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Abstract

We investigate the computational complexity of a combinatorial problem that arises in DNA sequencing by hybridization: The
input consists of an integer ` together with a set S of words of length k over the four symbols A, C , G, T . The problem is to decide
whether there exists a word of length ` that contains every word in S at least once as a subword, and does not contain any other
subword of length k.

The computational complexity of this problem has been open for some time, and it remains open. What we prove is that
this problem is polynomial time equivalent to the exact perfect matching problem in bipartite graphs, which is another infamous
combinatorial optimization problem of unknown computational complexity.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is centered around two algorithmic problems. The first problem is the Exact Perfect Matching problem
that asks whether a given edge weighted graph possesses a perfect matching with weight exactly equal to a
given bound. This problem is of great practical importance, and it has applications in bus-driver scheduling, in
biomedical image analysis, and in the Ising model in theoretical physics; see Leclerc [10]. In 1982, Papadimitriou
and Yannakakis [14] observed that this problem is NP-hard when the weights are encoded in binary, and they asked
about its complexity when the weights are encoded in unary. Barahona and Pulleyblank [2] and Leclerc [11] show that

I Part of this work has been presented at 28th International Workshop on Graph Theoretical Concepts in Computer Science (WG 2002) and has
been published as a conference paper in the LNCS series of Springer-Verlag. The research has been partially supported by the Polish Ministry of
Science and Higher Education grant No. 3T11F00227.
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some special cases (like the case of planar graphs) are polynomially solvable for unary encoded weights. Mulmuley
et al. [13] show that the Exact Perfect Matching problem with unary encoded weights lies in the complexity class RP,
and consequently has a randomized polynomial time solution algorithm. However, determining the exact deterministic
complexity of this problem still remains unsettled after twenty years, and by now is recognized as an outstanding open
problem. A slightly simpler looking, but equally open variant is the following restriction of the exact perfect matching
problem to bipartite graphs:

Problem: Exact bipartite matching (EX-MATCH)
Input: A bipartite multi-graph (X ∪ Y, E) where E is a multi-subset of X × Y . Non-negative integer weights
w(e) on the edges e ∈ E that are encoded in unary. An integer α.
Question: Does this graph have a perfect matching of weight exactly α?

This bipartite variant is also discussed by Barahona and Pulleyblank [2]. Karzanov [9] gives a polynomial time
algorithm for the special case where the input graph is a complete bipartite graph, and where the edge weights are
restricted to 0 and 1.

Now let us turn to the second main problem that will be investigated in this paper. Deoxyribonucleic acid (DNA,
for short) exists in the form of a double helix that consists of two twisted strings of nucleotides. These nucleotides
only differ in their nitrogenous bases adenine (A), cytosine (C), guanine (G), and thymine (T). Their order codes
genetic information that is symbolically written as a sequence over the four letters A, C, G, and T. The first stage of
discovering genetic information is to analyze and to determine this sequence of bases for a given DNA sequence (see
for instance Bains and Smith [1]). The length of the sequence can be determined by so-called gel electrophoresis.
One method of sequence structure analysis is based on hybridization experiments that compare a DNA chain against a
library of all possible single-stranded DNA fragments of length k. The outcome of the hybridization is the k-spectrum
of the sequence, i.e., the set of all fragments of length k of this sequence.

In the ideal case no errors occur in the hybridization experiment, and the k-spectrum of a DNA sequence of length
` consists of exactly `− k + 1 pairwise distinct words of length k. This ideal case with a complete k-spectrum is well-
understood (see Theorem 1), but never occurs in the real world. In the real world, the hybridization experiments suffer
from negative errors (if the measured spectrum is incomplete) and from positive errors (if the measured spectrum
contains additional elements that do not show up in the sequence). Especially, a fragment of length k may appear
many times in the sequence, whereas the experiments only detect that it occurs at least once. DNA sequencing under
negative and positive errors is discussed by Błażewicz et al. [4]. In a paper, Błażewicz and Kasprzak [6] investigate the
computational complexity of several variants of DNA sequencing under negative and positive errors; all these variants
turn out to be unary NP-hard in their search versions. However, the complexity of the following fairly innocent looking
variant remained open.

