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a b s t r a c t

In this paper, we analyse the computational complexity of an optimization version of the
Simplified Partial Digest Problem (SPDP), which is amathematical model for DNAmapping
based on the results of a simplified partial digest experiment. We prove that recognizing
46.16% of the elements of the DNA map in the error-free simplified partial digest
experiment is NP-hard in the strong sense. This implies that the problem of maximizing
the number of correct elements of the DNA map in the error-free simplified partial
digest experiment is pseudopolynomially non-approximable with the approximation ratio
ρ = 13

6 .
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Simplified Partial Digest Problem (SPDP) is a formal model of a biochemical experiment aimed at recognizing DNA
linear structure. A DNAmolecule can be thought of as a double helix consisting of two strands.Watson and Crick [24] showed
that there is a strong relationship between these two strands. Another important point tomake is the role of linear structure
in a DNA molecule and the open challenge of directly determining it. An important existing indirect method involves an
operation called mapping. In this procedure, a DNA molecule is exposed to specific chemicals called restriction enzymes.
These chemicals cut DNA molecules at particular restriction sites. The cutting process leads to the loss of any information
about the location of the restriction sites. Experimentation can lead the multiset of lengths of the cut fragments given by
the number of nucleotides between the corresponding restriction sites.
Restriction site analysis is concerned with reconstructing the location of restriction sites. See Setubal and Meidanis [20],

Waterman [23] or Pevzner [19] for details. Inputs for this analysis are the lengths of the cut fragments and information
about the cutting (or digesting) method. Examples of cutting methods include double digest, which employs two restriction
enzymes (see e.g. [23] or [19]), and partial digest, which has one enzyme but where there are different reaction times. The
inventor of the partial digest approach, Daniel Nathans (see Danna and Nathans [10] and Danna et al. [11]), received the
Nobel Prize in 1978 for his work on restriction enzymes and restriction mapping.
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Fig. 1. Graphical interpretation of parameters aj and bj .

The Partial Digest Problem (PDP) has been studied by several authors see Skiena, Smith, and Lemke [21], Skiena and
Sundaram [22], Cieliebak, Eidenbenz and Penna [9], Cieliebak and Eidenbenz [8]. Its main drawback is a lack of experimental
data. The output of the partial digestion is a multiset of all interpoint distances, where the points are the restriction sites
and the ends of the molecule. For n restriction sites, this multiset must consist of C2n+2 =

(n+1)(n+2)
2 fragment lengths.

Pevzner [19] argues that partial digestion has not been widely employed in biological laboratories because of the difficulty
in obtaining fragments between every pair of sites. This is confirmed by statistical data where small scale experiments have
been reported, see Dudez et al. [13], Keis et al. [17] and Kuwahara et al. [18]. From the point of view of computational
complexity theory [14] the status of PDP is yet to be established. The problem was proved to be NP-hard in the cases of
measurement errors [8] and noisy data [9]. However, a proof of NP-hardness of the original error-free PDP and a polynomial-
time solution algorithm do not currently exist, see Daurat, Gerard and Nivat [12].
A simplified partial digest method was first proposed by Blazewicz et al. [5] to address the drawbacks of the partial

digest approach outlined above. It has been further studied in [3,4,6,7]. We reproduce a description of this problem here
for completeness. In this simplified method, one enzyme is used on two sets of clones of the same DNA molecule. The
corresponding experiment consists of two parts. In the first part, the time of the chemical reaction is very short and chosen
so that target cloned molecules of the first set are cut at one restriction site at most. In the second part, the reaction time
span is long enough to cut the cloned molecules of the second set at all restriction sites. This simplified approach reduces
the number of reactions and presents an easier choice of the reaction times.
We study a mathematical model for genomemapping based on simplified partial digest. The model was presented in [3]

