the number of restriction sites [32].
In the single digest method only one enzyme is

used but the resulting digested fragments of the



(b)

(a)

Fig. 10. An example of an instance of simplified partial digest

problem: (a) DNA molecule with restriction sites to be found

(the numbers indicate restriction fragments lengths observed in

the biochemical experiment); (b) DNA fragments cut by the

enzyme in short chemical reaction.
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target DNA are divided into several parts. In each

of them different time spans for the chemical

reaction is allowed. The spans are chosen in such a

way that the shortest one is enough for the enzyme

to cut DNA in one restriction site only, the second

time span allows the enzyme to cut in two sites and
so on. The longest time span is enough for the

enzyme to cut the target DNA in all restriction

sites. As a result a collection of restriction frag-

ments is obtained. Similarly like in the double

digest method, only lengths of the fragments are

known. A main disadvantage of this approach is a

difficulty to choose proper time spans, which in

practice is almost impossible. Computational
complexity of single digest problem is an open

question, while the number of alternative solutions

generated (i.e. maps) is bounded above by a

polynomial in the number of restriction sites [34].

Recently, a new restriction mapping method

called simplified partial digest method has been

proposed [5]. In this method only one restriction

enzyme is also used but in this case only two sets of
target DNA are digested. For one of these sets the

time allowed for the reaction is chosen in such a

way that the molecules are cut in at most one site.

The time span for the other set is long enough so

that the enzyme cuts the molecules in all restriction

sites. We see that from a biochemical point of view

this approach is much more realistic than the sin-

gle digest method.
Let us define formally the simplified partial di-

gest problem [5]. Let C ¼ fc1; c2; . . . ; c2Ng be a

multiset of fragment lengths obtained from the

short digest reaction (excluding the length of the

whole DNA strand) and let K ¼ fk1; k2; . . . ; kNþ1g
be a multiset of fragment lengths coming from the

long digest reaction, where N is the number

of restriction sites in the target DNA. Further-
more, let us sort elements of multiset C in non-

decreasing order. In this way we obtain list A ¼
ha1; a2; . . . ; a2N i of lengths of restriction fragments.
It is easy to see that in the ideal case (no

experimental errors assumed) to each element ai

from A there corresponds element a2N�iþ1 such that

ai þ a2N�iþ1 ¼ L, where L is the length of the target
DNA strand. We will call such fragments com-

plementary and denote them by fai; a2N�iþ1g. Each
pair of complementary fragments corresponds to
one restriction site in the target DNA. Obviously,

the real order of such fragments in the target

strand is unknown. Let Pi ¼ hai; a2N�iþ1i and
P2N�iþ1 ¼ ha2N�iþ1; aii denote permutations of pair
fai; a2N�iþ1g and let us call ai the predecessor in Pi.

Let us denote by Q ¼ fq1; q2; . . . ; qNg the set of

complementary fragment permutations, where

qi ¼ Pi or qi ¼ P2N�iþ1 for i ¼ 1; . . . ;N . Moreover,

let X ¼ hx1; x2; . . . ; xNi be the sorted list (in non-

decreasing order) of predecessors from each per-

mutation in Q. To each set Q corresponds multiset
R ¼ fr1; r2; . . . ; rNþ1g of integer numbers such that
r1 ¼ x1, ri ¼ xi � xi�1 for i ¼ 2; . . . ;N and rNþ1 ¼
L� xN .
Now we can formulate the SIMPLIFIEDIMPLIFIED PAR-AR-

TIALTIAL DIGESTIGEST PROBLEMROBLEM (SPDP) as follows:

Given multisets C and K of fragment lengths,

find set Q such that the corresponding multiset R is
equal to K.

Fig. 10 shows an example of an instance of

simplified partial digest problem.

Complexity of the above problem is still an

open question as well as the number of solutions

generated. On the other hand, computational

experiments proved a high efficiency of the ap-

proach proposed and its high robustness for the
experimental errors [5].
6. Sequence comparison

The knowledge about genomic sequences with-

out understanding their meaning would be almost
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useless. So, after sequencing a new gene or genome,

scientists usually try to understand information

encoded. But this task is much more challenging

than reading sequences and, unfortunately, it is also

much less developed. No one knows the ‘‘language

of DNA’’, so nowadays it is impossible to guess the
function of a new gene simply looking at its nucle-

otide sequence. Instead, scientists try to find some

analogies between this gene and genes which are

known for some time as well as their functions. At

this point a questionmay arise: what is the source of

the knowledge about functions of the ‘‘old’’ genes?