Problem: DNA sequencing with unknown multiplicities (DNA-SEQ)
Input: Integers ` and k. A set S of words of length k over the alphabet {A, C, G, T }.
Question: Does there exist a word of length ` with k-spectrum equal to S?

In this paper we will prove that the two problems EX-MATCH and DNA-SEQ are polynomially reducible to
each other and hence are polynomial time equivalent. If one of them is polynomially solvable, then the other one is
polynomially solvable, too. If one of them is NP-hard, then the other one is NP-hard, too. More generally, if one of
these two problems is complete for some complexity class under polynomial time reductions, then so is the other
problem.

Organization of this paper. The paper is a long (cyclic!) chain of polynomial time reductions that traverses a number
of intermediate problems. In Section 2 we reduce problem DNA-SEQ to the problem of deciding the existence of
certain Eulerian multi-graphs. Then in Section 3, this Eulerian problem EX-EULERCYCLE is reduced to problem
EX-MATCH. Next, in Section 4 problem EX-MATCH is reduced to a highly restricted special case that we call EX-
MATCH−. Finally, in Section 5 this highly restricted special case EX-MATCH− will be reduced to problem DNA-
SEQ. By doing this, we return to our starting point, and the chain of reductions is closed to a cycle.

Notation and definitions. Throughout the paper, we stick to the standard graph terminology as given in the book of
Berge [3]. However, we want to clarify the usage of the following terms: A graph G = (V, E) is cubic, if each vertex
in V is incident to exactly three edges. For a multi-graph G = (V, E), its underlying simple graph G ′

= (V, E ′) is
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the (unique) simple graph that results from G by keeping exactly one edge from every bundle of multiple edges. A
multi-graph G is a super-multi-graph of a simple graph G ′, if G ′ is the underlying simple graph of G. In other words,
a super-multi-graph of the simple graph G ′ contains every edge in G ′ at least once, and does not contain any other
edges.

A path is an alternating sequence v0, e1, v1, . . . , en, vn of vertices and edges such that edge ei always connects
vertex vi−1 to vi . A path is called simple if its vertices are pairwise distinct (except possibly the pair v0 and vn). A
cycle is a path with v0 = vn . The length of a path (cycle) is the number of edges in this path (cycle). An Eulerian
path (Eulerian cycle) in a graph G = (V, E) is a path (cycle) in G that uses every edge in E exactly once. It is well
known that a directed multi-graph possesses an Eulerian cycle if and only if all vertices have in-degree equal to their
out-degree and if its underlying undirected graph is connected.

2. From DNA sequencing to exact Eulerian cycles

In this section we recapitulate the relationship between DNA sequencing and the existence of Eulerian paths in
certain directed graphs. This relationship has been observed by Pevzner [15], and later on has been discussed in detail
by Błażewicz et al. [5]. The underlying combinatorial ideas go (at least) back to de Bruijn [7].

For a word u of length k over the alphabet {A, C, G, T }, we denote by prefixk−1(u) the word that consists of the
first k − 1 letters in u, and by suffixk−1(u) the word that consists of the last k − 1 letters in u. For a set S of words of
length k over the alphabet {A, C, G, T }, we introduce the following directed graph GS = (VS, AS): The vertex set is
defined by

VS = {prefixk−1(u), suffixk−1(u) : u ∈ S}.

The arc set AS contains |S| arcs that are defined as follows: For every word u ∈ S, there is a corresponding arc a(u)

in AS that goes from the vertex prefixk−1(u) to the vertex suffixk−1(u).

Theorem 1 (Pevzner [15]). Let S be a set of words of length k over the alphabet {A, C, G, T }, and let GS = (VS, AS)

be the corresponding directed graph. Then there exists a word w of length |S| + k − 1 with k-spectrum equal to S, if
and only if GS possesses an Eulerian path. �

The statement of this theorem is actually quite easy to see: For i = 1, . . . , |S| let wi denote the subword of w of
length k that starts with the i th letter and ends with the (i + k − 1)th letter. Then S = {w1, . . . , w|S|} and the arcs
a(w1), . . . , a(w|S|) in this ordering form an Eulerian path for GS . Vice versa, every Eulerian path in GS gives a
sequence w1, . . . , w|S| of words of length k that can be combined into a word of length |S| + k − 1. To summarize,
Theorem 1 yields a polynomial time algorithm for the special case of problem DNA-SEQ where every word in S
occurs exactly once as a subword in the word w. By considering the exact number of occurrences of every subword
from S, the statement in Theorem 1 can be generalized to our sequencing problem DNA-SEQ.