but is reproduced for completeness. From the first and the second parts of this experiment, multisets A and B, respectively,
of molecule fragment lengths are obtained. Let L be the length of the target DNAmolecule and let 1, . . . , n be the restriction
sites to be recognized by the used enzyme in this molecule. We assume that the experiment is error-free such that the
multiset A comprises n pairs {aj, L − aj} of positive numbers, which we call end distances, where aj is the length of the
fragment including one specified end of the molecule and restriction site j, and L − aj is the length of the complementary
fragment, j = 1, . . . , n. Furthermore, multiset B comprises n+ 1 numbers bj, which we call interpoint distances, where bj is
the length of a fragment between two adjacent points, i.e., restriction sites and the ends of the molecule, see the graphical
interpretation in Fig. 1.
The error-free Simplified Partial Digest Problem (SPDP) can be formulated in terms of number theory as follows. There is

an interval [0, L], a positive integer number n and two multisets A and B of positive integer numbers such that

A = {{aj, L− aj} | j = 1, . . . , n}, B =

{
bj | j = 1, . . . , n+ 1,

n+1∑
j=1

bj = L

}
.

Multiset A contains at most two identical pairs {aj, L− aj}. Identical pairs, if they exist, correspond to the restriction sites
that are symmetricwith respect to themiddle of themolecule. Each pair {aj, L−aj} can be ordered as (aj, L−aj) or (L−aj, aj).
Assume that each such ordered pair (pj, sj) is associated with a point pj ∈ [0, L] so that pj and sj = L− pj are the distances
between points 0 and pj and between points pj and L, respectively. The multisets A and B satisfy the property that each pair
{aj, L− aj}, j = 1, . . . , n, can be ordered so that the associated points pj, j = 1, . . . , n, partition the interval [0, L] into n+ 1
subintervals with interpoint distances constituting the multiset B, i.e., {pj+1 − pj | j = 0, 1, . . . , n} = B, where p0 = 0 and
pn+1 = L.
The goal of the error-free SPDP (in its search version) is to find a sequence of points p∗ = (0, p∗1, . . . , p

∗
n, L) such that

{{p∗j , L− p
∗

j } | j = 1, . . . , n} = A and {p∗j+1 − p
∗

j | j = 0, 1, . . . , n} = B,

where p∗0 = 0 and p
∗

n+1 = L.
There may exist several solutions of SPDP. One can be interested in finding at least one or all mutually non-congruent

solutions. Two solutions are called congruent if they are mirror images of each other. At least one solution of SPDP always
exists. It corresponds to the map of the original DNA.
The reported algorithmic results for SPDP include the following. Blazewicz and Kasprzak [7] proved that SPDP is NP-hard

in the strong sense and presented an O(n log n) time algorithm for the case where bj ∈ {1, 2}, j = 1, . . . , n+ 1. Abrams and
Chen [1] claim that SPDP is APX-complete by presenting a reduction from the Tripartite-matching problem. However, the
proof of their claim does not appear in their short paper. In this paper, unaware of their results, we provide our own proof
of the inapproximability of SPDP. Enumerative algorithms for SPDP were proposed by Blazewicz et al. [5], Blazewicz and
Jaroszewski [6] and Blazewicz et al. [3]. Blazewicz et al. [3] also presented a dynamic programming algorithm with O(n2q)
running time for SPDP with q distinct interpoint distances. They gave an example of the problem, in which the maximum
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Fig. 2. Exact and approximate solutions to SPDP.

number of mutually non-congruent solutions is equal to 2
n+2
3 −1 and provided a suite of computational experiments with

3710 real instances of SPDP taken from GenBank [15] to establish the number of non-congruent solutions. It was equal to
1, 2 and 4 for 3641 (98.14%), 64 (1.725%) and 5 (0.135%) instances, respectively, and it was never equal to 3 or exceeded 4.
Blazewicz et al. [4] considered optimization versions of SPDP, denoted as SPDP-Min and SPDP-Max. The goal of SPDP-Min
(SPDP-Max) is to find the orderings of the pairs from the multiset A such that the multiset of the corresponding interpoint
distances B0 (being a result of this ordering) contains the minimum (maximum) number of interpoint distances not from
the multiset B (from the multiset B). It was proved that SPDP-Min cannot be approximated in pseudo-polynomial time with
any finite approximation ratio ρ, while SPDP-Max cannot be approximated in pseudo-polynomial time with ρ < 1 + 1