The answer is: it could be discovered in a similar

way or in series of biochemical experiments. But the
goal is to develop methods for automatic gene

function discoveries, since biochemical experiments

are time and money consuming and they often

provide non-precise results. We see that sequence

comparison is themost commonmethod for looking

for gene functions. And it is also one of the first

problems in molecular biology which attracted the

attention of mathematicians.
Sequence comparison is usually done by se-

quence alignment. The goal of such an alignment is

to match two or more sequences in such a way that

in the corresponding positions in these sequences

there will be the same characters, i.e. nucleotides or

aminoacids. Usually, it is necessary to insert some

gaps (i.e. spaces) in order to make such an align-

ment better (see Fig. 11). Obviously, for a given set
of sequences there is a number of possible align-

ments. One is usually interested in finding the best

of them. But the question is: which one is the best?

The answer depends on a biological context. But, in

general, an objective function based on some scor-

ing scheme is used. In the simplest form the scheme

assigns some points to every column in the align-

ment, depending on what the column contains:
match, mismatch or a gap. For example, the scheme

may assign ‘‘+1’’ for a column with identical char-
Fig. 11. An example of an alignment of two sequences a ¼ CAAGCA

AATGTCAGCG. In the third line are shown scores for a match (‘‘+

mismatch (‘‘#’’ corresponds to )2). The value of the objective functio
acters, ‘‘)2’’ for a column with different characters,
and ‘‘)1’’ for a column containing a gap. A sum of

the scores of all columns is a similarity of the se-

quences and it is a value of the objective function.

Usually, one is interested in finding an alignment

with the maximum value of similarity. There are
different scoring schemes and there is no scheme

which would be the best one for all applications.

The scheme should be chosen depending on the

biological application of the alignment.

Alignments of pairs of sequences are usually

constructed by methods based on dynamic pro-

gramming [33,39]. But in practice, researchers are

interested in alignments of a greater number of
sequences, which help them to find some similari-

ties in sequences coming from families of organ-

isms. Multiple sequence alignments are usually

time consuming. One should also notice that not

only alignments of nucleic acids are made. Very

often aminoacid sequences are compared. Molec-

ular biologists are often interested in discovering

some important regions in polypeptide sequences.
It is known that some subsequences in aminoacid

strands play a crucial role in the functionality of a

given protein. Discovering such regions is very

important for understanding the mechanism of

this functionality.

Some proteins are present in different species.

Their aminoacid sequences need not be identical,

but usually they contain some well-conserved re-
gions identical or almost identical in all of them.

It should be also noticed that comparing ami-

noacid sequences is more complicated than com-

paring nucleotide ones. This is due to the fact that

there are 20 types of aminoacids and only four

types of nucleotides and some types of aminoacids

may be thought of as equivalent in some sense.

Hence, even if in an alignment there are different
aminoacids at a given position, they may some-

times be treated as a match.
CACTTGATGTACAGTCG and b ¼ CAACTAGCAGTTGT-

’’ corresponds to +1), a gap (‘‘)’’ corresponds to )1) and for a
n in this case is equal to 10.



Fig. 12. Example of some well-conserved motifs in DNA sequences.
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The alignment discussed above is a global

alignment – whole sequences are compared with

each other. But in biological practice it is inter-

esting to find some subsequences in a set of se-

quences that are the most similar to each other. As
an example, we may consider the problem where

one looks for some important regions in a protein

family, as mentioned above. This kind of align-

ment is called a local alignment. It has also an

application in evolutionary research. This is be-

cause related organisms have some common fea-

tures, which have their origins in nucleotide and

aminoacid sequences. Hence, some fragments of
these sequences coming from different but related

species have some similarities. Analyzing these

similarities allows for finding degrees of affinity of

the species. In this way their phylogenetic trees can

also be constructed (we will say more about these

problems in the next section).

A slight modification of the dynamic program-

ming method proposed for the global alignment
may be used for constructing local alignments [35].

Similar to the local alignment problem is

searching for motifs. There are many variants of

such searching procedures. In the simplest case,

the motif is in fact a pattern which has to be found

in every sequence from a given set. There are many

well-known efficient algorithms for this problem

(known for years in computer science community).
In a more complicated variant the motif is de-

scribed as a regular expression. In this case, the

search can be also done in polynomial time, since

parsing regular grammars is a computationally

easy problem. But the most interesting, from a

biological viewpoint, is the variant of the problem

where the structure of the motif is unknown. One

knows only that there should be some similar
subsequences in a given set of sequences. It is often

the case in searching for conserved regions in

protein families or in searching for regulatory re-

gions in DNA. In the latter case, one knows that in

a set of DNA sequences coming from different
organisms (all of them containing the same or a

similar gene) there must also exist some important

subsequences preceding the gene which controls a

transcription of it. Here, an approach using suffix

trees [38,41] is extremely useful. Fig. 12 shows an
example of motifs in DNA sequences.
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