Theorem 2. Let S be a set of words of length k over the alphabet {A, C, G, T }, let GS = (VS, AS) be the
corresponding directed graph, and let ` ≥ |S| + k − 1 be an integer.

There exists a word w of length ` with k-spectrum S, if and only if there exists a super-multi-graph of GS that
contains exactly ` − k + 1 arcs and that possesses an Eulerian path. �

As an immediate consequence of Theorem 2, problem DNA-SEQ is polynomial time reducible to the problem
EX-EULERPATH defined below.

Problem: Exact Eulerian path (EX-EULERPATH)
Input: A simple directed graph G = (V, A). Two vertices s, t ∈ V . An integer β.
Question: Does there exist a super-multi-graph of G that contains exactly β arcs and that possesses an Eulerian
path that starts in s and ends in t?

Indeed, by trying all possibilities for a start vertex s and an end vertex t in the graph GS and by setting β = `−k+1,
one may solve an instance of DNA-SEQ by solving O(|VS|

2) = O(|S|
2) instances of EX-EULERPATH.

In the special case of problem EX-EULERPATH where s = t holds, we are looking for an exact Eulerian cycle
in some super-multi-graph of G (EX-EULERCYCLE). The general problem EX-EULERPATH is polynomial time
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reducible to EX-EULERCYCLE: Take an instance G of EX-EULERPATH, and create a new directed path with β arcs
that goes from t to s. Consider this new graph G+ together with the value γ = 2β as an instance of EX-EULERCYCLE.
It can be easily verified that the original graph G has a super-multi-graph with an Eulerian path of length β going from
s to t , if and only if the new graph G+ has a super-multi-graph with an Eulerian cycle of length γ = 2β.

Problem: Exact Eulerian cycle (EX-EULERCYCLE)
Input: A simple directed graph G = (V, A). An integer γ .
Question: Does there exist a super-multi-graph of G that contains exactly γ arcs and that possesses an Eulerian
cycle?

To summarize, in this section we have shown that DNA-SEQ is polynomial time reducible to EX-EULERPATH, and
that EX-EULERPATH in turn is polynomial time reducible to EX-EULERCYCLE.

3. From exact Eulerian cycles to exact bipartite matchings

In this section we will show that problem EX-EULERCYCLE is polynomial time reducible to the exact bipartite
matching problem EX-MATCH. Hence, consider an arbitrary instance (G; γ ) of problem EX-EULERCYCLE. We
denote by deg+(v) and deg−(v) the in-degree and the out-degree of the vertex v ∈ V . A vertex v is called positive
if deg+(v) > deg−(v), neutral if deg+(v) = deg−(v), and negative if deg+(v) < deg−(v). Furthermore, we denote
by ∆ the sum of deg+(v) − deg−(v) taken over all positive vertices v. Clearly, this value ∆ also equals the sum of
deg−(v) − deg+(v) taken over all negative vertices v. Note furthermore that |∆| ≤ |V |

2.
For vertices x, y ∈ V and for integers k with 1 ≤ k ≤ |V |, we introduce the Boolean predicate P[x, y; k] that is

true if and only if in the graph G there exists a (not necessarily simple) directed path of length k that goes from x to
y. Moreover, for integers k with 1 ≤ k ≤ |V | we introduce the Boolean predicate C[k] that is true if and only if in the
graph G there exists a (not necessarily simple) directed cycle of length k. The truth values of all these predicates can
be determined in polynomial time by standard dynamic programming approaches.

Now assume that the instance (G; γ ) of EX-EULERCYCLE has answer YES, and let G∗
= (V, A∗) be a super-

multi-graph of G with γ arcs that certifies this answer. That means that the graph G∗ is strongly connected (or
equivalently: that the graph G is strongly connected), and that in G∗ every vertex v ∈ V has its in-degree equal to its
out-degree.

Lemma 3. The arc set A∗ of the graph G∗ can be partitioned in the following way.