n ,

unless P = N P . Here max
{
f 0

n+1 ,
n+1
f 0

}
≤ ρ for any problem instance, where f 0 is the value of the solution delivered by

the approximation algorithm. An O(n log n) time algorithm with ρ = 1 + n
n+2 and several heuristic algorithms based on a

graph-theoreticmodelwere presented for SPDP-Max. In the experiments provided, two of the proposed heuristic algorithms
always delivered an exact solution for real instances of SPDP from GenBank [15] with 20 ≤ n ≤ 50, and for randomly
generated instances with n = 50.
Since SPDP is NP-hard in the strong sense, we are interested in finding its approximate solution which contains correct

parts of the DNA map. Note that an approximate solution of SPDP-Min or SPDP-Max does not guarantee that any of its
interpoint fragments is located properly in the corresponding DNAmap. In this paper, we show that determiningmore than
6
13 , i.e., 0.4616 part of the DNA map in the simplified partial digest experiment is computationally difficult.
We call an interval a part of the DNA between two adjacent restriction sites including these restriction sites. An interval is

specified by the positions of its ends. In this paper, we assume that an approximate solution we wish to construct, specifies
a certain number of (correct) intervals which are all present in some exact solution of the considered instance of SPDP. We
call such a solution a structural solution. It presents a partial structure of a DNA. An example of an approximate structural
solution and corresponding exact solution are given in Fig. 2. Correct intervals are indicated by double lines.
Note that an approximate structural solution may contain more correct intervals than it indicates but only the specified

correct intervals are guaranteed to be present in some exact solution of SPDP.
We evaluate the quality of an approximate solution by the ratio1 = n0

n+1 , where n0 is the number of intervals specified
as correct and n+ 1 is the total number of intervals (the cardinality of the multiset B). For the solution in Fig. 2, n = 13 and
1 = 6

14 . We will prove that there exists no pseudo-polynomial time algorithm which delivers an approximate structural
solution to any instance of SPDP with the ratio 1 > 6

13 , unless P = N P . We have 6
13 × 100 < 46.16. Therefore,

recognizing 46.16% of the DNA map in the error-free simplified partial digest experiment is NP-hard in the strong sense.
Using the standard terminology of computational complexity for optimization problems (see Ausiello et al. [2]), we can
see that the problem of maximizing the number of correct intervals in the error-free simplified partial digest experiment
is pseudopolynomially non-approximable with the approximation ratio ρ = 13

6 . This further denies the existence of a
polynomial-time approximation scheme (PTAS) to the problem.

2. Idea of the proof

The basic idea behind our proof can be outlined as follows.Wewill construct a special case of SPDP, in which there are 2K
symmetric points each of which has its mirror image with respect to the middle of the molecule (including points 0 and L)
and the point L/2, see Fig. 3. Here, K is part of the problem instance (not a constant). The distance between any two adjacent
symmetric points is equal to the same number D. Thus, L = 2DK .
We call a set of intervals between two adjacent symmetric points and intervals between mirror images of these points

a block and we number the blocks 1, 2, . . . , K from the ends of the molecule to the middle. We set the number of intervals
in any block to be equal to 13. Thus, n + 1 = 13K . We call this special case SPDP-Blocks and assume that it always has a
solution like the general SPDP. In Section 3, we will prove that SPDP-Blocks (in its search version) is NP-hard in the strong
sense. This implies that the general error-free SPDP is NP-hard in the strong sense. Our proof is easier than the one in [7].
The problem SPDP-Blocks has the following property. Assume that there is an algorithm which gives us all 13 correct

intervals in some block i. Construct an i-modified problem SPDP-Blocks by removing lengths of the abovementioned correct
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Fig. 3. Special case with K blocks and 13 intervals in each block. Symmetric points are bold circles.

intervals from the multiset B and adjusting end distances in the multiset A as follows. Consider end distances a ∈ A and
L− a ∈ A such that a ≤ L/2. Let e1 and e2 be the endpoints of block i such that e1 < e2 ≤ L/2, e2 − e1 = D. If a ≤ e1, then
replace end distance L− a by L− a− 2D. If e1 < a ≤ e2, then remove a and L− a from A. If e2 < a ≤ L/2, then replace end
distance a by a− D and end distance L− a by L− a− D. Finally, in the i-modified problem we re-set L := L− 2D.

