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Scheduling Multiprocessor Tasks to Minimize
Schedule Length

JACEK BLAZEWICZ, MIECZYSLAW DRABOWSKI, AND JAN WF$GLARZ

Abstract -The problem considered in this paper is the deter-
ministic scheduling of tasks on a set of identical processors. How-
ever, the model presented differs from the classical one by the
requirement that certain tasks need more than one proc9essor at a
time for their processing. This assumption is especially justifidd in
some microprocessor applications and its impact on the complex-
ity of minimizing schedule length is studied. First we concentrate
on the problem of nonpreemptive scheduling. In this case,
polynomial-time algorithms exist only for unit processing times.
We present two such algorithms of complexity O(n) for scheduling
tasks requiring an arbitrary number of processors between 1 and
k at a time where k is a fixed integer. The case for which k is not
fixed is shown to be NP-complete. Next, the problem of preemp-
tive scheduling of tasks of arbitrary length is studied. First an
algorithm for scheduling tasks requiring one or k processors is
presented. Its complexity depends linearly on the number of tasks.
Then, the possibility of a linear programming formulation for the
general case is analyzed.

Index Terms- Complexity analysis, deterministic scheduling,
linear programming approach, microprocessor systems, poly-
nomial-in-time algorithms, preemptive and nonpreemptive sched-
ules, schedule length criterion, scheduling multiprocessor tasks.

I. INTRODUCTION

O NE of the assumptions commonly imposed in machine
scheduling theory is that each task is processed on at

most one machine at a time. In fact, all polynomial-time
algorithms as well as NP-completeness results for scheduling
on machines (processors) were obtained on this assumption
(see [3], [7], [12], [14], and [16] as surveys).
However, in recent years, with the rapid development of

microprocessor and especially multimicroprocessor systems,
the above assumption has ceased to be justified in some
important applications. There are, for example, self-testing
multimicroprocessor systems in which one processor is used
to test others or diagnostic systems in which testing signals
stimulate the tested elements and their corresponding outputs
are simultaneously analyzed [2], [8]. When formulating
scheduling problems in such systems, one must take into
account the fact that some tasks have to be processed on more
than one processor at a time. These problems create a new
direction in machine scheduling theory. Preliminary results
concerning the preemptive scheduling of tasks requiring one
or two processors were obtained in [4].
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In this paper we study the computational complexity of
nonpreemptive and preemptive scheduling to minimize
schedule length for the general case of tasks requiring k
processors at a time. Before doing this, we will set up the
subject more precisely.

In general, we will consider a set of n tasks to be processed
on a set of m identical processors P = {P1, P2, * Pm }. The
set of tasks is divided into k (or fewer) subsets T1 = {T', T'
--.- Tll}, T2 = ~ ,T~2}<. ..,T = ITksk= . ,
Tnk} where n = nl + n2 + + nk. Each task T1, i =
1, 2, n1, requires one arbitrary processor for its process-
ing and its processing time is equal to t'. On the other hand,
each task T1 requires j arbitrary processors simultaneously
for its processing during a period of time whose length is
equal to td. Thus, we will call tasks from Ti width-j tasks or
Ti-tasks. Scheduling of tasks is termed preemptive sched-
uling if processing of any task from the set T' U
T U... U Tk can be arbitrarily preempted and restarted
later at no cost, and nonpreemptive scheduling if this is
impossible. All the tasks considered in the paper are assumed
to be indepehtdent, i.e., there are no precedence constraints
among them. A schedule will be called feasible if, besides
the usual conditions, each T1 task is processed by one pro-
cessor and each Tk task is processed by k processors at a
time. A feasible schedule will be optimal if it is of minimum
length. A scheduling algorithm is an optimization orne if it
always finds an optimal schedule.

In Section II we will analyze the complexity of non-
preemptive scheduling of T' tasks and T2, * , T' tasks for
the case of unit processing times. (The case of arbitrary
processing times is NP-complete, because the scheduling of
T' tasks with arbitrary processing times is known to be NP-
complete [7]. ') In Section III we will present a linear time
algorithm for solving the problem of preemptive scheduling
of T' arid T tasks. Then, a linear programming formulation
for the scheduling of T', T2, and Tk tasks is analyzed.