(A1) The set A of arcs in the underlying simple graph G.
(A2) A set of ∆ (not necessarily simple) directed paths (a path considered as an ordered set of arcs) of length less

or equal to |V |. Each such path starts in a positive vertex and ends in a negative vertex. In every positive
vertex v, there start exactly deg+(v) − deg−(v) of these paths. In every negative vertex v, there end exactly
deg−(v) − deg+(v) of these paths.

(A3) A set of (not necessarily simple) directed cycles of length less than or equal to |V |. �

We denote by m(A1), m(A2), m(A3) the number of arcs of type (A1), (A2), (A3) in such a partition. Now if
we want to solve EX-EULERCYCLE, we must determine whether there exist arc sets of type (A1), (A2), (A3) with
m(A1)+ m(A2)+ m(A3) = γ . Trivially, m(A1) = |A|. Moreover, since |∆| ≤ |V |

2 we get m(A2) ≤ |V |
3. But what

are the exact candidate values that m(A2) and m(A3) can take?
The candidate values for m(A2) can be determined via the exact bipartite matching problem (see the introductory

section for an exact definition of this problem). This is done as follows. For every positive vertex x in G, we introduce
deg+(x) − deg−(x) independent copies in the set X of the bipartition. For every negative vertex y in G, we introduce
deg−(y) − deg+(y) independent copies in the set Y of the bipartition. Whenever the predicate P[x, y; k] is true for
some positive vertex x , some negative vertex y, and some integer k with 1 ≤ k ≤ |V |, we introduce an edge of weight
k in E from every copy of x to every copy of y. Since the edge weights are polynomially bounded by |V |, we may
as well encode them in unary. It is easily verified that α2 is a possible value for m(A2) if and only if the resulting
bipartite graph has a perfect matching of weight exactly α2. Hence, by solving a polynomial number of exact bipartite
matching instances we can determine for every α2 with 1 ≤ α2 ≤ |V |

3 whether it is a candidate value for m(A2).
The candidate values for m(A3) can be expressed in terms of the predicates C[k] with 1 ≤ k ≤ |V |. We define

C = {k : C[k], 1 ≤ k ≤ |V |} as the set of possible cycle lengths. In determining whether an integer α3 is a candidate
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for m(A3) we distinguish the two cases α3 ≤ |V |
2 and α3 > |V |

2. The first case α3 ≤ |V |
2 boils down to an

unbounded subset sum problem in which the item sizes in C and the goal value α3 all are polynomially bounded in |V |.
It is well-known that such a polynomially bounded special case of the subset sum problem is polynomially solvable
by dynamic programming (see for instance the book by Martello and Toth [12]). For the second case α3 > |V |

2 we
apply a famous result on the Frobenius problem.

Theorem 4 (Erdős and Graham [8]). Let 0 < z1 < z2 < · · · < zn ≤ Z be integers with gcd(z1, z2, . . . , zn) = 1.
Then every integer above 2Z2/n can be expressed in the form

∑n
i=1 xi zi with non-negative integers x1, . . . , xn . �

In our case, all the values in the set C are bounded by |V |; therefore we have Z = |V | and n = |C |. If |C | ≥ 2 and
the greatest common divisor of the numbers in C is one, then every α3 > |V |

2 is a candidate for m(A3). If |C | ≥ 2
and the greatest common divisor of the numbers in C equals d, then α3 > |V |

2 is a candidate for m(A3) if and only if
it is divisible by d . The case |C | = 0 is straightforward. In the case |C | = 1, a number α3 > |V |

2 is a candidate value
for m(A3) if and only if it is divisible by the unique element d in C .

Now let us put everything together. In order to solve an instance of EX-EULERCYCLE, we first determine the
candidate values for m(A2) (by solving a polynomial number of exact bipartite matching instances) and for m(A3)

(by solving a polynomially bounded subset sum instance). The instance has a solution if and only if G is strongly
connected and γ = m(A1)+m(A2)+m(A3) has a solution over the candidate values for m(A1), m(A2), m(A3). We
know that m(A1) = |A| and that all candidate values for m(A2) are between 1 and |V |

3. Therefore, we can simply
search through all O(|V |

3) possibilities for m(A2) and check whether γ − |A| − m(A2) is a feasible candidate for
m(A3). Summarizing, this yields that problem EX-EULERCYCLE indeed is polynomial time reducible to problem
EX-MATCH.