Proposition 1. The i-modified problem SPDP-Blocks has an exact solution and any such solution can be extended to an exact
solution of the original problem SPDP-Blocks by inserting into appropriate positions intervals of block i.

Proof. The first part of the above statement is satisfied because an exact solution of the i-modified problem SPDP-Blocks
can be obtained by removing intervals of block i from any exact solution of the original problem SPDP-Blocks and filling
the obtained gaps by shifting the remaining points to the left. The correctness of the second part can easily be verified by
inserting intervals of block i so that the left part of this block follows the left part of block i− 1 (or starts at point 0 if i = 1)
and the right part of this block precedes the right part of block i+ 1 (or ends at point L if i = K ). �

Due to Proposition 1, if there exists an algorithmwhich determines all 13 intervals in at least one block correctly, then atmost
K iterative applications of this algorithm are needed to find an exact solution of the original search problem SPDP-Blocks.
Now assume that there exists a pseudo-polynomial time algorithm, denoted as A0, which always provides 1 > 6

13 for
SPDP-Blocks. Then A0 outputs more than 13K × 6

13 = 6K correct intervals. If A0 outputs at most 6 correct intervals for each
block, then the total number of correct intervals does not exceed 6K . Therefore, it should output at least 7 correct intervals
for at least one block. In Section 3, we will show that for any block, if any 7 of its intervals are determined correctly, then
the remaining 5 of them can be determined correctly in constant time. Therefore, all 13 intervals for at least one block can
be determined in pseudo-polynomial time. This fact and Proposition 1 show that the search problem SPDP-Blocks could be
solved in pseudo-polynomial time, what would contradict its NP-hardness in the strong sense. We deduce that recognizing
more than 6

13 -th part of the DNA map in the simplified partial digest experiment is NP-hard in the strong sense.

3. Proving NP-hardness

A problem to be proved NP-hard is often formulated as a question asking about an existence of its solutionwhich satisfies
a given property. In the case of a decision version of SPDP-Blocks, a question could be whether there exists a DNA map with
the given multisets A and B. The answer to this question is always ‘‘yes’’ (it follows from the assumption that the digestion
experiment was error-free). Hence, the corresponding decision problem cannot be NP-hard. However, SPDP-Blocks is an
example of a search problem, which is to find a solution that satisfies a given property while knowing that such a solution
exists. Johnson [16] gives an explanation that a (strong) NP-hardness of a decision problem, for which the existence of
solution satisfying a givenproperty is not known, implies a (strong)NP-hardness of its search version, forwhich the existence
of such solution is known a priori.
For our purposes, we introduce a decision problem Quasi-SPDP-Blocks, which differs from the decision version of the

original problem SPDP-Blocks in that the multisets A and B do not necessarily contain numbers coming from the error-free
digesting experiment, i.e., the answer to Quasi-SPDP-Blocks is not always ‘‘yes’’. Following Johnson [16], strong NP-hardness
of Quasi-SPDP-Blocks implies strong NP-hardness of the original search problem SPDP-Blocks.

Theorem 2. Quasi-SPDP-Blocks is NP-hard in the strong sense.

Proof. Weconstruct a pseudo-polynomial transformation toQuasi-SPDP-Blocks of the stronglyNP-complete problem Exact
Cover by 3-sets (X3C) (see Garey and Johnson [14]).