II. NONPREEMPTIVE -SCHEDULING

In this Section we will analyze the complexity of sched-
uling in a nonpreemptive mode. As we mentioned earlier, we
will focus our attentiowyon unit processing time tasks. Let us
observe that the latter problem is equivalent to the bin pack-
ing problem with the restrictions on the magnitudes of the
numbers to be packed. Thus, several known approximation
algorithms for the bin packing problem (see [11] for a survey)

'We assume that the reader is familiar with the general concepts of the
NP-completeness theory which may be found, for example, in [10].
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can be used in this case. However, it is also possible to devise
new algorithms for some cases not considered yet. Let us
start with the problem of scheduling tasks which belong to
two sets only: T' and Tk, for arbitrary k. This problem can be
solved optimally by the following algorithm.
Algorithm 1: 1) Calculate the length of an optimal sched-

ule according to the formula2
n, + kns -nkCtax =maxIll m k Lm±I1 (1)

2) Schedule the width-k tasks first in time interval [0, C*].
Then assign unit-width tasks to the remaining free
processors.

It should be clear that (1) gives a lower bound on the
schedule length of an optimal schedule and this bound is
always met by a schedule constructed by Algorithm 1. The
two possible forms of this schedule, depending upon which
of the two quantities in (1) is maximum, are shown in Fig. 1.
It follows that Algorithm 1 optimizes schedule length and its
complexity is O(n).

Let as consider now the case of scheduling tasks belonging
to sets T1, T2, T3,.*.*, T' where k is a fixed integer. The
approach used for solving the problem is similar to that for
solving the problem of nonpreemptive scheduling of unit
processing time tasks under fixed resource constraints [5].
We describe its modification below.

First, let us observe that each instance I of our schedul-
ing problem can also be presented as an input vector t, =
[bll, bI2, , blj, whose component bli gives the num-
ber ni of T' tasks. By a processor feasible set we mean a set
of tasks T', T2,T3, ,T, for which the following in-
equality is met.

n, + 2n2 + 3n3 + * + knk - m.

It is obvious that tasks forming an arbitrary processor feasible
set can be processed in one unit of time. Moreover, since k is
fixed, it follows that the number K of different processor
feasible sets is also fixed. The input vectors which corre-
spond to these sets (we will call them elementary vectors) are
denoted by bl, b2,** bK-
Now, the problem is to find a decomposition of a given

instance into the minimum number of processor feasible sets.
It is clear that this is equivalent to finding a decomposition of
vector n - (n,, n2,.*, nk) into a linear combination of ele-
mentary vectors b A b2,.*b*,bK. Thus, we have the following
problem:

Minimize
K

EXj
j=1

subject to

>.xjb = n XJ - 0 and xj integer.
j=l

2LxI denotes the greatest integer not greater than x, and [xl denotes the
smallest integer not smaller than x.

Pi

pk

k

m-(p+l)k
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P1
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m-1 idle ti'me units

Fig. 1. Two possible forms of an optimal schedule.

Hence, we obtain an integer linear programming formulation
for the problem with a fixed number of variables. From [15]
we know that the integer linear programming problem with a

fixed number of variables K can be solved in polynomial time
in the number of constraints M and log a where a is the
largest coefficient in the linear integer programming prob-
lem. The complexity of this problem is 0(2K2(KM log a

for some constant c. In our case, we obtain the final complex-
ity O((log n)cK) < 0(n).

It is also possible to solve the above problem via a dynamic
programming approach. Since in this case there are no more

that O(mk) different processor feasible sets a straightforward
way leads to a dynamic programming optimization algorithm
whose complexity is 0(mklnk).
Now, let us consider the problem of scheduling tasks from

sets TV, , T T3, * , where k is an arbitrary (and not fixed)
integer. Unfortunately, this problem (its decision version) is
NP-complete -in the strong sense, and this fact follows the
NP-completeness of the 3-partition [9].
From the above and the remark concerning the complexity

of nonpreemptive scheduling of tasks of arbitrary length, we
see that many scheduling problems involving nonpreempt-
able tasks are NP-complete and therefore intractable in
practice. For this reason in the next section we consider the
problem of preemptive scheduling of multiprocessor tasks.