4. From exact matching to restricted exact matching

In this section we will prove that the exact bipartite matching problem EX-MATCH is polynomial time reducible
to the following highly restricted special case of it.

Problem: Restricted exact bipartite matching (EX-MATCH−)
Input: A bipartite graph B = (X ∪ Y, E) with E ⊆ X × Y that is connected and cubic. For every edge e ∈ E a
weight w(e) ∈ {0, 1, α + 1} where α is a given integer.
Question: Does this bipartite graph have a perfect matching of weight exactly α?

Hence, consider an integer α and a bipartite multi-graph B = (X ∪ Y, E) as instance for the general problem EX-
MATCH. The reduction to EX-MATCH− will be done in four steps: The first step is a simple preprocessing step that
makes the graph connected, and that also gets rid of vertices of degree one. In the second step, we will get rid of the
vertices of degree four and more; simultaneously, the graph will become simple. In the third step, we will bring the
edge weights down to 0–1. Finally in the fourth step, we will make the graph cubic.

Making the graph connected and getting rid of vertices of degree one. Let C1, . . . , Cr denote the connected
components of graph B. If one of these components Ci consists of an odd number of vertices, then B does not
possess any perfect matching. In this case the answer to EX-MATCH is trivially NO. If all r components contain an
even number of vertices, then we connect them to each other by r − 1 bridges of weight 1. The resulting multi-graph
is connected and still bipartite. It is easy to see from parity considerations that none of the introduced bridges can be
used in a perfect matching.

For every vertex of degree one, we duplicate the incident edge. This increases the vertex degree to two, but does
not change the set of possible weights of perfect matchings in the graph. The resulting multi-graph with these r − 1
bridges and all these duplicated edges is denoted by B1 = (X1 ∪ Y1, E1). This graph B1 is bipartite, connected, and
does not contain vertices of degree smaller than two. Moreover, B1 has a perfect matching of weight α if and only if
the original graph B has a perfect matching of weight α.

Getting rid of vertices of degree at least four. From the bipartite multi-graph B1, we now create a simple bipartite
graph B2: We replace every vertex u in B1 with degree d by a simple path P(u) of 2d − 1 new vertices
u1 − u′

1 − u2 − u′

2 − · · · − ud−1 − u′

d−1 − ud . The d − 1 primed vertices u′

1, . . . , u′

d−1 in P(u) are of degree
two and have no further connections to the rest of the graph. Each of the d unprimed vertices u1, . . . , ud has exactly
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Fig. 1. How to replace a vertex u of degree 5 by a path P(u) with 9 vertices.

one further edge into the rest of the graph: For every edge [u, v] in E1, there is a corresponding edge in E2 that goes
from an unprimed vertex in the path P(u) to an unprimed vertex in the path P(v). See Fig. 1 for an illustration. All
2d − 2 edges in the path P(u) receive weight 0. An edge [ui , v j ] that connects P(u) to P(v) in B2 receives the
same weight as the corresponding edge [u, v] in B1. This completes the (polynomial time) construction of graph B2.
Clearly, B2 is a simple, bipartite, connected graph in which all vertices have degree two or three.

It is straightforward to see that B2 has a perfect matching of weight α if and only if the graph B1 has a perfect
matching of weight α.
Bringing the edge weights down to 0–1. Let W denote the maximum edge weight in the graph B2. Every edge e in
E2 is subdivided by 2W new vertices. This replaces the edge e by a path P(e) of length 2W + 1, and the resulting
graph B3 is still simple and bipartite. For an edge e with weight w(e), the path P(e) consists of w(e) edges of weight
1 and 2W − w(e) + 1 edges of weight 0: All edges in even positions (the second, fourth, sixth, etc. edge on the
path) receive weight 0. Exactly w(e) of the edges in odd positions receive weight 1, and the remaining edges in odd
positions receive weight 0. This completes the description of the bipartite graph B3 = (X3 ∪ Y3, E3). Since all edge
weights are encoded in unary, B3 can be computed in polynomial time. B3 is a simple, bipartite, connected graph in
which all vertices have degree two or three, and in which all edges have weight 0 or 1. The graph B3 has a perfect
matching of weight α if and only if B2 has a perfect matching of weight α.
Making the graph cubic. If |X3| 6= |Y3| holds in the graph B3 = (X3 ∪ Y3, E3), then B3 does not possess any perfect
matching, and the answer to EX-MATCH is trivially NO. Therefore, we will assume that |X3| = |Y3| holds. Let
X ′