Exact Cover by 3-Sets (X3C) can be defined as follows: Given a family C = {C1, . . . , Ck} of 3-element subsets of the set
M = {1, . . . , 3m}, does C contain an exact cover of M , i.e., a subfamily Y ⊆ C such that each j ∈ M belongs to exactly one
3-element set in Y?
Given an instance of X3C, we construct the following instance of Quasi-SPDP-Blocks. Let rj be the number of times that

element j ∈ M appears in the 3-element subsets of the family C . Firstly, calculate the numbers rj, j ∈ M . It can be done in
O(mk) time. Calculate number E = (3m+ 1)2.
We generate an instance of Quasi-SPDP-Blocks as follows. Set D = 12E, K = k, n = 13K − 1 and L = 2DK . For each

Ci ∈ C, i < k, generate two end distances iD and two end distances L− iD, which correspond to the pair of symmetric points



3590 J. Blazewicz et al. / Discrete Applied Mathematics 157 (2009) 3586–3592

Fig. 4. Graphical interpretation of an instance of Quasi-SPDP-Blocks.

Fig. 5. Two cases for block i. In each case, upper and lower pictures correspond to the left and right parts of the block, respectively.

Fig. 6. Point 2 is in the upper part and block i does not contain interval of length D.

Fig. 7. Point 3 is in the upper part and block i does not contain interval of length D.

iD and L − iD. For Ck, generate two end distances kD (this pair of distances corresponds to the point L/2). Furthermore,
assume that the order of elements in each triple Ci ∈ C is fixed. For each Ci ∈ C, i = 1, . . . , K , generate 11 pairs of end
distances according to Fig. 4.
If elements t1, t2 and t3 appear in Ci ∈ C in this order, then we generate 11 end distances of the set Fi := {(i− 1)D+ E −

t1, (i − 1)D + 2E, (i − 1)D + 3E − t1, (i − 1)D + 4E, (i − 1)D + 5E − t2, (i − 1)D + 6E, (i − 1)D + 7E − t2, (i − 1)D +
8E, (i − 1)D + 9E − t3, (i − 1)D + 10E, (i − 1)D + 11E − t3} and 11 their complements L − a, a ∈ Fi. Thus, multiset A is
fully specified.
We generate multiset B to consist of rj+ 1 numbers E − j, j = 1, . . . , 3m, rj+ 1 numbers E + j, j = 1, . . . , 3m, 5(K −m)

numbers 2E, 2(K −m) numbers 4E andm numbers 12E.
The described instance of Quasi-SPDP-Blocks can be constructed in time polynomial in k and m, and all the numbers of

this instance are upper bounded by a polynomial ofm. Therefore, our transformation is polynomial and pseudo-polynomial
at the same time.We now show that for the considered instance, a solution to X3C exists if and only if there exists a solution
to Quasi-SPDP-Blocks.
Assume that there exists a solution to Quasi-SPDP-Blocks.We first show that only four cases are possible for the (correct)

intervals in each block. Two of these cases for block i are given in Fig. 5. The other two cases are mirror images of the given
two cases.
We will analyze possible positions of the points 1, 2, . . . , 11 in a solution of Quasi-SPDP-Blocks. Each of these points can

either be present in the left part (upper part in Fig. 5) or right part (lower part in Fig. 5) of block i. We can assumewithout loss
of generality that point 1 is present in the upper part. With regard to point 2 there are two cases to consider. First, assume
that point 2 is located in the upper part and block i does not contain interval of length D = 12E, see Fig. 6.
Point 3 cannot be located in the lower part because it would produce interpoint distance 3E − a 6∈ B. Assume that point

3 is located in the upper part and block i does not contain interval of length D, see Fig. 7.
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Fig. 8. Points 2 and 3 are in the lower part.

Fig. 9. Point 4 is in the lower part.