III. PREEMPTIVE SCHEDULING

We will start this Section by analyzing the problem of
preemptive scheduling of arbitrary processing time tasks
from sets T1 and Tk in order to minimize the schedule length.
Let us first prove a lemma that specifies the form of this
schedule. That is, we will prove that among minimum-length
schedules there exists a feasible A-schedule, i.e., one in
which first all Tk-tasks are assigned in time interval [0, C*,,]
using McNaughton's rule, and then all T'-tasks are assigned
using the same rule, in the remaining part of the schedule (see
Fig. 2).
Lemma 1: For any feasible schedule, there exists a corre-

sponding feasible A-schedule of the same length.
Proof: Let us suppose that some feasible schedule of

length equal to Cmax is not an A-schedule. Three types of

operations can be specified for each part- of task TV,
= 1, 2,..*, nk, processed in that feasible schedule (see

Fig. 3).
1) The operation of the first type consists ofjoining all the

parts of any task that are processed in time interval Ti to
process them on consecutive processors.

Tk tasks

L rT -tasks

T k _ taskS

TkI tasks
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Fig. 2. An A-schedule.
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Fig. 3. An arbitrary feasible schedule and three types of operations that can
be defined for a part of task TV.

2) The operation of the second type consists of moving the
part of task TV up in the schedule and in exchanging its
position with T -tasks (or their parts).

3) The operation of the third type consists of moving the
part of TV forward or backward in the schedule to the place
(period of time) where more T1-tasks are processed than in
the previous period, and in exchanging its position with k
T1-tasks (or idle time tasks).

It is rather clear that all these operations are feasible and
none of them will lengthen the schedule. Thus, it is also not
hard to see that after a finite number of these operations we
will get an A-schedule which is feasible and whose length is
equal to C..

Following the above lemma we will concentrate on finding
an optimal schedule among A-schedules. Now, we give a
lower bound on schedule length for our problem. Define

ni nk

X = t, Y= , Z = X + kY

z1=

t = max{t": T3 E T1}, tk = max{tk: T' E Tk}.

A bound on C.. is obtained as follows:

Cm; C = max{Z/m, Y/Lm/kJ, t' tk}I (2)

It is clear that no feasible schedule can be shorter than the
maximum of the above factors, i.e., mean-processing re-

quirement on one processor, mean-processing requirement of
Tk_tasks on k processors, maximum processing time of a

T'-task and maximum processing time of a TP-task. If
m * C > Z, there will be an idle time in any schedule and its
minimum length IT = m * C - Z.
On the basis of bound (2) and Lemma 1 one can try to

construct a preemptive schedule of minimum length equal to
C. However, it is not always possible, as illustrated by the

following example. Let n = 11, m = 23, k = 7, n1 = 8,
n7 = 3, tl = [6, 6, 6, 6, 5, 5, 5, 1], t7 = [6, 6, 2]. Using the
above formula we obtain X = 40, Y = 14, Z = 138, the
lower bound on schedule length C = max{138/23, 14/3,
6, 6} = 6 and the length of idle time IT = 0. A partial sched-
ule is shown in Fig. 4. From this figure we can see that it is
not possible to construct a feasible schedule of the length
equal to 6. This can be seen from the fact that there are four
width- I tasks of length 6, each of which must be continuously
processed in the interval [0, 6]. Yet no more than two of these
width- 1 tasks can be processed simultaneously in the interval
[0, 2]. In general, the schedule must be long enough so that
the amount of processing that must be done on any subset of
tasks in the interval [0, r] does not exceed the total amount of
processing that can be done in that interval. Below we will
present the reasoning that allows one to find the optimal
schedule length.

Let p = LY/CJ. It is quite clear that the optimal schedule
length C* must obey the following inequality:

C C*ax Sp

By Lemma 1 there exists an optimal A-schedule with k * p
processors devoted entirely to Tk_tasks, k processors devoted
to Tk_tasks in time interval [0, r] and Tl tasks scheduled in the
remaining time (see Fig. 2). Let the number of processors
that can process TV-tasks in time interval [0, r] be

mI = m - (p + 1) * k.