3 ⊆ X3 and Y ′

3 ⊆ Y3 contain the vertices of degree two. Since in B3 all vertices are of degree two or three, we get
that |X ′

3| = |Y ′

3|. We create a perfect matching between X ′

3 and Y ′

3 with all edges of weight α + 1, and we add it to
B3. The resulting graph B4 is cubic and connected, and the weights of all edges are in {0, 1, α + 1}. Moreover, B4 has
a perfect matching of weight α if and only if B3 has a perfect matching of weight α.

The final graph B4 together with α constitutes a feasible input for the problem EX-MATCH−. It is a YES instance
for EX-MATCH−, if and only if the original graph B together with α is a YES instance for EX-MATCH. Hence, we
have reached the goal of this section and established that EX-MATCH is polynomial time reducible to its special case
EX-MATCH−. The following corollary will not be needed in our further arguments, but we feel that it might be of
separate interest. Its proof follows by terminating the above reduction after the third step with the graph B3.

Corollary 5. Problem EX-MATCH is polynomial time equivalent to its special case where the bipartite input graph
is simple and connected, and has only vertices of degree two and three, and has only edge weights zero and one.

5. From restricted exact matching back to DNA sequencing

In this section we will prove that the restricted exact bipartite matching problem EX-MATCH− is polynomial
time reducible to problem DNA-SEQ. This will be done by moving through an auxiliary instance of problem EX-
EULERCYCLE (see Section 2 for the definition of this problem).

Indeed, consider a connected, cubic, bipartite graph B = (X ∪ Y, E) as instance for EX-MATCH−. If |X | 6= |Y |

holds, then the graph B does not possess any perfect matching, and the answer to EX-MATCH− is trivially NO.
Therefore, we will assume that |X | = |Y | = q holds. Without loss of generality, we assume furthermore that q is
sufficiently large to satisfy 2q

≥ 100q3. Note that any perfect matching in B has weight at most q (in the case it does
not use edges of weight α + 1) or weight at least α + 1 (in any other case). Therefore, we will assume from now
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on that α ≤ q . We denote by m0, m1, and mα+1 the number of edges of weight 0, 1, and α + 1, respectively. Note
that m0 + m1 + mα+1 = |E | = 3q . Finally, let f be an arbitrary bijection between the two sets X and Y , and let
Q = 2q + 8.

From the bipartite graph B we will now construct a directed graph G = (V, A) as an instance of EX-
EULERCYCLE. This directed graph G consists of 2q primary vertices and of many secondary vertices. The primary
vertices are grouped into the two sets X ′

= {x ′
|x ∈ X} and Y ′

= {y′
|y ∈ Y }. The arcs in G are defined as follows.

(P1) For every edge e = [x, y] in B with x ∈ X and y ∈ Y , there is a corresponding directed path P(e) in G that
goes from x ′ to y′. If the edge e has weight w(e), then this path has length (w(e) + 1)Q.

(P2) For every y ∈ Y and x = f (y) in B, there are four directed paths of length 8(q2
+ q)Q in G that all connect y′

to x ′.

All these introduced directed paths are internally pairwise vertex-disjoint. Their internal vertices (that all have in-
degree and out-degree one) form the secondary vertices of the graph G. Every vertex in X ′ has in-degree four and
out-degree three. Every vertex in Y ′ has in-degree three and out-degree four. Since the bipartite graph B is connected,
also the constructed graph G is connected. A rough estimation shows that G has less than 50q3 Q vertices.

Lemma 6. The instance B of EX-MATCH− has a perfect matching of weight exactly α, if and only if the constructed
instance G of EX-EULERCYCLE has a super-multi-graph with an Eulerian cycle of length exactly

γ = (m0 Q + 2m1 Q + mα+1 (α + 2)Q) + 32q (q2
+ q)Q + (α + q)Q.