Point 4 cannot be located in the lower part because the upper part will contain one of the interpoint distances
2E + a − b, 3E + a, 4E + a − b or the one greater than or equal to 5E + a, none of which is present in the multiset B.
Therefore, point 4 should be located in the upper part. We have shown that in the case when point 2 is in the upper part and
block i does not contain an interval of length D, points 1, 2, 3 and 4 are all in the upper part. However, the lower part should
contain at least one point and this point will produce an interpoint distance greater than or equal to 5E − bwhich is not in
the multiset B. Therefore, if point 2 is in the upper part, then the structure of block i is in accordance with Case 1 in Fig. 5.
Now assume that points 2 and 3 are located in the lower part, see Fig. 8.
In this case, the upper part should contain interpoint distance 3E + a, 4E + a − b or the one greater than or equal to

5E + a, none of which is present in the multiset B. Therefore, point 3 should be located in the upper part and positions of
points 1, 2 and 3 are in accordance with Case 2. Assume that point 4 is in the lower part, see Fig. 9.
In this case, the upper part will contain one of the interpoint distances 2E + a− b, 3E + a, 4E + a− b or the one greater

than or equal to 5E + a, none of which is present in the multiset B. Therefore, point 4 should be located in the upper part.
Now positions of the points 1, 2, 3 and 4 are in accordance with Case 2. Point 5 cannot be in the lower part because then it
will produce an interpoint distance 3E−b 6∈ B. If points 1, 2, 3, 4 and 5 are in accordance with Case 2, then point 6 cannot be
in the upper part because in the lower part there will be an interpoint distance greater than 4E,which is not in the multiset
B.
Continuing in the same fashion we can prove that in any solution of Quasi-SPDP-Blocks the structure of each block is in

accordance with Case 1, Case 2 or their mirror images.
Consider a solution of Quasi-SPDP-Blocks. Let Y ′ be the family of 3-element subsets Ci ∈ C corresponding to the blocks of

Case 1 in Fig. 5 or itsmirror image.Wewill nowshow that {j ∈ Ci|Ci ∈ Y ′} = {1, . . . , 3m} = M . Assume that some j ∈ M does
not appear in Y ′. Then interpoint distance E − j appears only in blocks of Case 2 and the number of its appearances is equal
to rj which is less than the required number rj+ 1. Now assume that some j ∈ M appears x times in Y ′, 2 ≤ x ≤ rj. Then the
number of appearances of interpoint distance E−j in blocks of Case 1 andCase 2 is equal to 2x+rj−x = rj+x ≥ rj+2 > rj+1.
Hence, each j ∈ M appears exactly once in Y ′, whichmeans that Y ′ is a solution to X3C. Thus, the first part of the equivalence
statement is proved.
Establishing the converse is easy. If Y is a solution to X3C, then construct a solution to Quasi-SPDP-Blocks in which block

i is of Case 1 if Ci ∈ Y and it is of Case 2 otherwise. �

Due to the discussion in Johnson [16], the following corollary takes place.

Corollary 3. SPDP-Blocks (search version) is NP-hard in the strong sense.

Our proof and the proof in [7] both consider the cases where the number of symmetric points is a part of the instance. It
is worth noting that the computational complexity of SPDP containing a constant number of symmetric points or no such
points is open.
We now prove that recognizing correctly more than 6 intervals of a block implies having recognized all 13 intervals in a

constant time.

Theorem 4. For an instance of SPDP-Blocks (search version) defined as it is shown in Theorem 2, if any 7 intervals of any block
are determined correctly, then all 13 of them can be determined correctly in a constant time.

Proof. Assume that we are given 7 correct intervals for some block i in an instance of SPDP-Blocks defined as it is shown in
Theorem 2. Recall that this instance has a solution and the structure of block i in any solution coincides with either Case 1
or Case 2 in Fig. 5. The recognition of Case 1 or 2 can easily be carried out if we are given a correct interval different from the
6 intervals of lengths E ± a, E ± b and E ± c in Case 2. For example, if there is a correct interval of length 2E, then we know
that block i is in accordance with Case 2 and if interval [(i− 1)D+ E− a, (i− 1)D+ 2E] is given as correct, then block i is in
accordance with Case 1. Since we are given 7 intervals, one of them is different from the above mentioned 6 intervals and it
can be used to determine all 13 correct intervals of block i. Clearly, this determination can be done in a constant time. �
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4. Conclusion

We have proved that recognizing more than 6
13 -th part of the DNAmap in the simplified partial digest experiment is NP-

hard in the strong sense. This result should stimulate discoveries and studies of algorithms which behave well for practical
cases of SPDP.
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