An A-schedule which completes all tasks by time D where
C S D - YIP, will have r = Y - Dp. Thus, the optimum
value C *ax will be the smallest value ofD (D - C) such that
the T-tasks can be scheduled on ml + k processors available
in the interval [Y - Dp, D] and ml processors available in
the interval [0,D ]. Below we give necessary and sufficient
condition for the unit-width tasks to be scheduled. To do this,
let us assume that these tasks are ordered in such a way that
t ¢ ¢ * 41.ForagivenpairD,r(r = Y-Dp),let
ti, ., t] be the only processing times greater than
D - r. Then the TP-tasks can be scheduled if and only if

(3)

To prove that the above condition really is necessary and
sufficient, let us first observe that if (3) is violated the
T1-tasks cannot be scheduled. Suppose now that (3) holds,
then one should schedule the excess (exceeding D - r) of
long tasks TI, T ... , T and (if (3) holds without equality)
some other tasks on ml processors in time interval [0, r] using
McNaughton's rule [17]. After this operation the interval is
completely filled with unit-width tasks on ml processors.
Now, we describe how the optimum value of the schedule

length (C *,) can be found. Let Pj = , t!. Inequality (3)
may be rewritten as

Pi -j(D - IY - DpI) S m1(Y - Dp).

k

T -tasks

l1
Il

391

i

I[ti (D r)] --< mir.
i=l

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on April 15, 2009 at 06:15 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-35, NO. 5, MAY 1986

p
7

p7~~~~~~~~~~~~~~~~~
9 I T2

Pl9Plo
p,5 Tz p77 rj~~~

Solving it for D we get

D (i-m,)Y + P,

Define

pi7 7 '
T,I

P7;

P16 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -

PI-223T
T 7c

t

C( - mO)Y + Pi
(j-m)p +j

Thus, we may write:

max= max{C, C1, C2, , Cn }

Finding the above maximum can clearly be' done in
0(n, log nl) time by sorting the unit-width tasks by ti. But
one can do better by taking into account the following facts.

1) Ci - C for i - ml and i - ml + k.
2) C' has no local maxima for i = m, + l, ,ml +

k - 1.
Thus, to find a maximum over CmI=k1,* , Cml=k- I and C

we only need to apply a linear time median finding algo-
rithm [1] and binary search. This will result in an 0(nl) al-
gorithm that calculates C*ax. This is because finding the
medians takes 0(nl) the first time, 0(nl/2) the second time,
0(n,/4) the third time, . Thus, the total time to find
medians is 0(nl).
Now we can give an optimization algorithm for the consid-

ered case of scheduling unit-width and width-k tasks.
Algorithm 2:
1) Calculate the minimum schedule length C*ax.
2) Schedule all the Tk tasks (in any order) in interval

[0, C*ax] using McNaughton's rule.
3) Assign the excess of the long tasks (that exceed

C* - r) and possibly some other tasks to the ml processors

in the interval [0, r]. Schedule the remaining processing re-

quirement in the interval [r, C*] using McNaughton rule.

The optimality of the above algorithm follows from the
discussion preceding it. Its complexity is 0(n, + nk), thus
we get O(n). Let us consider our example once more. Using
the above algorithm, we get the optimal schedule given in

Fig. 5.
Let us turn our attention to the problem of preemptive

scheduling of tasks from sets T', T2, T3, , T. It may be
formulated as a linear programming (LP) problem in the way
similar to that of resource constrained scheduling [18]. Be-
low, we describe briefly a modified LP formulation of the
problem. By a processor feasible set we mean here a set of

0 3 4 5 6 65 t

c.x

Fig. 5. Example 1 continued: An optimal schedule.

tasks which can be processed simultaneously. Let the number
of different processor feasible sets be equal to M. By xi we
denote the processing time of the ith processor feasible set
and by Qj the set of indexes of those processor feasible sets
which contain task Jj for

Thus, the following linear programming problem can be for-
mulated: Minimize

M

EXi

subject to

Xxi= tjk, JjE{T', -*,Tnr}, r 1,2, *,k.
iEQj

As the solution of the above problem we get optimal values
x of partial schedule lengths in an optimal schedule. The
tasks processed in these partial schedules are members of the
corresponding processor feasible subsets. Let us calculate the
complexity of the above approach. The number of constraints
is equal to n and the number of variables is 0(n'm). Thus,
for a fixed number of processors it is bounded from above
by a polynomial in the number of tasks. On the other hand,
a linear programming problem may be solved using
Khachijan's algorithm [13] in time bounded from above by
a polynomial in the number of variables, the number of con-
straints, and the sum of logarithms of all the coefficients in
the LP problem. Thus, our scheduling problem may be solved
in polynomial time for a fixed number of processors.

IV. CONCLUSIONS

The model of scheduling k-processor tasks presented can
be extended in many ways. Processors of different speeds as
well as dedicated processors can be included. Precedence
constraints among tasks can be introduced. The model can
also be extended by introducing additional resources
[5], [6], [9]. The above issues are now being studied.
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