Proof. (Only if). Assume that B has a perfect matching M of weight α. We construct a super-multi-graph G∗ of G,
in which all vertices in X ′

∪ Y ′ have in-degree and out-degree four. We take all arcs from G into G∗. Moreover, for
each of the q edges e ∈ M , we take one additional copy of the directed path P(e) into G∗. It is easily verified that in
G∗ every vertex has in-degree equal to out-degree. Since the graph G∗ is also connected, it has an Eulerian cycle.

Now let us determine the number of arcs in G∗. First, G∗ contains all paths of type (P1). There are m0 of those
paths that have length Q, m1 of length 2Q, and mα+1 of length (α + 2)Q. Secondly, G∗ contains all paths of type
(P2). There are 4q of them, and each has length 8(q2

+ q)Q. Thirdly, there are the arcs in the additional q paths P(e)
with e ∈ M . These paths contribute∑

e∈M

(w(e) + 1)Q = Q
∑
e∈M

w(e) + Q |M | = (α + q)Q

arcs. Altogether, this yields exactly γ arcs in G∗.
(If). Assume that G has a super-multi-graph G∗ with an Eulerian cycle of length γ . It can be seen that this multi-

graph G∗ must consist of one or more copies of every path introduced in (P1) and (P2). We claim that G∗ cannot
contain two copies of any path of type (P2). Otherwise, the total number of arcs in the copies of paths of type (P2) is
at least

(4q + 1) · 8(q2
+ q)Q = 6(q2

+ q)Q + 32q(q2
+ q)Q + 2(q2

+ q)Q > γ.

Since G∗ has only γ arcs, we have arrived at the desired contradiction. We conclude that every path of type (P2)
shows up exactly once in G∗, and hence these paths altogether contribute 32q(q2

+ q)Q arcs. As a consequence, in
G∗ every vertex in X ′ has in-degree four, and every vertex in Y ′ has out-degree four.

Since G∗ has an Eulerian cycle, every vertex in X ′ must have out-degree four, and every vertex in Y ′ must have
in-degree four. These degrees can only result from copies of paths of type (P1). Each path P(e) with e ∈ E must show
up at least once in G∗. This yields (m0 Q + m12Q + mα+1(α + 2)Q) arcs, out-degrees three for vertices in X ′, and
in-degrees three for vertices in Y ′. The remaining (α + q)Q arcs in G∗ must come from a system of q paths of type
(P1) that connect every vertex in X ′ to exactly one vertex in Y ′. In the bipartite graph B, the edge set M that contains
those edges e for which P(e) is in this system of paths forms a perfect matching of weight α. �

Our next goal is to establish that for an appropriate value k, there exists a k-spectrum S of words over the alphabet
{A, C, G, T } such that the above constructed directed graph G = (V, A) equals GS = (VS, AS); see Section 2 for
definitions. The main difficulty is to ensure that distinct vertices in V are associated with distinct DNA words of length
k − 1.
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We partition the vertices in V into a set C of so-called crucial vertices and a set V − C of non-crucial vertices.
Every vertex in the set X ′

∪ Y ′ is crucial. Moreover, every vertex on the paths of type (P1) and (P2) whose distance
to X ′

∪ Y ′ is divisible by Q is a crucial vertex. Note that the length of every path of type (P1) and (P2) is a multiple
of Q, and that the crucial vertices divide these paths into connected chunks of Q arcs and Q − 1 non-crucial vertices.
If there is a directed path of length Q from a crucial vertex u to another crucial vertex v in G, then we say that u is a
predecessor of v, and that v is a successor of u. It can be seen that every vertex in X ′ has four predecessors and three
successors, that every vertex in Y ′ has three predecessors and four successors, and that all remaining crucial vertices
have one predecessor and one successor. Moreover, it can be checked that |C | ≤ 50q3 holds.

For every crucial vertex v ∈ C , we fix two labels LLABEL(v) and RLABEL(v). These labels are 2|C | pairwise
distinct words of length q over the alphabet {A, G}. We need 2|C | ≤ 100q3 distinct labels that we can choose from
2q words. Since we assumed 100q3

≤ 2q , such pairwise distinct labels indeed exist and can be found easily. With the
help of these labels, we will now define for every vertex z ∈ V a corresponding word WORD(z) of length Q = 2q +8.

• If z is a crucial vertex, then WORD(z) starts with one of the letters A, C, G, T , followed by the label LLABEL(z),
followed by a string of six T ’s, then followed by the label RLABEL(z), and ending with one of the letters
A, C, G, T . For crucial vertices, these words fulfill the following conditions: (W1) If v1 and v2 are successors of the
same vertex u, then WORD(v1) and WORD(v2) end with different letters. (W2) If u1 and u2 are predecessors of the
same vertex v, then WORD(u1) and WORD(u2) start with different letters. Since every crucial vertex has at most
four successors and at most four predecessors, these conditions can indeed be met with the alphabet {A, C, G, T }

of size four.
• If z is a non-crucial vertex, then it lies on a uniquely defined directed path of length Q that connects some crucial

vertex u to another crucial vertex v. Let u = z0, z1, . . . , zQ = v denote the sequence of vertices along such a path.
Then WORD(zi ) consists of the last Q − i letters of WORD(u) followed by the first i letters of WORD(v).

Lemma 7. For u, v ∈ V with u 6= v, we always have WORD(u) 6= WORD(v).

Proof. Consider a word WORD(z) of length 2q +8 over {A, C, G, T }. We show that from WORD(z), we can uniquely
localize the corresponding vertex z in G.

By our construction, WORD(z) either contains a subword of six consecutive T ’s, or it starts with i consecutive T ’s
and ends with 6 − i consecutive T ’s for some 1 ≤ i ≤ 5. In either case, the q letters preceding or succeeding these
T ’s in WORD(z) will form one of the labels LLABEL(v) or RLABEL(v) for some crucial vertex v. If vertex v is not
contained in X ′

∪ Y ′, then the relative position of this label in WORD(z) uniquely determines the vertex z. If v is
contained in X ′

∪Y ′, then either (i) WORD(z) contains the first letter of the word of a successor of v, or (ii) it contains
the last letter of the word of a predecessor of v, or (iii) it contains none of these letters. In the cases (i) and (ii), by
conditions (W1) and (W2) these letters uniquely identify the corresponding successor or predecessor. Then we can
again use the relative position of the label LLABEL(v) or RLABEL(v) in WORD(z) to uniquely determine the vertex
z. Finally, in case (iii) the vertex z must coincide with v. �

Now we are almost done: We choose k = Q + 1 = 2q + 9 as the word length for the k-spectrum S. Every vertex
v ∈ V is labeled by the word WORD(v) of length k − 1, and thus becomes a member of VS . By Lemma 7, different
vertices are labeled by different words. For every arc a = (u, v) ∈ A, the last k − 2 letters in WORD(u) agree with the
first k −2 letters in WORD(v). Hence, this arc a can be correctly encoded by the word WORD(a) of length k that starts
with the first letter of WORD(u), followed by these k − 2 agreeing letters, and ending with the last letter of WORD(v).
We define S = {WORD(a)|a ∈ A} as our k-spectrum, and we thus derive GS = G. By the above discussion and by
Lemma 6, the graph GS has a super-multi-graph with an Eulerian cycle of length γ , if and only if the bipartite graph
B has a perfect matching of weight α.

In the final step, we move from problem EX-EULERCYCLE to problem EX-EULERPATH: Let a = (u, v) be an arc
on one of the paths of type (P2) such that u and v both are non-crucial vertices. We remove this arc a from the graph
G, and we simultaneously define Sfinal = S − {WORD(a)}. This leads to a vertex u of out-degree 0 and to a vertex v

of in-degree 0. It can be verified that the resulting graph has a super-multi-graph with an Eulerian path of length γ − 1
(that of course starts in vertex v and ends in vertex u), if and only if the bipartite graph B has a perfect matching of
weight α. Finally, we get from Theorem 2 that there exists a word of length γ − 1 with k-spectrum Sfinal, if and only
if the bipartite graph B has a perfect matching of weight α. This means that problem EX-MATCH− is polynomially
reducible to problem DNA-SEQ.
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By combining the reductions from Section 2 through 5, we arrive at the main result of this paper.

Theorem 8. The two problems EX-MATCH and DNA-SEQ are polynomial time reducible to each other. �
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